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Abstract: Mass detection in mammograms has a limited approach to the presence of a mass in
overlapping denser fibroglandular breast regions. In addition, various breast density levels could
decrease the learning system’s ability to extract sufficient feature descriptors and may result in
lower accuracy performance. Therefore, this study is proposing a textural-based image enhancement
technique named Spatial-based Breast Density Enhancement for Mass Detection (SbBDEM) to boost
textural features of the overlapped mass region based on the breast density level. This approach
determines the optimal exposure threshold of the images’ lower contrast limit and optimizes the
parameters by selecting the best intensity factor guided by the best Blind/Reference-less Image
Spatial Quality Evaluator (BRISQUE) scores separately for both dense and non-dense breast classes
prior to training. Meanwhile, a modified You Only Look Once v3 (YOLOv3) architecture is employed
for mass detection by specifically assigning an extra number of higher-valued anchor boxes to the
shallower detection head using the enhanced image. The experimental results show that the use of
SbBDEM prior to training mass detection promotes superior performance with an increase in mean
Average Precision (mAP) of 17.24% improvement over the non-enhanced trained image for mass
detection, mass segmentation of 94.41% accuracy, and 96% accuracy for benign and malignant mass
classification. Enhancing the mammogram images based on breast density is proven to increase the
overall system’s performance and can aid in an improved clinical diagnosis process.

Keywords: breast density; CAD; image enhancement; breast cancer; deep learning; textural

1. Introduction

According to International Agency for Research on Cancer, an estimated 2.3 million
new cases of breast cancer has overtaken lung cancer as the most prevalent cancer di-
agnosed, with cancer death rates significantly higher in transitioning nations [1]. Breast
screening programs are a way to detect early signs of breast cancer and are dominated by
utilizing digital mammography as the primary tool for cancer detection [2]. Additional
modalities such as ultrasound are used in conjunction with mammography for denser
breasts, whereas magnetic resonance imaging (MRI) is used for more progressive breast
analysis for repeated and high-risk patients [3].

Breast density, as defined by the American College of Radiology (ACR), is used
during clinical diagnosis that classifies the breast into four categories with increasing
density: almost entirely fatty, scattered fibroglandular, heterogenous, and finally, extremely
dense breast [4].
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The heterogeneous dense breast as depicted in Figure 1A and the overlapped mass
(red region) (in Figure 1B) on the dense region (blue region) is visually harder to distinguish
compared to a non-dense breast that only contains mostly fatty (orange region) tissue.
Diverse breast tissue structures cause mixed-intensity variations and limited visibility
of breast features [5]. Due to this factor, the processed images may result in less accept-
able breast tissue segmentation and inconsistent diagnosis by compromising the system’s
sensitivity and specificity to detect abnormalities [6,7]. Past studies concluded that mass
detection decreased with increased density, due to the mass itself being similar to the
surrounding dense tissue of the breast [8–10]. Additionally, image quality conditions also
make it difficult to detect the lesion in dense breasts [11,12]. Specifying the edge of the mass
from its surrounding dense tissue requires image processing that enhances the textural
element of the image as one of the defining mass descriptors to assess a mammogram
visually [13]. The textural analysis identifies distinctive descriptors in the form of a chang-
ing pattern or pixel intensity with various spatial arrangements. Its refinement aims to
go beyond human-eye perception by defining semantic descriptors to extract quantitative
radiological data [14].
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To accommodate the analysis of mammographic mass, Computer-Aided Diagnosis
(CAD) systems are introduced to breast cancer diagnosis stages, from improving the
image quality [11,15], breast lesion detection, and segmentation [16], as well as benign
or malignant classification [16–19]. Moreover, CAD implementation in mammography
diagnostic could reduce the human rater’s false-positive rate by 5.7% and false negative
by 9.4%, as shown in a USA-based dataset [19], and an increase rate of 3% recall rate for
a radiologist’s mammogram analysis with CAD assistance for an expert radiologist [20].
CAD systems proved to aid radiologists in making a better diagnosis with the area under
the curve (AUC) of 0.896 from 0.850 without affecting diagnosis timing [21]. Since deep-
learning CAD systems performed best when trained using large datasets [22], it is harder
to apply suitable image quality improvements individually on the images, leading to a
need for special enhancement procedures and careful pre-processing for the images before
they can be trained on a deep-learning architecture.

Most Convolutional Neural Network (CNN) applications for CAD systems have
focused on direct mammogram images for detection and classification rather than the
need for specific enhancement based on breast density level and the quality of the input
images. This could unintentionally lead to reduced sensitivity for mass detection in
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dense mammograms, resulting from higher training weightage on non-dense breasts
because of dataset class imbalance [23]. Enhancement techniques based on histogram
manipulation, such as adaptive/histogram equalization (HE/AHE) and contrast-limited
adaptive histogram equalization (CLAHE), have been extensively used to enhance the
images before training. Nevertheless, the method’s adaptability for different densities of
the breast images and their effects needs to be paid attention. Several studies have included
the analysis of the impact of breast density on the post-training level rather than countering
its effect on the pre-processing level [10,18,24–26]. However, pre-processing analysis of the
mass surrounded by dense tissue is essential to verify that the established CAD system is
robust to dense breast images for accurate mass detection.

Based on this motivation, we proposed an enhancement technique that adapts non-
dense and dense breast categories by subtly changing the non-dense region appearance
within a mammogram image through textural refinement, mimicking the radiologist’s
manual contrast adjustment on individual images while maintaining the visual perceptual
of the original image. The textural refinement on the mass edges boosts its feature vector
representability during the convolutional process for detection and segmentation algorithm
for better classification performance.

In summary, this work’s contributions are focused on:

1. A breast density-based configuration is incorporated prior to the training detection
algorithm.

2. An enhancement technique that enhances the textural appearance of the background
and mass region by determining the threshold of the dense and non-dense region
through a buffer region by manipulating the images’ lower limit cap threshold value.

2. Past Literature

Image enhancement is required to optimize the image’s overall quality in preparation
for subsequent stages. Enhancements using histogram-based techniques have been proven
to enhance mammogram images, such as through histogram equalization [26,27] and the
widely used contrast-limited adaptive histogram equalization (CLAHE) [10,18,24,28,29].
Histogram-based image enhancement increases the contrast and dynamic range of the
grayscale image by adjusting an image’s contrast using its histogram and increases the
image’s contrast by dispersing the most common pixel intensity values by extending the
image’s intensity range [30]. Researchers also combined CLAHE with their proposed
method to improve their performance. For instance, CLAHE was utilized in conjunction
with unsharp masking filtering, with the effectiveness in demonstrating an enhancement
for mass region segmentation [31]. In addition, breast cancer detection using a modified
CLAHE method is used to sharpen the margins of the masses on three datasets [32].
Meanwhile, CLAHE, wavelet, and anisotropic diffusion combination were presented for
mammography enhancement in [33] and obtained a sensitivity of 93% when tested on a
limited number of abnormal and normal images from the mini-Mammographic Image
Analysis Society (mini-MIAS) dataset. The introduction of multilevel Otsu’s thresholding
with wind-driven optimization for mass detection utilizing CLAHE enhancement on mini-
MIAS and Digital Database for Screening Mammography (DDSM) mammogram datasets
is conducted with 96.9% and 96.2% detection sensitivity [29].

Additionally, a different approach using top-hat transform-based mammography en-
hancement is established to increase the contrast between the suspicious area and normal
breast tissues, increasing mass detection sensitivity using the proposed technique com-
pared to unenhanced images [34]. Moreover, grayscale transformation applied by [35] helps
reveal more information and increase contrast by selectively emphasizing or suppressing
undesirable elements in the image, hence uniformizing the pixel distribution. Recently, a
study to detect mass with its performance improved using contrast-based enhancement by
employing a hyperbolic tangent function with an adjustable Tunicate swarm algorithm as
optimization of the system via fitness function is demonstrated by [36] and shows improve-
ment when compared to the CLAHE method. The use of another optimization through
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hybridized fast and robust fuzzy c-means clustering (FRFCM) and particle swarm opti-
mization before mass detection was proposed on the mini-MIAS with 96.6% sensitivity [37].
A classification system for mammogram cancer by [38] using improved multi-fractal di-
mension features also included a pre-processing subsystem for denoising the mammogram
following the cancer region segmentation.

These methods produced good final performance. However, these studies applied
a straightforward object detection algorithm to analyze their method’s effectiveness for
the images to be trained in a full-scale CAD system. Moreover, the enhancement methods
did not take the effect of variation of breast density into consideration, with some methods
causing the final mass to be indistinguishable from the dense tissue [27,31], where the final
output is in the form of classification of mass and non-mass only. This could raise the issue
of losing crucial mass features if continued to the cancerous mass classification stage later.
The studies were also not tested against any image quality metrics as an essential aspect of
any image enhancement method proposal, by using metric performance such as applied
by [36], which is not considered the best in the analysis of enhancement for breast density
as it relies on the contrast and intensity of the images.

Existing state-of-the-art object identification techniques such as Faster Region-based
CNN (R-CNN) [39], You Only Look Once (YOLO) versions [40,41], and Single Shot Multi-
Box Detector (SSD) [42] have been implemented in many vision studies for detection,
following the image enhancement techniques. YOLO has been proven to be the most
beneficial in terms of accurate and fast detection rate [43,44] compared to the other de-
tection algorithms. For example, mass detection using the YOLO model was carried out
as proved by Al-Antari et al. [45] and resulted in a detection accuracy of 98.96%. Sim-
ilarly, [28] enhanced their approach by comparing feedforward CNN, ResNet-50, and
InceptionResNet-V2 for classification before implementing the YOLO model for detection.
Subsequently, this team [46] proposed a CAD system framework that classified breast
masses into malignant and benign using Fully Connected Neural Networks (F-CNNs). This
system framework first detected breast masses using the YOLO model with an overall accu-
racy of 99.7%. Meanwhile, [47] employed the YOLO fusion model for breast mass detection
by fusing the best feature representation from single-class mass-based and calcification-
based training models to a multiclass model that combined the feature maps. Their best
performance observed was 98.1% for mass lesion accuracy detection. In [48], fusion YOLO
was used for detection by introducing new classes of normal and architectural distortion
abnormality on final prediction with mass detection accuracy at 93% ± 0.118.

Based on the discussions, although different strategies were implemented to boost
mass detection performance, the study has severe limitations that have been conducted to
adapt the breast density variance effect through enhancement techniques before training
the system. A fully automated mass detection based on density through CAD is crucial,
especially with its link with 2.2-fold more cancer risk in clinical profiling for denser breasts
reported [49]. Studies conducted by [10,18,24,25] all pointed to a decrease in the model’s
performance when trained using denser breast images. One of the earliest studies of
mammograms that includes adaptation to breast density developed their model using
density-based spatial clustering of applications with noise (DB-SCAN), highlighting the
breasts’ internal structure before training [25]. Likewise, the same method was applied
by [24] on a different dataset to improve the method proposed by [25], where the author
introduces a two-stage false positive reduction process through bilateral breast analysis.
Even though it has good results in preparing the models based on breast density, limitations
include if only unilateral breast is available, and asymmetrical factors for both breasts might
affect the performance.

3. Proposed Methodology

This section discusses the overall methodology for completing the framework’s three main
phases, as shown in Figure 2. Each phase is discussed further in the following subsections.



Bioengineering 2023, 10, 153 5 of 24

Bioengineering 2023, 10, x FOR PEER REVIEW 5 of 25 
 

3. Proposed Methodology 
This section discusses the overall methodology for completing the framework’s three 

main phases, as shown in Figure 2. Each phase is discussed further in the following sub-
sections. 

 
Figure 2. Overall Proposed Methodology for Breast Mammogram Mass Classification. 

3.1. Experimental Setting 
3.1.1. Dataset: INbreast 

The INbreast dataset has been widely used in previous studies [18,28,50,51] and was 
one of the first established datasets of full-field digital mammograms (FFDM) acquired in 
2011 at Centro Hospitalar de S. Joo, Breast Centre, Porto [52]. A total of 410 images were 
extracted with 115 abnormal lesion cases ranging from mass, calcification, and architec-
tural distortions, with both craniocaudal (CC) and mediolateral oblique (MLO) views. 
Subsequently, the extracted images were exclusively updated by the authors with permis-
sion, along with the annotated ground truth range of interest (ROI) of the segmented mass 
region. Note that 112 mass images were included for this study that ranges across four 
breast density classifications, further classified based on their mass types: benign and ma-
lignant. To avoid sampling bias, 80% of the images were randomly selected for training, 
with the remaining 20% used for testing and validation for all stages, and were independ-
ent of the breast mass types and density level. Finally, augmentation settings were set into 
degrees of rotation of 30° to 300°, horizontally flipped, and scaled to randomized 1.0 to 1.3 
scale factor. Augmentation settings that alter the hue, contrast, brightness, and saturation 
were excluded to avoid unintentional intensity changes affecting the breast density. 

3.1.2. Experimental Setup 
This study focuses on the effect of the proposed SbBDEM enhancement technique 

applied in the pre-processing to prepare the images for the subsequent stages. The perfor-
mance was measured by comparing the performance with the system trained using orig-
inal images and two established histogram-based enhancement techniques. The final clas-
sification stage used only the handcrafted learning features to reduce the overall compu-
tation, as the mass was already accurately detected and segmented from prior stages. To 
compare the breast density-wise performance, the initially randomized labeled image 
numbering was saved from the detection phase onto the following stages to make an un-
biased comparison among the same test images. Additionally, a 5-fold cross-validation 
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3.1. Experimental Setting
3.1.1. Dataset: INbreast

The INbreast dataset has been widely used in previous studies [18,28,50,51] and was
one of the first established datasets of full-field digital mammograms (FFDM) acquired in
2011 at Centro Hospitalar de S. Joo, Breast Centre, Porto [52]. A total of 410 images were
extracted with 115 abnormal lesion cases ranging from mass, calcification, and architectural
distortions, with both craniocaudal (CC) and mediolateral oblique (MLO) views. Subse-
quently, the extracted images were exclusively updated by the authors with permission,
along with the annotated ground truth range of interest (ROI) of the segmented mass region.
Note that 112 mass images were included for this study that ranges across four breast
density classifications, further classified based on their mass types: benign and malignant.
To avoid sampling bias, 80% of the images were randomly selected for training, with the
remaining 20% used for testing and validation for all stages, and were independent of the
breast mass types and density level. Finally, augmentation settings were set into degrees
of rotation of 30◦ to 300◦, horizontally flipped, and scaled to randomized 1.0 to 1.3 scale
factor. Augmentation settings that alter the hue, contrast, brightness, and saturation were
excluded to avoid unintentional intensity changes affecting the breast density.

3.1.2. Experimental Setup

This study focuses on the effect of the proposed SbBDEM enhancement technique
applied in the pre-processing to prepare the images for the subsequent stages. The per-
formance was measured by comparing the performance with the system trained using
original images and two established histogram-based enhancement techniques. The final
classification stage used only the handcrafted learning features to reduce the overall com-
putation, as the mass was already accurately detected and segmented from prior stages.
To compare the breast density-wise performance, the initially randomized labeled image
numbering was saved from the detection phase onto the following stages to make an unbi-
ased comparison among the same test images. Additionally, a 5-fold cross-validation was
performed on the classification stage to ensure the average of using all learning features to
compare performance. These experiments were visualized and executed on a workstation
equipped with CPU Intel(R) CoreTM i7-10870H 2.3 GHz with single GPU graphic card
NVIDIA GeForce RTX2060 6GB, 16 GB RAM, and trained and tested on MATLAB (Natick,
MS, USA).
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3.2. Stage 1: Proposed Image Pre-Processing for SbBDEM
3.2.1. Image Preparation

The overall process for Stage 1 is illustrated in Figure 3. Standard morphological
operations were applied to remove stray annotation marks to allow only the breast area
to maximize the processing image area. To unify features between CC and MLO views,
pectoral muscle was digitally removed from the MLO view images. To prepare the image
to accommodate the needs of different breast densities, the images were segregated based
on their supplied ACR density levels following the supplemented density scores to non-
dense (1 = almost entirely fatty, 2 = scattered dense) and dense (3 = heterogeneous dense,
4 = extremely dense) categories.
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3.2.2. Lower Limit Contrast Cap Determination

As the next stage of the proposed framework includes mass detection process, it is
essential to differentiate the mass from its background whether it is overlapped on the non-
dense or dense background. To reduce the non-dense image information while enhancing
features from the denser region (hence the mass), image modification was conducted
by selecting the best lower-limit contrast of the image. The final output will be a breast
image that have a less skin and non-dense region appearance and a pronounced textural
definition of the dense region. This includes the mass region while keeping the textural
features from the fibroglandular and vascular tissue of the lower-intensity fatty tissue in
the background. To achieve this, the higher limit of contrast adjustment was set to the same
as the original image.

3.2.3. Factorized Otsu’s Thresholding for Breast Density Group Segregation

Otsu’s thresholding calculates the point value of intensity based on the image’s in-
tensity spread on a bimodal histogram and separates the image into its foreground and
background [53]. Since the original mammogram was converted to a normalized grayscale
image consisting of two main tissue types that are closely related to its intensity and con-
trast (higher intensity = dense region, lower intensity = non-dense region), the Otsu’s value
was definitive in determining the middle-intensity value that separates these tissue groups.
Therefore, Otsu’s method has been implemented in this study as a reference point for deter-
mining the lower limit contrast to be clipped from the input image. However, direct Otsu’s
threshold separates tissue that might belong to the other side of the histogram, such as the
black background as a non-dense region and calcified vessels and the skin lining appearing
white in the image as a dense region. To properly lessen this imbalance effect, the threshold
value was interpolated on a scale of 1.0 to 1.9 for each non-dense and dense image group
that has been separated in the previous step to subtly adapt the sudden change of region
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foreground to background image as a buffer intensity region. Subsequently, the training
images were chosen based on their quality score, which is explained in the next stage.

3.2.4. Blind/Reference-Less Image Spatial Quality Evaluator (BRISQUE)

When an image is altered, it is vital to assess it through an image quality assessment
metric by referencing a gold-standard image for quality assessment in terms of its sharpness,
contrast, etc., for comparison [54]. Common examples of tests where the referenced image
must come from one of the images closely linked to the evaluated image include the mean-
square error (MSE) and peak signal-to-noise (PSNR). However, when dealing with deep
learning, possibly thousands of images are being trained, making it impossible to select
only one for reference quality perspective. This is especially true if the dataset consists
of multiple image acquisition techniques, which further vary the dataset’s measurement
range [55,56]. In this study, to separate the overlapped mass with its background, the
non-dense region becomes darker, hence enhancing the mass’s edge. This is expected to
cause substantial image alteration, with mild changes on the mass and dense regions of
the resulted image, causing noise to be increased in the final image. Hence, the MSE and
PSNR scores are likely to produce unsatisfactory performance. Moreover, using quality
assessments such as PSNR for reconstruction quality in determining the quality of an
image used for a detection algorithm is unwarranted since a detection algorithm relies
on its ability to separate a mass from its surroundings and, by extension, on the overall
image, regardless of the final quality of the image used for training. Therefore, we chose
the best Otsu’s threshold factor with an image perceptual quality evaluator known as the
Blind/Reference-less Image Spatial Quality Evaluator (BRISQUE) [57]. It performed as a
spatial feature image assessment metric that is commonly known as opinion-aware and
analyses images with similar distortion [57], similar to how visual perception is made.
As image distortions affect the quality in term of its textural features (texture signifying
the difference of pixel of dense region background and the overlapped mass), BRISQUE
was chosen as the primary evaluation metrics in this study. The BRISQUE score guided
in choosing the optimal quality factor that clearly defines the difference between non-
dense and dense breast images without using any reference image. It provides a rating
by generating matching differential mean opinion score (DMOS) values using a support
vector machine (SVM) regression model trained on a spatial domain image database [57].
During the training of BRISQUE, the database contained both the clean and edited versions
with different additive noise implementations such as Gaussian white noise and blur,
compression artifacts, and Rayleigh fast fading channel simulation, serving as the distortion
image version for comparison [57]. Besides that, BRISQUE uses scenic data from locally
normalized luminosity coefficients to measure any loss of naturalness due to distortion,
resulting in a holistic quality score compared to calculating user-defined quality, such as
ringing or blurring, as what is being measured when using PSNR [55]. Recent studies of
medical images such as mammogram [58–60], lung CT scans [15,58], kidney and brain
MRIs [15] have moved towards reference-less image quality evaluators to evaluate their
work with good results. In this study, the image group was ultimately selected as the
input for mass detection in the subsequent step once the best image score of BRISQUE
was obtained.

3.2.5. Evaluation and Analysis of the Proposed Enhancement Technique

We measured the proposed SbBDEM enhancement quality and its direct application
in the input of the detection stage based on both reference-less (BRISQUE) and referenced
(MSE) measurements. BRISQUE was calculated based on the method proposed by [57],
and MSE was given by Equation (1):

Mean Squared Error, MSE =
1

mn ∑m
0 ∑n

0 || f (i, j)− g(i, j)||2 (1)
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where m and n are the image’s height and width, i and j are elements from the enhanced
image, f, and referenced image, g, whereas additional textural features analysis was made
on the images based on the Gray-Level Co-occurrence Matrix (GLCM) for comparison.
The texture properties extracted from the produced matrix were four statistical feature
descriptors defined as contrast, correlation, energy, and homogeneity as mathematically
defined in Equations (2)–(5). For every element, P, it reflected the total number of occur-
rences of the pixel values of i and j respective to the number of gray levels where σ and µ
are the standard deviation and central moments derived in the form of means of variance
and skewness.

Contrast = ∑levels−1
i,j=0 Pi,j(i− j)2, (2)

Correlation = ∑levels−1
i,j=0 Pi,j

 (i− µi)
(

j− µj
)√(

σ2
i
)(

σ2
j

)
, (3)

Energy =

√
∑levels−1

i,j=0 P2
i,j, (4)

Homogeneity = ∑levels−1
i,j=0 Pi,j|i− j|, (5)

Additional analysis of the images’ mean intensity was evaluated for comparison. The
mean intensity is the normalized mean number of normalized pixel values in each RGB
channel, divided by the total number of pixels in the image, n, given in Equation (6).

Mean Intensity =
∑n

n=0(R + G + B)
n

, (6)

For pixel mapping evaluation, we assessed an example of True Positive (TP) and
False Positive (FP) from a sample of mass edge from the enhanced testing image using
the proposed SbBDEM technique. We assessed the probability of edge detection on the
next-best performed on the BRISQUE and MSE scores. Note that mass edge detection’s pixel
analysis is emulated based on the first layer of modified YOLOv3 based on convolution
process from Equation (7), zero padding, with a stride of two with maximum pooling
downsampling to reveal the effect of pixel change made during enhancement that affects
edge detection. On the other hand, diagonal edge analysis using kernel matrix K = [110, 10-1,
0-1-1] was chosen with a window size of 3-by-3, slides on the image using the convolution
process, where I is the cropped mass image with i, j element, K represents the kernel with
x, y element, and ηW , ηh and ηC are the number of heights, widths, and channels of I,
respectively. Consequently, the maximum pooling downsampled element was chosen to
represent both suspected mass and background area. The edge pixel difference of Mass and
Background edge detection is denoted as ∆ in Equation (8). Higher ∆ denotes the higher
pixel difference between the neighboring pixel encapsulating the mass.

Conv(I, K)x,y = ∑ηW
i=1 ∑ηW

j=1 ∑ηC
k=1 Ki,j,k Ix+i−1,y+j−1,k (7)

Edge pixel difference, ∆ = Maxconv(mass) − Maxconv(background) (8)

3.3. Stage 2: Mass Detection Using Modified YOLOv3
3.3.1. You Only Look Once (YOLO)

Object detection is a process of detecting a specifically trained object within an image.
YOLO and its versions (v2, v3, and so on) implement a single forward-pass filter by splitting
the original image into a grid of s-by-s size. Subsequently, a bounding box prediction
will be made for each separated cell. The algorithm searches for the object’s midpoint
during training, where the specific cells containing the midpoint will be responsible for
determining the target object’s presence. The corresponding cells are linked to the cell
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with the midpoint, which is set up as the cell with the midpoints defined as the bounding
box, which is made of four components [x, y, w, h]. Here, x and y are the top left-most
coordinates of the bounding box with a value of 0 to 1.0, while w and h are the width and
height of the box, respectively. Both w and h could be greater than 1.0 if the final detected
box is wider than an entire s-by-s cell. In addition to the four components, each box has
a probability value that indicates the presence of an object in the cell and the number of
class predictions. Based on this prediction value, the trained network for each cell should
be able to output a specific box coordinate that contains the highest probability value for
the final detected output for class prediction.

3.3.2. YOLOv3 Modification for Mass Detection

This study utilized the simplest form of YOLOv3 using SqueezeNet [61] as its base net-
work and modified it to improve the overall detection result. Note that the SqueezeNet has
only 1.2 million learnable parameters as opposed to the original DarkNet-53 [40] network,
which has 41.6 million parameters. As a result, SqueezeNet-based YOLOv3 was chosen to
lessen the burden of weightage parameter training. Among the benefits of using a simpler
network architecture are more efficiently distributed training parameters, more use of spatial
information, which leads to shorter training times, less bandwidth for future model updates,
and the ability to be deployed with less memory configuration [62]. Aside from being
lightweight, using predefined anchors and detection heads introduced in YOLOv3 architec-
ture allows smaller objects to be detected [40]. Depending on the base network, the YOLOv3
could extract deep features to extract three-scale feature maps from the anchors used for
the final bounding-box calculation to predict the best confidence score (CS). YOLOv3 has
also been successfully implemented in recent mammogram studies [63,64], showing that
its implementation is reliable with good results. A comparison of YOLOv3 and YOLOv4
conducted by [65] shows that even though YOLOv4 is an improvement, it shows no sub-
stantial difference between the two models, leading the author to infer that the performance
of YOLO primarily depends on the features of the dataset and the representativity of the
training images.

Figure 4 illustrates the modified SqueezeNet CNN architecture for the mass detection
stage in this study. The input image size was set to 227-by-227, where the enhanced input
training images were trained with whole mammogram images. The image went through a
series of cascaded and parallel convolutions with concatenation along the nine repeated
layers, reducing the information and computation by compacting feature maps as the
network went deeper. Two detection heads were allocated when this architecture was
modified for detection purposes in YOLOv3. The second detection head was double the
size of the downsampled input (28-by-28) of the first detection head (14-by-14), causing
smaller masses to be better detected. Since the mass size ranged from the aspect ratio of
the breast size, with more than 50% of the training data containing mass with a size less
than a sixth of the overall images, we have tried to resolve this problem by devising this
architecture by modifying the input of the second detection head.

Hence, to improve the detection of small masses and overall detection performance,
we proposed two strategies to solve this problem.

Strategy One: Residual feature mapping for the second detection head: Features from
the shallower layer were included (depth concatenation four), containing higher spatial
features from the skip connection, and were elementwise added with the semantic features
from the deeper layer (depth concatenation nine), where the element-wise addition reduced
feature degradation that occurred during downsampling which enhanced feature contrast
and feature discrimination [51].
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Strategy Two: An additional anchor box assigned to a smaller feature map: This
anchor box was introduced to the lower scale of the anchor box number of the second
detection head (ratio of 4:3 to first detection head). While simply increasing the number of
anchor boxes increased the predefined mean intersection over union (IoU), this could only
lead to lower performance due to overfitting the number of bounding boxes per image
mapping [66]. However, assigning an extra anchor box only for the smaller feature map
specifically will increase the bounding box refinement on the feature map allocated to
features coming from Strategy One, which increases the possibility of detecting smaller
mass sizes coming from the images’ semantic information.

The image gave seven predictions with their confidence level scores on every single
grid cell with the size of s-by-s. The network was trained on 80 epochs with 10 mini-batch
sizes. The learnable parameters were updated through a loop of stochastic gradient descent
momentum (sgdm) solver. The initial learning rate was set to 0.001, and a 0.5 confidence
score (CS) threshold value was defined for determining the overall mean Average Precision
(mAP) score for mass detection, with the largest CS bounding box score selected for final
prediction. It is important to note that the hyper-parameter tuning values were chosen
based on previous studies and this study’s repeated trial processes [67].

3.3.3. Performance Evaluation of the Modified YOLOv3 Using Enhanced Images

In this study, mass detection performance was correlated with the image enhancement
performance in the prior stage. Therefore, we assessed TP and FP, while the mAP was
calculated from the area under the curve of recall and precision, following Equation (9):

mean Average Precision, mAP =
1

|classes|∑c∈classes
|TPc|

|FPc|+ |TPc|
(9)

where c is the number of classes. The mAP is the current metric used by computer vision
researchers to evaluate the robustness of object identification models. It incorporates the
trade-off between precision and recall, which optimizes the influence of both metrics, given
that precision measures the prediction accuracy and recall measures the total number of
predictions concerning the ground truth.
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3.4. Stage 3: Mass Segmentation, Feature Extraction, and Classification
3.4.1. Mass Segmentation and Evaluation

Following Stage 2, the final evaluation of the system’s performance was based on its
mass segmentation and classification. To fully separate the mass from its surrounding tissue,
we utilized deep-learning-based semantic segmentation once the mass had been localized
using the bounding box location obtained from the previous stage. Here, the highest CS
was selected for more than one detection. Clearly, segmented mass is important in defining
the area in which the features are extracted from the images when classifying the mass into
benign or malignant in later stages. Therefore, the evaluation for segmentation performance
from the Jaccard index, J, of the IoU score was calculated based on Equation (10):

J(A, B) or Intersection over Union, IoU = |A
⋂

B|/|A
⋃

B| (10)

where A is the sample data being tested against sample data B (ground truth sample). A
higher J or IoU score brings better similarity between the two sets. The accuracy of the
segmentation was measured based on its testing performance on different input image
settings, based on Equation (11), utilizing TP, FP, TN, and FN.

Accuracy, Acc = (TP + TN)/(TP + FN + TN + FP) (11)

3.4.2. Feature Extraction

In the final stage, the segmented mass was used to classify whether the mass is benign
or malignant. Furthermore, handcrafted features were used to finally classify the mass into
benign or malignant using a well-known machine learning technique. In this study, textural
features were chosen as the main feature contributor. The segmented mass features were
extracted based on three primarily used radiomics handcrafted features for mammography:
textural feature (Gray-Level Co-occurrence Matrix (GLCM)), geometrical feature (mass
circularity), and first-order statistics (mean intensity).

Feature Extraction: Gray-Level Co-Occurrence Matrix (GLCM)

The GLCM can highlight specific properties of the spatial distribution of the gray
levels in the texture image. The proposed SbBDEM procedure was applied to increase the
textural refinement of the dense and mass region in the earlier stage. Since both benign
and malignant region segmented does not change in respect of illuminance when exposed
to light, textural analysis is also essential in extracting important features to differentiate
between two neighboring pixels [68]. The features were calculated based on Equations (2)–(5)
as previously discussed in Section 3.2.5.

Feature Extraction: Circularity and Mean Intensity

A malignant breast mass varies in that its edges are uneven and likely to expand
quicker, giving it a projecting look in a mammogram. In contrast, a benign mass differs
because its geometric limits are more clearly defined, smooth, and consistently formed [26].
These are some of the features selected by radiologists when making visual clinical mam-
mogram evaluations. As a result, one of the descriptors used in previous studies [25,26] is
the mass’s circularity characteristic, determined using Equation (12), that is implemented
using the segmented region’s area and perimeter.

Circularity =
4(Area)(π)

Perimeter2 (12)

Additionally, the inclusion of the supplementary characteristic of the mass’s mean
intensity is based on the notion that since malignant mass cells are more densely formed
than benign mass, it may appear to have a greater overall image intensity. The features
were calculated based on Equation (6).
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3.4.3. Mass Classification and Evaluation

All the features were trained with and without any feature selection or reduction
method using a supervised weighted k-nearest neighbor (k-NN) algorithm [69,70]. To
determine the proper k for the training images, we ran the k-NN algorithm with different
values of k and chose the k that minimizes errors while preserving the system’s capability
to make accurate predictions when given new testing data. To make an unbiased test
performance of the features, 5-fold cross-validation was applied during training, with the
final k-neighbors value set to 10, using Euclidean distance measurement, having inverse
distance weighting for the multivariate interpolation of the data points applied.

The mass abnormality classification’s performance was based on the testing accuracy
as in Equation (11) and the area under the Receiver Operating Characteristic (ROC) curve.
The ROC curve is a standard measuring the degree of separability of binary classification
between the mass and its background on a plot of sensitivity (TP Rate) against the specificity
(FN Rate), where the highest area under the ROC curve represents the model’s ability to
segregate the class better.

4. Results and Discussion

In this section, the results are discussed based on the stages of experimental procedures
explained in the previous section. Comparison of the result of the proposed SbBDEM
technique in the pre-processing stage is made based on the performance of the immediate
stage of mass detection and is compared between original, adaptive histogram equalization
(HE/AHE), contrast limited adaptive histogram equalization (CLAHE), and the proposed
SbBDEM technique in this study on all mammogram images.

4.1. Image Quality and Textural Elements

The performance of the proposed image enhancement in the pre-processing stage
before mass detection was investigated based on differently trained image input for the
models. Figure 5 shows an example of mammogram and its respective histogram for
comparison on the (A) original, (B) HE/AHE, (C) CLAHE, and (D) proposed SbBDEM
techniques images. Comparison of histogram for the original in Figure 5A shows similar
shape to the proposed SbBDEM in Figure 5D, however its pixel distribution has expanded
and shifted to the left side of the histogram. This suggested that the proposed SbBDEM
can retain the pixel distribution as similar as possible to the original image, but with the
decrease of intensity resulted to increasing the pixel belonging to the non-dense region.
More pixels of <0.5 are extrapolated causing non-dense area to be darkened, leaving the
dense and mass area lighter for better edge difference for the network to learn.

Meanwhile, Table 1 shows the average scores for mean-square error (MSE), Blind/
Reference-less Image Spatial Quality Evaluator (BRISQUE), image intensity, and GLCM
statistical features comparison between the proposed SbBDEM against other enhancement
techniques for all mammogram images. The BRISQUE score is improved from 43.5799 in
the original image to 42.3841 and the lowest amongst others, suggesting that using the
proposed SbBDEM produced an acceptable quality image in terms of better perceptual
ability. Additionally, the average correlation feature for the proposed SbBDEM is the
lowest at 0.9752. Since correlation measures how correlated a pixel is to its neighbor
over the whole image, it is easy to conclude that neighboring pixels within the proposed
SbBDEM image correlate the least with each other. This supports the better edge difference
between the pixels within the image for better textural perception. Meanwhile, the energy
property represents the estimated pixel attribute energy values that make up an image’s
energy properties [71,72]. The energy features combine to create an image weight model,
which is a collection of weights reflecting the importance of the image pixels from the
perspective of perception. The higher energy property in the proposed SbBDEM image
suggests the overall pixel carrying more weight is expected to be represented during
network training. Finally, the contrast and homogeneity properties show no reflection to
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the proposed SbBDEM technique as neither shows the least or the most out scores to form
varying spatial pattern arrangements.
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Table 1. Average Quality Tests and GLCM features on INbreast Images (N = 112) using Enhancement
Techniques.

No
Enhancement
Techniques MSE BRISQUE

Mean
Intensity

GLCM Textural Features

Contrast Correlation Energy Homogeneity

1 Original N/A 43.5799 0.5914 0.0276 0.9957 0.3174 0.9876

2 HE/AHE 0.0214 42.4518 0.6584 0.0758 0.9901 0.2212 0.9640

3 CLAHE 0.0066 42.9427 0.3786 0.0856 0.9933 0.1709 0.9621

4 SbBDEM 0.1169 42.3841 0.2302 0.0399 0.9752 0.4339 0.9803

For breast mass analysis, the result from the CLAHE-enhanced image, the enhance-
ment technique used in most past studies [10,18,24,45,51,68] is selected to be compared
to the proposed SbBDEM method. Figure 6 illustrates sample images from the result of
mass detection for both non-dense (Rows 1 and 2) and dense (Rows 3 and 4) images with
the confidence score (CS) indicated in the yellow boxes obtained from the mass detection
stage in this study. Here, the original image on the first column Figure 6A–E with the
ground-truth labeled in red boxes is followed by its respective CLAHE-enhanced (second
column) and the proposed SbBDEM technique (third column) images.

Visual evaluation of the images demonstrates increased and interpolated contrast
stretching observed on the CLAHE-enhanced image in Figure 6F–J. Meanwhile, the pro-
posed SbBDEM images produced darker overall contrast, as seen in Figure 6K–O, especially
on the non-dense fatty tissue region, while preserving the mass and dense region intensity
from the original image. Maintaining the pixel information of the mass is essential in
feature extraction and convolution of the YOLOv3 algorithm, as this will also preserve the
edge of the mass during enhancement.
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Figure 6. Result of Mass Detection for comparison. Rows 1 and 2: non-dense breasts. Rows 3 and
4: dense breasts. Row 5: Example of image with True Positive mass (TP-M) and False Positive mass
(FP-M) detections. Yellow boxes indicate bounding boxes with a confidence score for mass detection.
(A–E): Original images. (F–J): CLAHE-enhanced images. (K–O): proposed SbBDEM images.
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Other than that, Row 5 of Figure 6E,J,O demonstrates an example of True-Positive Mass
(TP) (TP-M) and False-Positive Mass (FP) (FP-M) detections during the mass detection stage.
Further pixel analysis based on edge detection emulated by the network’s convolutional
process is extracted using an 8-by-8 grid window size on the edge of expected mass FP-M
corresponding to Figure 7A,B, and mass TP-M in Figure 7C,D.
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proposed SbBDEM image result. The analysis is made from Figure 6E,J,O, where ∆ is the pixel edge
difference. The lighter region above the red lines indicates the mass region.

The mass edge analysis is based on the difference of maximum pixel ∆ in the region
where the region above the red line is the ground-truth-based mass, while the opposite
is the background based on the convolution filtering process using kernel K = [110; 1 0-1;
0-1-1] and maximum pooling (Max pooling) downsampling. This revealed that the FP-M
detected in Figure 7A on the CLAHE image has a higher probability of being detected based
on its pixel region difference, ∆ = 35 compared to ∆ = 23 on the same pixel location on the
proposed SbBDEM image in Figure 7B, as per the ground-truth in Figure 6E. Additionally,
TP-M was detected on the CLAHE image and the proposed SbBDEM image. However, even
though the proposed SbBDEM image is visually darker, the TP-M detected in Figure 7D for
the proposed SbBDEM has a far higher mass edge detection difference at ∆ = 14 compared
to its counterpart in Figure 7C using CLAHE enhancement, having ∆ = 1. This indicates
that the new intensity value replacing the original pixel during the proposed SbBDEM
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process lowers FP detection on non-mass locations, as high-level spatial image features
such as edge and coarse textures are extracted at the earliest learnable layer during YOLOv3
learning. At the same time, it increased the probability of detecting TP mass on the proposed
SbBDEM image.

The mass detection performance of the overall image enhancement is made through
the next stage. It is explained from the Recall-Precision Curves (RPC) in Figure 8 for models
trained with the original, HE/AHE, CLAHE, and the proposed SbBDEM images. High
recall and high precision are both represented as high areas under the RPC, where high
precision is correlated with a low false-positive rate, and high recall is correlated with a low
false-negative rate. Note that the proposed SbBDEM enhancement technique produced
the highest mean Average Precision (mAP) as area under the RPC of 0.8125, followed by
CLAHE images with mAP = 0.7496. In contrast, the HE/AHE images downgraded the
performance from using the original images, with mAP at 0.5430 compared to 0.6842 for
the original images. This result shows that refining the textural of the mass of the original
pixel that further apart the difference between the mass and its neighboring non-dense or
dense region background is important to preserve its edge without diminishing the mass
itself. The result also justifies that improving the images based on breast density before
extracting training features is essential to increase the final overall detection performance.
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Figure 9 presents a bar chart showing the comparison of performance between dense
and non-dense breasts for mass detection on different image enhancement techniques.
On average, the ability of the model to detect mass per image is shown on the overall
performance showing the best mass detection when using the proposed SbBDEM images,
followed by CLAHE, the original images, and finally, HE/AHE shows lesser performance
compared to the original images. The lesser HE/AHE performance is in conformance with
previous research [25] where HE/AHE might benefit in its application on RGB to HSV
images in terms of gamma correction. Therefore, it is somewhat unsuitable in a grey-level
image such as a mammogram, as it can only raise the contrast of the background noise
while simultaneously reducing the amount of signal that can be utilized.
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As for CLAHE, although it improves mass rate detection by±3%, the overall CS shows
slightly lower performance than in the original image. Compared to other techniques,
CLAHE operates on tiles rather than the overall image, in which the tiles are enhanced
individually, resulting in a locally stretched contrast masking on the homogeneous areas
that are limited to avoid amplifying any noise that might be present in the image [68]. This
might contribute to the effect of introducing FP cases on the unrelated dense region within
the image that was enhanced, giving a similar feature pattern to the mass. Meanwhile, an
improvement of 10% from the original image for detection rate and a slight improvement
of 2% for CS accuracy is observed when the proposed SbBDEM technique is applied for
mass detection. This supports the reason that contributed to its higher performance is its
ability to retain the mass and the denser region as it is while reducing the non-dense region
pixel value in the background. In return, a prominent spatial feature defining a mass, such
as its edge, is enhanced and contributed to the feature mapping extracted in the YOLO
layers, resulting to better detection rate and CS accuracy.

On average, the detection rate of the proposed SbBDEM improved to 92.61% using
the proposed SbBDEM technique, followed by CLAHE, original, and HE/AHE at 85.65%,
82.61%, and 73.91%, respectively. By standardizing all test images to only the detected
images for all enhancement techniques, the CS accuracy, which measures the bounding box
accuracy, is highest on average when the model is trained using the proposed SbBDEM
with 98.41% accuracy. Nevertheless, CLAHE-enhanced images have a lower CS accuracy
performance than the original image, which may be caused by additional FP detections
where the overlapping bounding box may contribute to a wider range of overlapping
intersections shared on the same image, resulting in a lower CS accuracy score.

On the other hand, non-dense breast exhibits better performance compared to dense
breast, as supported by previous studies [10,18,25] on all enhancement techniques for both
detection rate and CS. The highest CS accuracy using the proposed SbBDEM method is at
98.07%, showing a boost of 1.62% in performance from the original image for non-dense
breast and increase of 9.79% of CS for dense breast. Even though the detection rate for
dense breasts is slightly lower at 93.33% than non-dense breasts at 95.33%, the CS accuracy
is observed to be slightly better at 99.12% in the dense breast than in non-dense breasts at
98.07%. Additionally, note that the dense breast detection rate improvement is the best,
with an increase of 8.66% from the original image. The analysis of mass detection on the
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denser background proves that by using the proposed SbBDEM technique, the overlapped
mass detection could be improved.

4.2. Analysis of Modified YOLOv3 Performance

In this study, a modified convolutional neural network (CNN) for YOLOv3 is devel-
oped to evaluate the input images. Furthermore, the modification is utilized to detect the
mass’s location in the mammograms by improving its ability to receive spatial features
enhanced from the proposed SbBDEM technique. Table 2 presents the result of mAP per-
formance for mass detection on the original and other enhancement image input settings
with and without YOLOv3 modification for comparison.

Table 2. mAP performance for mass detection before and after YOLOv3 modification using different
image enhancement techniques.

Image Condition
Mean Average Precision (mAP) Using YOLOv3 (%)

Without Modification With Modification

Original 64.01 68.42
CLAHE 67.92 74.96

HE/AHE 57.40 54.35
Proposed 78.33 81.25

The result displays a pattern of increasing detection performance for all image input
settings on the modified YOLOv3 model, except the HE/AHE enhancement input image.
The highest mAP of 81.25% is observed using the proposed SbBDEM on the modified
model, with an increase in performance of 17.25% compared to using the original image
on the non-modified YOLOv3 model. In this study, the modification is crafted to focus
on the use of spatial features retained from the proposed SbBDEM training images. Its
textural features have been improved based on the result observed from using the proposed
SbBDEM technique discussed previously in Table 1. This textural refinement is further
taken advantage of as an essential higher-level spatial feature extracted during training by
adding the features from the earlier YOLOv3 layer to the second detection head specifically
used to detect a smaller object from its initial development setting [40]. Moreover, the
extra larger anchor box value that is assigned to these features gives extra weightage and
encapsulates the detected mass region through the overlapping of bounding box tiled across
the image, further improving the detection performance, resulting in better intersection
over union (IoU) placement, given the multi-sizes of the mass on the input images [49].

4.3. Performance of Mass Segmentation and Classification

After localizing the position of the mass on the image, the mass region is segmented for
the ease of feature extraction for classification in this study. Table 3 compares segmentation
results by applying the proposed SbBDEM against the original HE/AHE and CLAHE
enhancement techniques. A slight improvement in segmentation accuracy can be observed
when using the proposed SbBDEM technique by achieving a mean accuracy of 0.9437 from
0.9431 from the original image. Since the mass is well contained within the bounding-
box, less overlapping of mass and dense background issue needs to be resolved using
the proposed SbBDEM technique. Nevertheless, the proposed SbBDEM technique also
produces the highest accuracy along with IoU for both classes of mass and its background.
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Table 3. Result of semantic segmentation for mass using different image input settings.

No Image Input Mean Accuracy Mean IoU
IoU

Mass Background

1 Original 0.9438 0.8921 0.8873 0.8970

2 HE/AHE 0.9385 0.8830 0.8775 0.8885

3 CLAHE 0.9423 0.8891 0.8844 0.8938

4 SbBDEM 0.9441 0.8917 0.8878 0.8984

Meanwhile, we employed handcrafted features from the segmented mass region with
and without using the principal component analysis (PCA) feature reduction method for
benign and malignant classification. Comparison is also made using the chi-square-based
feature selection method by removing features having a chi-square score of less than 1.0
as correlated features during training. The result shows the highest testing accuracy for
benign vs. malignant mass of 96.0% is achieved on the training time at 0.670 s.

Additionally, a comparison of mass detection results of the past studies and similar
methods are listed in Table 4, with and without breast density consideration before or after
analysis performance, as well as the computational cost for each algorithm’s deployment.
In this study, the main objective is to validate the performance of object detection utilizing
the simplest CNN of SqueezeNet for a modified YOLOv3 using a differently enhanced
input image, specifically to improve the performance for the detection of mass in dense
breast mammograms. Similar works addressed the problem of mass detection while
disregarding the probable issue of class training imbalance caused by higher non-dense
images in the training images that could contribute to lower Computer-Aided Diagnosis
(CAD) establishment in clinical settings. In contrast, our study specifically brings the
breast density into the focus of the learned parameter of the training images to adapt the
class imbalance and improve the image before it can be trained to conduct mass detection,
consequently bringing a good mass abnormality classifier. Nonetheless, limited studies
have used metrics to compare their performance between non-dense and dense images
before and after implementing their proposed work, making it difficult to make a suitable
state-of-the-art analysis.

Table 4. Comparison of CAD for mammogram mass detection previous works.

No Authors Enhancement
Technique Dense Non-dense mAP @0.5

Threshold
Overall

Detection
Acc (%)

Classification
Acc (%)

Segmentation
Acc (%)

Detection
Time per

Test Image

1 [10] CLAHE ROC = 0.902 ROC = 0.984 - - - - -
2 [24] CLAHE Acc = 91.00% Acc = 94.80% - - - - -
3 [25] HE/AHE Acc = 84.08% Acc = 88.69% - - - - -
4 [18] CLAHE - - - - 99.91 - -
5 [45] CLAHE - - - 98.96 95.64 92.97 12.3 s
6 [28] HE/AHE - - - 97.27 95.32 - 71 fps

7 [66] - - - 0.9420 1

0.8460 2 89.50 - - 0.009 s

8 This Study Proposed-
SbBDEM Acc = 93.33% Acc = 95.33% 0.8125 92.61 96.00 94.41 1.78 s

1 Benign, 2 Malignant, Acc = Accuracy, ROC = Area under ROC curve, fps = frame per second.

Although direct comparison is essentially incomparable between these works, both de-
tection accuracy rate and testing time indicate that we achieved a better overall performance,
which plays a significant role in showing that the proposed SbBDEM technique indeed
increases the density-based performance. Our method outperformed works by [24,25] in
terms of accuracy for non-dense and dense images. However, their work uses different
datasets for a fair comparison. To the best of our knowledge, no study has been conducted
using specifically the INbreast dataset with the metrics included for density-based mass
detection. Meanwhile, work by [18] achieves 99.91% accuracy for benign and malignant



Bioengineering 2023, 10, 153 20 of 24

classification compared to our method at 96% accuracy based on different breast densi-
ties. However, since the study’s augmentation process brings almost 7000 images from,
originally, 112 images in INbreast, their work may cause unreliable results if the same
technique is applied to a newer dataset. In contrast, the work of [45] exceeded our detection
results for the same dataset. Nevertheless, it required more testing time than our approach
due to the simpler training architecture employed. Additionally, since most of the studies
listed applied CLAHE in their pre-processing stage, given that our enhancement method
improves the detection model by mAP of 13.33% for CLAHE compared to the proposed
SbBDEM technique as discussed in the result section, it is also expected to increase these
studies detection stage if our pre-processing method is applied beforehand. Indeed, low
accuracy limitations could be overcome by applying a more complex algorithm with more
sophisticated hardware for training, which is expected to further improve the currently
proposed SbBDEM technique for mass detection.

5. Conclusions

This work presents an image enhancement method according to the breast density
level for Computer-Aided Diagnosis (CAD) stages for mammogram image analysis. Based
on the result, the proposed SbBDEM technique could increase the performance for all
stages of mass detection, segmentation, and classification for mammogram images. An
improvement is observed when the proposed SbBDEM method is compared to the original
image and the most widely used enhancement technique, i.e., contrast-limited adaptive
histogram equalization (CLAHE) and histogram equalization (HE). The adjustment of the
lower limit cap acts as a threshold value to separate the dense and mass to non-dense
regions. This helps refine the textural information as a feature that represents both regions
and through textural feature extraction in the classification stage, boosting the accuracy
to 96% for the 5-fold cross-validation of benign vs. malignant classification experiment.
The result also presents an improvement of mass detection with mean Average Precision
(mAP) = 0.6401 to mAP = 0.8125, with mass detection in non-dense and dense accuracy of
93.33% and 95.33%, respectively. We achieved an increase of 98.41% confidence scores (CS)
as opposed to 91.84% in the original image and a slight improvement of 0.03% in the mass
segmentation using the proposed SbBDEM technique.

Meanwhile, in its original documentation, You Only Look Once v3 (YOLOv3) spe-
cializes in detecting smaller objects with the implementation of the second detection head.
We further utilize this by modifying the second detection head into receiving the textural
features that were already enhanced in the pre-processing stage through our proposed
SbBDEM technique by adding these features to the deeper learning layer that contains
more semantic information of the same image to improve the feature discrimination.

Our proposed method is limited by the unavailability of standardized image quality
metrics that can determine the best image for all training images based on textural ele-
ments while considering the need for thousands of images for deep-learning purposes.
While a high-quality image might be good for measuring accuracy, it is unnecessarily true
to measure its textural aspect. Although statistical information for textural analysis is
available, more suitable metrics can be investigated for more reliable metrics that relate
image quality and texture. Additionally, with a running GPU capability of only 6 GB, the
study is limited by the unavailability of a more sophisticated computing facility to employ
higher-functioned YOLO, such as versions 4, 5, 6, and 7 without affecting the performance
by reducing the mini-batches. However, the implementation of YOLOv3 in this study
is sufficient as a way to demonstrate the effectiveness of density-based enhancement on
the dataset before training and was modified based on its simplicity, which only runs on
5 MB or 1.2 million learnable parameters. Future studies could be explored by using other
breast mammogram datasets with validation from a trained radiologist to enable CAD
implementation in the medical field. Finally, the result obtained was comparable to the
state-of-the-art performance from other methods discussed and can work as a base model
for future updates by employing a more complex model on another dataset as well.
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