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Abstract: In modern biology and medicine, drug-drug similarity is a major task with various ap-
plications in pharmaceutical drug development. Various direct and indirect sources of evidence
obtained from drug-centric data such as side effects, drug interactions, biological targets, and chemi-
cal structures are used in the current methods to measure the level of drug-drug similarity. This paper
proposes a computational method to measure drug-drug similarity using a novel source of evidence
that is obtained from patient-centric data. More specifically, patients’ narration of their thoughts,
opinions, and experience with drugs in social media are explored as a potential source to compute
drug-drug similarity. Online healthcare communities were used to extract a dataset of patients’
reviews on anti-epileptic drugs. The collected dataset is preprocessed through Natural Language
Processing (NLP) techniques and four text similarity methods are applied to measure the similarities
among them. The obtained similarities are then used to generate drug-drug similarity-based ranking
matrices which are analyzed through Pearson correlation, to answer questions related to the overall
drug-drug similarity and the accuracy of the four similarity measures. To evaluate the obtained
drug-drug similarities, they are compared with the corresponding ground-truth similarities obtained
from DrugSimDB, a well-known drug-drug similarity tool that is based on drug-centric data. The
results provide evidence on the feasibility of patient-centric data from social media as a novel source
for computing drug-drug similarity.

Keywords: text-based analysis; natural language processing; drug-drug similarity; social media;
online healthcare communities

1. Introduction

Drug-Drug Similarity (DDS) has received a lot of attention in recent years from biomed-
ical researchers as a result of its usefulness in treating medical issues. It aims to find drugs
with similar traits to a given drug resting on a general assumption that similar drugs share
similar characteristics such as chemical structure [1], gene expression profiles [2], side
effect profiles [3], and biological target [4]. In pharmaceutical drug development, in par-
ticular, DDS has successfully applied for drug repositioning [4,5], drug-drug interaction
prediction [6,7], drug target identification [3], and drug side-effects prediction [7]. Each of
these applications is driven by an application-specific hypothesis. A drug repositioning
application, for instance, is motivated by the idea that if two different medications, D1 and
D2, have comparable modes of action and properties, and D1 is utilized to treat a certain
condition S, then D2 has the potential to be a choice to treat condition S. In drug-drug
interaction prediction applications, the hypothesis is if drug D1 interacts with drug D2,
and drug D3 is similar to D1, then D3 should also interact with D2 (the argument also
follows if D1 is replaced with D2). The application of drug side-effect prediction is based
on the hypothesis that if drug D1 is similar to drug D2 and drug D1 is known to cause a
certain side effect, then drug D2 should also cause the same side effect.

The computation of DDS is essentially based on applying data similarity methods to
drug-centric of different types. In doing so, these methods utilize different data similarity
measures, which vary according to the type of data. Nonetheless, these measures can be
divided into three broad categories [8]. The first category measures DDS using different fea-
tures of drug and targets such as Anatomical Therapeutic Chemical (ATC) codes, molecular
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structure of drugs, sequences, and gene ontology of targets. The second category mea-
sures DDS using relationships such as drug-drug interaction, associations of drug–disease,
and associations of drug–target. Finally, the third category integrates multi-information
from multiple data sources to measure DDS. It should be noted that the computation of
DDS has been made possible by recent developments in high-throughput biology, which
have generated enormous quantities of data focused on drugs. The pharmacological side
effects, gene ontologies, chemical structures, targets, and ATC codes are some examples of
the data that are curated in biomedical databases such as DrugBank, CHEMBL, PubChem,
SIDER, and KEGG. The chemical structure of a drug is a three-dimensional description of
drug structure using strings of characters. The World Health Organization has adopted the
ATC classification system, which divides each level of drug classification into a number of
classes based on each level’s characteristics and therapeutic effects. Proteins and nucleic
acids are examples of biological macromolecules that can be affected by a drug to carry out
its pharmacodynamic actions in the body. Furthermore, gene ontology of drug targets is a
representation of the ways in which gene products function in the biological realms. It is
a helpful data source for biomedical research that is employed in the computer analysis
of large-scale genetics and biological experiments. Finally, the drug side effects reported
undesirable effects that may occur at standard doses should be considered throughout the
drug targeting procedure [8].

Social media has recently become a valuable data source for healthcare informatics [9].
The emergence of Web 2.0 and Health 2.0 has made it possible for patients to share their
social media experiences with illnesses, treatments, drug names, physicians, and therapists.
Consequently, a massive amount of health information becomes available, representing
potentially valuable, yet largely unexploited data sources that could be leveraged for drug
knowledge discovery [10]. In this regard, the enormous amount of healthcare text generated
from social media sites such as Google, Twitter, and YouTube has been used to tackle a
number of medical issues such as detection of psychopathic class [11,12], classification of
depression [13], identification of diseases [14], and detection of adverse drug reactions [15].

On this basis, this paper argues that social media data in the form of patient narration
of their thoughts, opinions, and experience with drugs represent a potential source of
drug-centric data that could be utilized for measuring DDS. It is based on a new drug-drug
similarity hypothesis that states similar drugs should share similar aspects of patients’ expe-
rience. As the patients experience in social media is expressed in textual form, the problem
of DDS is formulated as text similarity problems to which text similarity approaches can
be applied. In Natural Language Processing (NLP), text similarity plays an important role
in many tasks such as automatic translation, information retrieval, intelligent responses,
and machine matching for dialogues and documents [16]. Over the past three decades,
various semantic similarity techniques have been proposed and used in different contexts.
Following this idea, each drug will be modeled as a document which contains all posts
written about it. In this space of documents, text similarity can be applied to measure
the similarity among them. The idea of utilizing patient-centric data in social media as
a data source for measuring DDS is distinguished from the drug-centric data sources in
three ways. First, unlike the drug-centric data which are stored in structured databases,
the patient-centric data are unstructured. Second, the patient-centric data are produced by
patients, who typically write simply and plainly without using professional medical terms
when expressing their experiences on medical concerns, as opposed to the drug-centric
data, for which a professional medical language is employed [17]. Because of this, the DDS
method used with social media is different from the method used with more conventional
drug-centric data sources in that it mainly relies on NLP techniques to extract pertinent
information from social media. Third, the drug-centric data represent professionals’ per-
spectives, whereas the patients-centric data reflect patients’ thoughts and opinions. It is
worth mentioning that this research has two-fold contributions: it introduces a new domain
of applications where social media can be utilized and it adds a new data source that is
worth exploration.
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Finally, from a practical perspective, it is expected that the outcomes of this research
would have a significant impact on the practical applications of DDS in drug discovery and
development such as drug repositioning, drug side-effect prediction, and drug-drug inter-
action prediction. This is due to the fact that pharmaceutical corporations now place a high
priority on incorporating patient perspectives into drug discovery and development [10].
Since the currently used methods for computing DDS depend only on drug-related data,
this research would meet the requirement of incorporation of patients’ perspective in DDS
and its practical applications. For example, in the application of DDS for the prediction
of drug-drug interaction, the proposed patient’s centric data can be integrated with the
traditional drug-centric data for a more robust computation of DDS which consequently
improves the prediction of drug-drug interaction.

2. Background

The computation of DDS measures the similarity between drugs from drug-centric
data sources. Usually, the resultant similarities are used as input to a target application.
In this section, the previous DDS works which rely on computing DDS from various drug-
centric data sources, regardless of the target application, are reviewed in the following
dimensions: source of drug-centric data, similarity measures, target applications.

In the first dimension, source of drug-centric data, the previous DDS works utilizes
different drug-centric data sources such as chemical structure [1,18], gene expression pro-
files [2], protein targets [19,20], side-effect profile [3,21], and clinical information [22]. It
should be mentioned that in addition to the previous DDS works that utilizes a single
drug-related data source, many DDS works utilize multiple drug-centric data sources to
compensate for missing data across individual data sources and provide a multi-view
aspects for forecasting related medications. Thus, a new insights into the target applica-
tion [23,24]. In some of these works, drug characteristic is regarded as the combination of
many drug similarities. In [23], GIPAE, for instance, combines chemical structure similarity
from SMILES data as measured by Chemistry Development Kit (CDK), and association
similarity from drug–disease association profiles as measured by the GIP kernel to represent
drug features. Using the combined similarities as drug feature, the computation of DDS
has improved drug–disease association prediction. Many works have proposed various
integration approaches to leverage multimodal data and fuse similarities more effectively,
but some of the earlier works integrated multiple similarities to yield multiple similarity
matrices. These approaches of integration can be categorized as either linear integration or
nonlinear integration [8].

As for the employed similarity measure, these measures can be a general similarity
measure specific to drug-related data. While the general similarity measures such as Jaccard
Coefficient, Euclidean distance, Cosine similarity are domain-independent measures that
can be used in any domain, the drug-centric data-specific similarity measures such as
CDK [25], SIMCOMP [26], normalized Smith–Waterman algorithm [27], GOSemSim [28]
are developed specifically to measure the drug-drug similarity. The CDK is a library of
structural chemoinformatics and bioinformatics developed in Java programming language
and to perform many molecular informatics tasks such as two- and three-dimensional
representations of chemical structures, structure diagram generation, SMILES parsing
and generation, I/O routines, isomorphism checking, ring searches, etc. SIMCOMP is a
method that compares chemical structures using graphs, represented as a two-dimensional
graph with vertices for atoms and edges for covalent bonds. This approach counts the
number of similar atoms in comparison between the corresponding graphs of two chemical
compounds to determine how similar they are. By using a local sequence alignment to
compare segments of all practical lengths, the Smith–Waterman method analyzes two
protein canonical sequences of pharmaceutical targets. Next, the similarity between the
similar parts is calculated.

Based on the target applications in which the computation of DDS is utilized, the fol-
lowing domains of applications can be identified:
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• Drug repositioning: to discover new uses for existing drugs according to the similar
compounds of drugs that are expected to interact with similar signs. Because it is a
very effective strategy with low risk and cost, drug repositioning for DDS has many
successful applications in drug development [29].

• Drug side effect prediction: to predict unexpected side effects of a drug based on
computing ligand similarity and protein interactions. Knowing affected biological
pathways and binding partners of a given drug is important for predicting both its
efficacy and side effects [30]. The similarity-based drug side-effect prediction is an
effective strategy, because the currently used laboratory assay method for evaluating
potential adverse drug effects is a time-consuming method with high cost.

• Drug-Drug Interaction: the interaction between two drugs taken concomitantly occurs
when the action of one of them intervenes with the activity of the other. The discovery
of the interaction between drugs is of significant benefit for guidance of clinical
medications, because it could lead to adverse drug reactions or complicate disease
treatments on patients. The similarity-based method is one of the successful methods
to identify drug-drug interactions [8].

• Drug–disease associations: the discovery of yet-unknown links between drugs and
diseases has gained significant attention. In this regard, the similarity-based methods
play an important role in complementing or guiding costly and exhausting wet experi-
ments. In addition, the prediction of novel associations between drug and disease can
be done utilizing the previously known drug–disease associations and the features of
drug and disease as well [31].

• Drug–target interaction prediction: to forecast a possible relationship between a
medicine and a target. It is a necessary stage for tasks such as drug discovery and
repositioning. In the database, similar medications and targets can be found using
similarity-based algorithms and based on the known interactions between these drugs
and targets, the interaction can be predicted [32].

• Personalized medicine: to fit a treatment according to the characteristics of each
patient. It requires a grouping of patients into subgroups with predictable response to
a specific treatment. In this regards, the exploratory and predictive analysis provided
by the similarity-based methods supports clinical decision-making, which is a key
step in personalized medicine [1].

In all the previous works, the drug-centric data are a key factor for computing DDS.
Moreover, in all of the previous works, the source of drug-related data represents profes-
sional perspective of the drugs. From the perspective of modern-day business dynamics,
integrating patients’ perspectives into drug discovery and development is a critical issue.
Furthermore, in the recent years, patient-perceived benefits are receiving increasing atten-
tion by the pharmaceutical regulatory authorities when decisions such as drug-approval,
pricing, and reimbursement are made. The analysis of existing research shows that people
with major diseases and disabilities have a propensity to use social media to seek self-help
by sharing their experiences with their conditions [10,33]. Interestingly, the examination of
patient posts on these social media platforms could be used to glean insightful information
that opens the door for patient-centered drug development.

On this basis, this work intends to incorporate the patient’s perspective in the com-
putation of DDS by considering his/her experience and opinions on the drug as a new
source of drug-centric data for computing DDS. Unlike, the conventional drug-related data
sources, in which data are curated in a structural form, the patient’s experience about the
drugs in social media is unstructured and, therefore, the computation of DDS requires
employing text similarity.

Text similarity is a ubiquitous notion within the natural language processing (NLP)
community. It is utilized in a wide range of tasks such as question answering [34], auto-
matic essay grading [35], or paraphrase recognition [36]. The text similarity methods can
be divided into three broad categories [37]: string-based similarity method, corpus-based
similarity method, and knowledge-based similarity method. String metric similarity or
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dissimilarity (distance) between two strings is used in the string-based similarity approach
(also known as lexical-based similarity). The corpus-based similarity method (semantic-
based similarity) calculates how similar two words are by using data from huge corpora.
On the other hand, the knowledge-based similarity method calculates the degree of similar-
ity between words using data from semantic networks such as WordNet, a sizable lexical
database of English words created specifically for this purpose. Semantic relatedness mea-
surements and semantic similarity measures are additional categories for knowledge-based
similarity metrics. While the semantic similarity measures evaluate the similarity between
concept based on their likeness, semantic relatedness measures employ a more general
notion of relatedness that is not tied specifically to the form or shape of the concept.

3. Materials and Methods

The task of computing drug-drug similarity can be viewed as a use case of the general
task of drug knowledge discovery that is concerned with extracting insights from available
data. The five key stages of the standard approach for extracting drug-related datasets
from social media [10] are: (1) resource selection, (2) dataset extraction, (3) data prepara-
tion, (4) data analysis, and (5) overall evaluation. The main elements of the process are
frequently preserved, even though the specifics of each step may change depending on
the final application. Figure 1 depicts the specific use case of the general drug knowledge
discovery methodology that is concerned with computing drug-drug similarity from social
media platforms.

Figure 1. Drug–Drug similarity computation from social media.

In the first stage of this process, the social media resource of patient’s reviews should
be identified. In general, the patients’ reviews of drugs can be drawn from social me-
dia platforms, which are divided into general platforms and specialized healthcare plat-
forms. Facebook, Twitter, Instagram, and Reddit represent general social media platforms.
The specialized healthcare social media platforms are divided into three types: generic
health-centered platforms, drugs-focused sharing platforms, and disease-specific platforms.
While the generic health-centered platforms, such as Patients-LikeMe, DailyStrength, Med-
Help, WebMD, and CureTogether, permit patients to communicate their experiences on
health-related issues, the drug-focused sharing platforms, such as Askapatient and Medica-
tions.com, permit patients to discuss and share their experiences on medications. On the
other hand, disease-specific platforms focus on particular diseases, e.g., the TalkStroke
forum [15].

After the identification of the social media data source, the second step is to extract
patient-centric data from the identified social media platforms. For this purpose, two types
of processes can be utilized: focused crawling and Web scraping. Focused crawling refers to
automatically collecting websites that satisfy given criteria, e.g., all websites on Alzheimer’s
disease or all websites on public health topics from a particular domain. In this process,
the crawling algorithm should implement hyperlink analysis and prioritization processes
to exclude many irrelevant sites. On the other hand, the Web scraping process refers to
automated and systematic extraction of specific content of interest from given webpages.
The decision of which process can be utilized is made based on the type of identified social
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media platform from which patients’ reviews are extracted. More specifically, to extract
patients’ reviews from generic health-centered platforms, specific application programming
interfaces can be used; however, an adapted web crawler to collect web pages and web
scraper is usually used to obtain the patients’ reviews from specialized healthcare social
networks [38].

The third step in the methodology of computing DDS is to generate drug documents.
In this process, a single document that contains all collected patients’ reviews must be
generated for each drug. The document of a given drug is generated by aggregating all
collected patients reviews on that drug into a single document. The results of this step is a
set of documents equal to the number of drugs under consideration.

The fourth step is the preprocessing of drug documents using NLP techniques to
facilitate insightful analysis by reducing noise and structuring the text of drug documents.
Data preparation and data reduction can often be used to execute the preprocessing in two
steps. Data cleaning, standardization, and transformation are steps in the data preparation
process. While data cleaning aims to ensure that complete and concise data are available and
free from duplicates by applying appropriate techniques such as word removal, and repost
removal, the aim in the data standardization is to ensure the data are expressed in unified
medical form by identifying all imprecise medical terms and concepts occurrences in social-
media posts and replacing them with appropriate ones. In data transformation, the data are
instead transformed into a format that may be used for analysis. In the data reduction step,
the dimensionality of the data is decreased using techniques including feature selection,
transformation, and instance selection. When the data dimensionality is enormous, as in the
case of text in drug documents, feature transformation, which seeks to condense original
features into a limited set, is a critical procedure. On the other hand, by removing posts that
are not relevant, for example, instance selection seeks to reduce the size of the data without
sacrificing important information. Finally, feature selection is carried out by removing as
many redundant and unnecessary features from the data as is practical.

After obtaining the drug documents in vector space model format, it is possible to
compute the DDS by using similarity metrics to determine how similar each pair of drugs’
vector space models is to one another. Each similarity value in the medications similarity
matrix created during this phase indicates how similar a particular pair of pharmaceuticals
is to one another. In data mining, calculating similarity is a frequent task with a large range
of potential measures. The Cosine similarity and Euclidean distance are two of the most
often used data similarity metrics. It should be emphasized that because the selection of a
data similarity metric is domain-specific, it is too challenging to know whether a metric is
superior or worse under a general condition.

3.1. Computing DDS of Anti-Epileptic Drugs: A Case Study

This section explains how to compute DDS among a specific group of drugs used
mostly to treat epilepsy using the methods given above. Anti-Epileptic Drugs (AEDs)
are drugs primarily used to treat epilepsy, a neurological condition characterized by a
variety of seizure forms, therapeutic sensitivity, and prognosis. Although the currently
available AEDs provide greater treatment options for different types of seizures, none of
them treats the disease etiology as they all work by suppressing the seizures when they
occur. Additionally, more than one-third of epilepsy patients are still unable to manage
their seizures using the AEDs that are now available [39].

The AEDs interact with a wide range of various molecular targets to produce their
desired effects.The AEDs primarily target two broad target groupings [40]: the specific
aspects of the damaged membrane, which are typically regarding aberrant ion permeability
(calcium, sodium, and potassium), and the compromised synaptic functioning (heightened
excitation or inadequate transmission of suppression). Even though the majority of recently
developed AEDs, such as lacosamide and Perampanel, have numerous modes of action,
several older AEDs, such as valproate, also have other pharmacological activities that are
uncertain in relation to their anticonvulsant activity. Undoubtedly, the ongoing effort to
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identify the targets of the AEDs that are currently being used will advance knowledge of
the pathophysiological mechanisms underlying epileptic seizures and the creation of novel
therapeutic approaches.

3.2. AEDs Related Patients’ Reviews Extraction

The raw data of AEDs are extracted from Askapatient platform through a web crawler.
The extracted data involve patients’ experiences and ratings of AED, reasons for using
AED, side effects of AED, comments, gender, age, duration/dosage, and posting dates.
When the data have been extracted, the number of AEDs reviews range from 1860 reviews
for Lamotrigine to a single review for Aptiom. Therefore, this research does not consider
AEDs whose review number in the Askapatient platform is less than 150. Table 1 lists the
considered AEDs in this work.

Moreover, Figure 2 is a snapshot of the detailed data extracted from Askapatient for
Lamictal (Lamotrigine).

Table 1. List of AEDs.

Number Generic Name Number of Reviews

1 Carbamazepine 283
2 Oxcarbazepine 357
3 Gabapentin 914
4 Pregabalin 1392
5 Acetazolamide 155
6 Lamotrigine 1845
7 Levetiracetam 190
8 Topiramate 1764
9 Phenytoin 183
10 Diazepam 393
11 Clonazepam 324
12 Klonopin 217
13 Divalproex 783
14 Divalproex-ER 566

Total 9366

Figure 2. Snapshot of patients’ reviews extracted from Askapatient.com for Lamictal (Lamotrigine).

3.3. AEDs Documents Generation

In this step, the relevant data, which include side effects and comments, for each AED
are selected from the extracted patients’ reviews and then compiled into a unified single
document for each AED.
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3.4. AEDs Documents Preprocessing

As pointed out above, some NLP techniques must be applied to preprocess AED
documents and transform them into vector space model representation. The applied NLP
techniques are

• Text cleaning: eliminating all digits, numerals, and punctuation.
• Normalizing text entails changing capitalization to lowercase.
• Stop words should be eliminated because they have no bearing on the DDS computation.
• Using three as the maximum number of n-grams, all terms in an AED document are

used to generate unigrams, bigrams, and trigrams.

3.5. Computing DDS of AEDs

In this study, the similarities across AEDs works are determined using four data
similarity metrics, including Cosine Similarity, Euclidean Distance, Manhattan Distance,
and Jaccard Coefficient, which are widely used in the text similarity area.

3.5.1. Cosine Similarity (CS)

A popular method to gauge text similarity is via the Cosine Similarity (CS) metric [15].
In an inner product space, it calculates the cosine of the angle formed by two non-zero
vectors. The vector’s absolute length has no effect on the CS measure. The CS measure
between two vectors X = (x1. . . xn) and Y = (y1. . . yn) is defined as:

CS(X, Y) = ∑n
i=1 xiyi

∑n
i=1 x2

i ∑n
i=1 y2

i
(1)

An interesting aspect of the CS measure is its variance to linear transformations
and invariance to rotation. Additionally, the vector length has no bearing on the CS
measure [41].

3.5.2. Euclidian Distance (ED)

The most typical metric employed for geometrical issues is the Euclidean Distance
(ED) measure. The straight-line distance in n-dimensional space between any two data
points is what is meant by this term. In data mining, it is has been widely applied for many
tasks such as clustering problems [42]. Given two vectors representing two data points, X =
(x1 . . . xn) and Y = (y1 . . . yn), the ED measure between them is defined as follows:

ED(X, Y) =

√
n

∑
i=1

(xi − yi)2 (2)

The ED measure has demonstrated several intriguing qualities, although suffering
from a number of issues related to data sparsity, distribution, noise, and feature relevance,
particularly in the high-dimensional space. The ED measure’s invariance to rotation, or the
fact that the straight-line distance is unaffected by the axis system’s orientation, is an
interesting feature [43]. This feature suggests that distance can be applied without being
affected by procedures such as singular value decomposition and principal component
analysis. The logical interpretability of ED measurements is another essential feature.

3.5.3. Manhattan Distance (MD)

The Manhattan Distance (MD) and ED measures are comparable in that they are both
particular instances of the Minkowski distance [43]. In a place such as New York City’s
Manhattan island, where the streets are organized into a grid, the MD measure is specified
in terms of “city block” distance. Due to its resemblance to the ED measure, MD has the
same interesting characteristics of being rotation-invariant and interpretable as the ED
measure as well as experiencing the same difficulties in high-dimensional space. The MD
measure between two vectors, X = (x1. . . xn) and Y = (y1. . . yn), which represent two data
points, is defined as:
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MD(X, Y) =
n

∑
i=1

(xi − yi) (3)

3.5.4. Jaccard Coefficient (JC)

The Jaccard Coefficient (JC) measure is defined as the similarity between two finite
sets by calculating the size of the intersection over the size of the union of the two sets [16].
Thus, if there are no intersecting elements between the two sets, JC equals to zero; however,
if all elements intersect, JC equals to one. Given two sets X and Y, the JC measure is defined
as follows:

JC(X, Y) =
|X ∩Y|
X ∪Y

(4)

4. Results and Discussion

This section displays the main findings from calculating the degree of similarity
between the text documents of AEDs using the four similarity measures. Please see the
Tables 2–5.

Table 2. TAEDs Drug-Drug Similarity using CS Measure.
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Carbamazepine 1.00 0.65 0.63 0.58 0.45 0.62 0.54 0.58 0.52 0.46 0.54 0.51 0.56 0.56
Oxcarbazepine 0.65 1.00 0.60 0.55 0.47 0.69 0.56 0.59 0.49 0.47 0.57 0.53 0.61 0.62
Gabapentin 0.63 0.60 1.00 0.75 0.46 0.58 0.47 0.56 0.42 0.51 0.56 0.54 0.54 0.54
Pregabalin 0.58 0.55 0.75 1.00 0.44 0.53 0.43 0.53 0.38 0.45 0.49 0.47 0.50 0.51
Acetazolamide 0.45 0.47 0.46 0.44 1.00 0.45 0.38 0.58 0.36 0.34 0.40 0.37 0.42 0.42
Lamotrigine 0.62 0.69 0.58 0.53 0.45 1.00 0.55 0.60 0.48 0.48 0.57 0.55 0.61 0.62
Levetiracetam 0.54 0.56 0.47 0.43 0.38 0.55 1.00 0.47 0.48 0.41 0.48 0.46 0.49 0.49
Topiramate 0.58 0.59 0.56 0.53 0.58 0.60 0.47 1.00 0.43 0.42 0.50 0.47 0.59 0.57
Phenytoin 0.52 0.49 0.42 0.38 0.36 0.48 0.48 0.43 1.00 0.37 0.43 0.41 0.43 0.43
Diazepam 0.46 0.47 0.51 0.45 0.34 0.48 0.41 0.42 0.37 1.00 0.64 0.65 0.41 0.43
Clonazepam 0.54 0.57 0.56 0.49 0.40 0.57 0.48 0.50 0.43 0.64 1.00 0.76 0.49 0.51
Klonopin 0.51 0.53 0.54 0.47 0.37 0.55 0.46 0.47 0.41 0.65 0.76 1.00 0.47 0.49
Divalproex 0.56 0.61 0.54 0.50 0.42 0.61 0.49 0.59 0.43 0.41 0.49 0.47 1.00 0.81
Divalproex-ER 0.56 0.62 0.54 0.51 0.42 0.62 0.49 0.57 0.43 0.43 0.51 0.49 0.81 1.00

Table 3. AEDs Drug-Drug Similarity using ED Measure.
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Carbamazepine 0.00 0.36 0.61 0.97 0.55 0.88 0.46 1.16 0.48 0.59 0.52 0.83 0.57 0.43
Oxcarbazepine 0.36 0.00 0.62 0.98 0.55 0.81 0.45 1.14 0.51 0.60 0.50 0.81 0.52 0.39
Gabapentin 0.61 0.62 0.00 0.59 0.77 0.82 0.76 1.05 0.82 0.72 0.66 0.79 0.70 0.69
Pregabalin 0.97 0.98 0.59 0.00 1.10 1.00 1.12 1.11 1.16 1.07 1.02 1.05 0.98 1.04
Acetazolamide 0.55 0.55 0.77 1.10 0.00 1.04 0.61 1.16 0.63 0.72 0.67 0.98 0.71 0.57
Lamotrigine 0.88 0.81 0.82 1.00 1.04 0.00 0.95 0.94 1.02 0.99 0.88 0.89 0.80 0.90
Levetiracetam 0.46 0.45 0.76 1.12 0.61 0.95 0.00 1.26 0.50 0.65 0.58 0.89 0.65 0.49
Topiramate 1.16 1.14 1.05 1.11 1.16 0.94 1.26 0.00 1.30 1.29 1.19 1.19 1.04 1.18
Phenytoin 0.48 0.51 0.82 1.16 0.63 1.02 0.50 1.30 0.00 0.68 0.63 0.94 0.71 0.55
Diazepam 0.59 0.60 0.72 1.07 0.72 0.99 0.65 1.29 0.68 0.00 0.44 0.65 0.76 0.63
Clonazepam 0.52 0.50 0.66 1.02 0.67 0.88 0.58 1.19 0.63 0.44 0.00 0.52 0.66 0.55
Klonopin 0.83 0.81 0.79 1.05 0.98 0.89 0.89 1.19 0.94 0.65 0.52 0.00 0.88 0.86
Divalproex 0.57 0.52 0.70 0.98 0.71 0.80 0.65 1.04 0.71 0.76 0.66 0.88 0.00 0.35
Divalproex-ER 0.43 0.39 0.69 1.04 0.57 0.90 0.49 1.18 0.55 0.63 0.55 0.86 0.35 0.00



Bioengineering 2023, 10, 182 10 of 18

Table 4. AEDs Drug-Drug Similarity using MD Measure.
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Carbamazepine 0.00 7.06 11.47 16.41 9.40 19.22 7.38 21.86 7.72 9.99 9.30 15.27 9.36 7.34
Oxcarbazepine 7.06 0.00 10.51 15.60 9.75 17.65 7.46 21.09 8.89 10.38 9.18 14.79 8.72 7.19
Gabapentin 11.47 10.51 0.00 9.43 14.39 15.06 12.64 17.15 13.70 12.32 10.81 12.86 10.74 12.30
Pregabalin 16.41 15.60 9.43 0.00 18.95 14.79 17.75 15.74 18.75 16.92 15.33 15.01 14.46 17.17
Acetazolamide 9.40 9.75 14.39 18.95 0.00 23.12 9.42 22.97 9.98 12.04 11.96 18.56 12.65 8.95
Lamotrigine 19.22 17.65 15.06 14.79 23.12 0.00 20.29 14.70 21.51 20.37 18.59 16.78 16.19 20.03
Levetiracetam 7.38 7.46 12.64 17.75 9.42 20.29 0.00 23.17 7.54 10.10 9.37 15.62 9.96 7.16
Topiramate 21.86 21.09 17.15 15.74 22.97 14.70 23.17 0.00 24.34 23.18 21.39 19.54 18.85 22.79
Phenytoin 7.72 8.89 13.70 18.75 9.98 21.51 7.54 24.34 0.00 10.82 10.52 16.95 11.41 8.29
Diazepam 9.99 10.38 12.32 16.92 12.04 20.37 10.10 23.18 10.82 0.00 6.89 11.64 11.74 9.98
Clonazepam 9.30 9.18 10.81 15.33 11.96 18.59 9.37 21.39 10.52 6.89 0.00 10.15 10.13 9.30
Klonopin 15.27 14.79 12.86 15.01 18.56 16.78 15.62 19.54 16.95 11.64 10.15 0.00 14.29 15.98
Divalproex 9.36 8.72 10.74 14.46 12.65 16.19 9.96 18.85 11.41 11.74 10.13 14.29 0.00 7.86
Divalproex-ER 7.34 7.19 12.30 17.17 8.95 20.03 7.16 22.79 8.29 9.98 9.30 15.98 7.86 0.00

Table 5. AEDs Drug-Drug Similarity using JC Measure.
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Carbamazepine 1.00 0.51 0.37 0.29 0.40 0.24 0.47 0.25 0.47 0.41 0.44 0.32 0.44 0.45
Oxcarbazepine 0.51 1.00 0.40 0.31 0.39 0.27 0.48 0.27 0.46 0.43 0.47 0.34 0.46 0.46
Gabapentin 0.37 0.40 1.00 0.56 0.25 0.46 0.30 0.48 0.31 0.40 0.42 0.51 0.49 0.27
Pregabalin 0.29 0.31 0.56 1.00 0.20 0.52 0.23 0.53 0.24 0.33 0.34 0.51 0.42 0.20
Acetazolamide 0.40 0.39 0.25 0.20 1.00 0.16 0.40 0.17 0.38 0.32 0.33 0.21 0.30 0.42
Lamotrigine 0.24 0.27 0.46 0.52 0.16 1.00 0.19 0.58 0.21 0.27 0.28 0.48 0.39 0.17
Levetiracetam 0.47 0.48 0.30 0.23 0.40 0.19 1.00 0.20 0.47 0.39 0.42 0.27 0.38 0.48
Topiramate 0.25 0.27 0.48 0.53 0.17 0.58 0.20 1.00 0.21 0.27 0.28 0.48 0.39 0.17
Phenytoin 0.47 0.46 0.31 0.24 0.38 0.21 0.47 0.21 1.00 0.38 0.39 0.27 0.38 0.43
Diazepam 0.41 0.43 0.40 0.33 0.32 0.27 0.39 0.27 0.38 1.00 0.53 0.41 0.41 0.36
Clonazepam 0.44 0.47 0.42 0.34 0.33 0.28 0.42 0.28 0.39 0.53 1.00 0.43 0.46 0.40
Klonopin 0.32 0.34 0.51 0.51 0.21 0.48 0.27 0.48 0.27 0.41 0.43 1.00 0.45 0.23
Divalproex 0.44 0.46 0.49 0.42 0.30 0.39 0.38 0.39 0.38 0.41 0.46 0.45 1.00 0.36
Divalproex-ER 0.45 0.46 0.27 0.20 0.42 0.17 0.48 0.17 0.43 0.36 0.40 0.23 0.36 1.00

The results shown in the above tables indicate that these measures are different as
they yield quite different results due to the differences between their working mechanisms.
In other words, although these measures evaluate how two documents, represented com-
monly as two points in the vector space, are related, each measure has a different evaluation
of that relationship because what “similarity” means is different for each measure. This is
obvious from the differences in their scales and range of similarity values. For example,
since Euclidian and Manhattan distance define similarity in terms of the distance between
two vectors, their scales fall in the range [0, ∞], where 0 means that the two documents
are identical and the more they are dissimilar, the higher the value of these measures.
Nonetheless, due to the differences in the meaning of distance between the two measures,
Euclidean distance results are somewhat lower than the Manhattan distance measure. More
precisely, while Euclidean distance measures the straight distance between two points in
the vector space, the Manhattan distance is the sum of absolute differences between points
across all the dimensions.

The cosine and Jaccard coefficient measures, on the other hand, deal with the similarity
between a two documents from a different perspective. Unlike distance-based similarity
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measures, these measures interpret the similarity between two documents in terms of the
closeness of the two documents to each other; therefore, their scales fall in the range [0, 1],
where 0 means the two documents are totally dissimilar and 1 means the two documents
are identical. Nonetheless, the two measures are different in their interpretation of the
similarity between two documents. While the cosine measure interprets the similarity in
terms of the orientation of the two vectors in vector space, the Jaccard coefficient interprets
the similarity in terms of the size of the intersection divided by the size of the union of the
two sets representing the documents. Another important difference between distance-based
measures (Euclidian and Manhattan) and closeness-based measures is that the distance-
based measures account for the magnitude of the values representing the dimension,
whereas closeness-based measures are much less effected by magnitude, or how large the
numbers are.

To overcome the above-mentioned variance in measuring the DDS, a unified scale
measurement scale can be used. For this problem, a similarity-based ranking method is
applied, where for each drug, the remaining drugs are ordered descendingly based on the
obtained DDS from each measure and the ranking values are used instead. The results of
applying the similarity-based ranking method are presented in Tables 6–9.

Table 6. AEDs Drug-Drug Similarity-based Rankings using CS Measure.
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Carbamazepine 1 2 3 5 14 4 10 6 11 13 9 12 8 7
Oxcarbazepine 3 1 6 10 14 2 9 7 12 13 8 11 5 4
Gabapentin 3 4 1 2 13 5 12 7 14 11 6 9 10 8
Pregabalin 3 4 2 1 12 6 13 5 14 11 9 10 8 7
Acetazolamide 5 3 4 7 1 6 11 2 13 14 10 12 8 9
Lamotrigine 3 2 7 11 14 1 9 6 13 12 8 10 5 4
Levetiracetam 4 2 10 12 14 3 1 9 7 13 8 11 6 5
Topiramate 5 4 8 9 6 2 11 1 13 14 10 12 3 7
Phenytoin 2 3 10 12 14 5 4 6 1 13 7 11 8 9
Diazepam 7 6 4 8 14 5 12 10 13 1 3 2 11 9
Clonazepam 7 5 6 10 14 4 12 9 13 3 1 2 11 8
Klonopin 7 6 5 9 14 4 12 10 13 3 2 1 11 8
Divalproex 6 3 7 8 13 4 10 5 12 14 9 11 1 2
Divalproex-ER 6 3 7 9 14 4 10 5 13 12 8 11 2 1

Table 7. AEDs Drug-Drug Similarity-based Rankings using ED Measure.
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Carbamazepine 1 2 10 13 7 12 4 14 5 9 6 11 8 3
Oxcarbazepine 2 1 10 13 8 12 4 14 6 9 5 11 7 3
Gabapentin 3 4 1 2 10 13 9 14 12 8 5 11 7 6
Pregabalin 3 5 2 1 11 6 13 12 14 10 7 9 4 8
Acetazolamide 2 3 10 13 1 12 5 14 6 9 7 11 8 4
Lamotrigine 6 3 4 12 14 1 10 9 13 11 5 7 2 8
Levetiracetam 3 2 10 13 7 12 1 14 5 8 6 11 9 4
Topiramate 8 6 4 5 7 2 12 1 14 13 11 10 3 9
Phenytoin 2 4 10 13 6 12 3 14 1 8 7 11 9 5
Diazepam 3 4 10 13 9 12 6 14 8 1 2 7 11 5
Clonazepam 4 3 9 13 11 12 7 14 8 2 1 5 10 6
Klonopin 6 5 4 13 12 10 9 14 11 3 2 1 8 7
Divalproex 4 3 7 13 9 11 5 14 8 10 6 12 1 2
Divalproex-ER 4 3 10 13 8 12 5 14 6 9 7 11 2 1
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Table 8. Drug-Drug Similarity-based Rankings of AEDs using MD Measure.
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Carbamazepine 1 2 10 12 8 13 4 14 5 9 6 11 7 3
Oxcarbazepine 2 1 10 12 8 13 4 14 6 9 7 11 5 3
Gabapentin 6 3 1 2 12 13 9 14 11 8 5 10 4 7
Pregabalin 9 7 2 1 14 4 12 8 13 10 6 5 3 11
Acetazolamide 3 5 10 12 1 14 4 13 6 8 7 11 9 2
Lamotrigine 9 7 4 3 14 1 11 2 13 12 8 6 5 10
Levetiracetam 3 4 10 12 7 13 1 14 5 9 6 11 8 2
Topiramate 9 7 4 3 11 2 12 1 14 13 8 6 5 10
Phenytoin 3 5 10 12 6 13 2 14 1 8 7 11 9 4
Diazepam 4 6 11 12 10 13 5 14 7 1 2 8 9 3
Clonazepam 4 3 10 12 11 13 6 14 9 2 1 8 7 5
Klonopin 8 6 4 7 13 11 9 14 12 3 2 1 5 10
Divalproex 4 3 7 12 10 13 5 14 8 9 6 11 1 2
Divalproex-ER 4 3 10 12 7 13 2 14 6 9 8 11 5 1

Table 9. AEDs Drug-Drug Similarity-based Rankings using JC Measure.
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carbamazepine 1 2 10 12 9 14 4 13 3 8 7 11 6 5
oxcarbazepine 2 1 9 12 10 14 3 13 7 8 4 11 6 5
gabapentin 10 8 1 2 14 6 12 5 11 9 7 3 4 13
pregabalin 10 9 2 1 14 4 12 3 11 8 7 5 6 13
acetazolamide 4 5 10 12 1 14 3 13 6 8 7 11 9 2
lamotrigine 10 8 5 3 14 1 12 2 11 9 7 4 6 13
levetiracetam 5 3 10 12 7 14 1 13 4 8 6 11 9 2
topiramate 10 9 5 3 14 2 12 1 11 8 7 4 6 13
phenytoin 2 4 10 12 8 14 3 13 1 9 6 11 7 5
Diazepam 6 3 7 11 12 14 8 13 9 1 2 5 4 10
clonazepam 5 3 7 11 12 14 8 13 10 2 1 6 4 9
Klonopin 10 9 2 3 14 4 12 5 11 8 7 1 6 13
divalproex 6 3 2 7 14 10 12 9 11 8 4 5 1 13
divalproex-ER 4 3 10 12 6 14 2 13 5 8 7 11 9 1

In contrast to the similarities, the similarity-based rankings look more consistent and
illustrate, for each AED, the ranks of the remaining AEDs with respect to their similarity.
In addition to the unified measurement scale provided by the similarity-based ranking
method, the obtained ranking values allow two types of analyses to be performed. The first
analysis is drug-drug correlations which is motivated by the observed consistency between
the ranking values of drugs in the rows within each table. The drug-drug correlation
analysis would provide insights on the overall drug-drug similarity. The second analysis is
the agreement between the similarity measures which is motivated by the observed consis-
tencies between the corresponding drugs ranking values across tables. This analysis would
provide insights on the performance of similarity measures relative to each other. For both
analyses, rank correlation coefficient methods can be applied. A rank correlation coefficient
is used to assess the significance of the relation between two rankings by measuring the
degree of similarity between them. In this work, Pearson’s rank correlation coefficient [44]
over the obtained drug rankings is defined for two variables X = (x1 . . . xn) and Y = (y1
. . . yn) as follows:
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Pr =
n ∑ xy− (∑ x)(∑ y)√

[n ∑ x2 − (∑ x)2][n ∑ y2 − (∑ y2)]
(5)

where Pr is the Pearson correlation coefficient, xi and yi are values of the X and Y variables.

4.1. Drug-Drug Correlations Analysis

The drug-drug correlation analysis can be performed by applying Pearson’s rank
correlation coefficient to the ranking values of each drugs within the same table. This can
be considered as a second-order similarity measuring between AEDs to measure how the
drugs are ordered with respect to their similarity to a particular drug. Table 10 presents
the degree of agreement between each pair of AEDs in how the other AEDs are ranked
measured by each one of the four measures. This unified scale allows to reach a final score
of the similarity-based correlations between each pair of AEDs.

Table 10. AEDs Drug-Drug Similarity-based Correlations.
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Carbamazepine CS 1.00 0.98 0.31 −0.48 0.84 −0.61 0.96 −0.64 0.90 0.72 0.72 0.05 0.85 0.94
ED 1.00 0.99 0.33 −0.07 0.91 0.03 0.96 −0.50 0.93 0.71 0.63 0.28 0.81 0.88
MD 1.00 0.98 0.31 −0.48 0.84 −0.61 0.96 −0.64 0.90 0.72 0.72 0.05 0.85 0.94
JC 1.00 0.93 −0.56 −0.69 0.76 −0.71 0.89 −0.74 0.97 0.48 0.52 −0.66 0.05 0.89

Oxcarbazepine CS 0.85 1.00 0.62 0.62 0.39 0.98 0.74 0.69 0.53 0.15 0.27 0.22 0.89 0.90
ED 0.99 1.00 0.37 −0.02 0.87 0.13 0.96 −0.46 0.89 0.72 0.67 0.34 0.86 0.91
MD 0.98 1.00 0.36 −0.41 0.81 −0.56 0.93 −0.58 0.85 0.67 0.71 0.07 0.90 0.96
JC 0.93 1.00 −0.45 −0.58 0.71 −0.62 0.87 −0.64 0.88 0.61 0.68 −0.56 0.20 0.86

Gabapentin CS 0.86 0.62 1.00 0.95 0.45 0.57 0.12 0.38 0.05 0.48 0.45 0.47 0.49 0.50
ED 0.33 0.37 1.00 0.78 0.24 0.21 0.26 0.02 0.15 0.30 0.33 0.36 0.44 0.31
MD 0.31 0.36 1.00 0.54 0.07 0.15 0.21 0.11 0.08 0.23 0.41 0.61 0.55 0.27
JC −0.56 −0.45 1.00 0.96 −0.85 0.88 −0.74 0.88 −0.64 0.09 0.06 0.96 0.73 −0.77

Pregabalin CS 0.87 0.62 0.95 1.00 0.56 0.57 0.06 0.53 0.00 0.30 0.25 0.27 0.59 0.58
ED −0.07 −0.02 0.78 1.00 −0.14 0.55 −0.20 0.50 −0.29 −0.11 −0.02 0.21 0.20 0.02
MD −0.48 −0.41 0.54 1.00 −0.74 0.85 −0.59 0.80 −0.71 −0.43 −0.22 0.51 −0.13 −0.51
JC −0.69 −0.58 0.96 1.00 −0.93 0.94 −0.83 0.95 −0.75 −0.07 −0.10 0.95 0.57 −0.86

Acetazolamide CS 0.51 0.39 0.45 0.56 1.00 0.36 0.01 0.80 −0.01 −0.27 −0.22 −0.26 0.41 0.33
ED 0.91 0.87 0.24 −0.14 1.00 −0.14 0.87 −0.42 0.87 0.59 0.47 0.14 0.70 0.78
MD 0.84 0.81 0.07 −0.74 1.00 −0.84 0.89 −0.77 0.87 0.62 0.53 −0.17 0.63 0.85
JC 0.76 0.71 −0.85 −0.93 1.00 −0.97 0.89 −0.98 0.79 0.18 0.24 −0.90 −0.39 0.93

Lamotrigine CS 0.79 0.98 0.57 0.57 0.36 1.00 0.72 0.71 0.49 0.20 0.34 0.29 0.87 0.90
ED 0.03 0.13 0.21 0.55 −0.14 1.00 −0.05 0.49 −0.20 −0.01 0.15 0.42 0.39 0.19
MD −0.61 −0.56 0.15 0.85 −0.84 1.00 −0.70 0.97 −0.82 −0.67 −0.49 0.10 −0.35 −0.63
JC −0.71 −0.62 0.88 0.94 −0.97 1.00 −0.86 0.99 −0.78 −0.16 −0.18 0.92 0.49 −0.89

Levetiracetam CS 0.51 0.74 0.12 0.06 0.01 0.72 1.00 0.34 0.82 −0.16 −0.01 −0.07 0.58 0.58
ED 0.96 0.96 0.26 −0.20 0.87 −0.05 1.00 −0.59 0.94 0.72 0.64 0.27 0.75 0.82
MD 0.96 0.93 0.21 −0.59 0.89 −0.70 1.00 −0.73 0.94 0.72 0.67 −0.03 0.79 0.96
JC 0.89 0.87 −0.74 −0.83 0.89 −0.86 1.00 −0.88 0.92 0.34 0.38 −0.80 −0.24 0.99

Topiramate CS 0.59 0.69 0.38 0.53 0.80 0.71 0.34 1.00 0.22 −0.24 −0.12 −0.18 0.77 0.71
ED −0.50 −0.46 0.02 0.50 −0.42 0.49 −0.59 1.00 −0.66 −0.73 −0.68 −0.40 −0.16 −0.33
MD −0.64 −0.58 0.11 0.80 −0.77 0.97 −0.73 1.00 −0.85 −0.75 −0.56 0.02 −0.39 −0.65
JC −0.74 −0.64 0.88 0.95 −0.98 0.99 −0.88 1.00 −0.79 −0.14 −0.17 0.92 0.47 −0.91

Phenytoin CS 0.46 0.53 0.05 0.00 −0.01 0.49 0.82 0.22 1.00 −0.23 −0.09 −0.16 0.33 0.30
ED 0.93 0.89 0.15 −0.29 0.87 −0.20 0.94 −0.66 1.00 0.64 0.55 0.16 0.66 0.77
MD 0.90 0.85 0.08 −0.71 0.87 −0.82 0.94 −0.85 1.00 0.67 0.57 −0.13 0.65 0.87
JC 0.97 0.88 −0.64 −0.75 0.79 −0.78 0.92 −0.79 1.00 0.38 0.42 −0.72 −0.09 0.89

Diazepam CS 0.16 0.15 0.48 0.30 −0.27 0.20 −0.16 −0.24 −0.23 1.00 0.96 0.98 −0.07 0.07
ED 0.71 0.72 0.30 −0.11 0.59 −0.01 0.72 −0.73 0.64 1.00 0.96 0.71 0.46 0.54
MD 0.72 0.67 0.23 −0.43 0.62 −0.67 0.72 −0.75 0.67 1.00 0.94 0.42 0.60 0.65
JC 0.48 0.61 0.09 −0.07 0.18 −0.16 0.34 −0.14 0.38 1.00 0.99 0.05 0.63 0.30

Clonazepam CS 0.19 0.27 0.45 0.25 −0.22 0.34 −0.01 −0.12 −0.09 0.96 1.00 0.99 0.05 0.19
ED 0.63 0.67 0.33 −0.02 0.47 0.15 0.64 −0.68 0.55 0.96 1.00 0.84 0.45 0.50
MD 0.72 0.71 0.41 −0.22 0.53 −0.49 0.67 −0.56 0.57 0.94 1.00 0.58 0.69 0.63
JC 0.52 0.68 0.06 −0.10 0.24 −0.18 0.38 −0.17 0.42 0.99 1.00 0.01 0.64 0.35
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Table 10. Cont.

C
ar

ba
m

az
ep

in
e

O
xc

ar
ba

ze
pi

ne

G
ab

ap
en

ti
n

Pr
eg

ab
al

in

A
ce

ta
zo

la
m

id
e

La
m

ot
ri

gi
ne

Le
ve

ti
ra

ce
ta

m

To
pi

ra
m

at
e

Ph
en

yt
oi

n

D
ia

ze
pa

m

C
lo

na
ze

pa
m

K
lo

no
pi

n

D
iv

al
pr

oe
x

D
iv

al
pr

oe
x-

ER

Klonopin CS 0.17 0.22 0.47 0.27 −0.26 0.29 −0.07 −0.18 −0.16 0.98 0.99 1.00 0.01 0.14
ED 0.28 0.34 0.36 0.21 0.14 0.42 0.27 −0.40 0.16 0.71 0.84 1.00 0.31 0.26
MD 0.05 0.07 0.61 0.51 −0.17 0.10 −0.03 0.02 −0.13 0.42 0.58 1.00 0.26 −0.02
JC −0.66 −0.56 0.96 0.95 −0.90 0.92 −0.80 0.92 −0.72 0.05 0.01 1.00 0.63 −0.83

Divalproex CS 0.71 0.89 0.49 0.59 0.41 0.87 0.58 0.77 0.33 −0.07 0.05 0.01 1.00 0.98
ED 0.81 0.86 0.44 0.20 0.70 0.39 0.75 −0.16 0.66 0.46 0.45 0.31 1.00 0.96
MD 0.85 0.90 0.55 −0.13 0.63 −0.35 0.79 −0.39 0.65 0.60 0.69 0.26 1.00 0.89
JC 0.05 0.20 0.73 0.57 −0.39 0.49 −0.24 0.47 −0.09 0.63 0.64 0.63 1.00 −0.27

Divalproex-ER CS 0.70 0.90 0.50 0.58 0.33 0.90 0.58 0.71 0.30 0.07 0.19 0.14 0.98 1.00
ED 0.88 0.91 0.31 0.02 0.78 0.19 0.82 −0.33 0.77 0.54 0.50 0.26 0.96 1.00
MD 0.94 0.96 0.27 −0.51 0.85 −0.63 0.96 −0.65 0.87 0.65 0.63 −0.02 0.89 1.00
JC 0.89 0.86 −0.77 −0.86 0.93 −0.89 0.99 −0.91 0.89 0.30 0.35 −0.83 −0.27 1.00

Based on the obtained drug-drug similarity-based correlations, an overall AEDs
similarity-based correlation can be calculated as shown in Table 11.

Table 11. Average AEDs Drug-Drug Similarity-based Correlations.
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Carbamazepine 1.00 0.94 0.23 −0.09 0.75 −0.13 0.83 −0.32 0.82 0.52 0.52 0.60 0.85
Oxcarbazepine 0.94 1.00 0.22 −0.10 0.70 −0.01 0.87 −0.25 0.78 0.54 0.58 0.71 0.91
Gabapentin 0.23 0.22 1.00 0.81 −0.02 0.45 −0.04 0.35 −0.09 0.27 0.31 0.55 0.08
Pregabalin −0.09 −0.10 0.81 1.00 −0.31 0.73 −0.39 0.69 −0.44 −0.08 −0.02 0.31 −0.19
Acetazolamide 0.75 0.70 −0.02 −0.31 1.00 −0.40 0.66 −0.34 0.63 0.28 0.25 0.34 0.72
Lamotrigine −0.13 −0.01 0.45 0.73 −0.40 1.00 −0.22 0.79 −0.33 −0.16 −0.05 0.35 −0.11
Levetiracetam 0.83 0.87 −0.04 −0.39 0.66 −0.22 1.00 −0.47 0.90 0.40 0.42 0.47 0.84
Topiramate −0.32 −0.25 0.35 0.69 −0.34 0.79 −0.47 1.00 −0.52 −0.47 −0.38 0.17 −0.30
Phenytoin 0.82 0.78 −0.09 −0.44 0.63 −0.33 0.90 −0.52 1.00 0.37 0.36 0.39 0.71
Diazepam 0.52 0.54 0.27 −0.08 0.28 −0.16 0.40 −0.47 0.37 1.00 0.96 0.41 0.39
Clonazepam 0.52 0.58 0.31 −0.02 0.25 −0.05 0.42 −0.38 0.36 0.96 1.00 0.46 0.42
Divalproex 0.60 0.71 0.55 0.31 0.34 0.35 0.47 0.17 0.39 0.41 0.46 1.00 0.64
Divalproex-ER 0.85 0.91 0.08 −0.19 0.72 −0.11 0.84 −0.30 0.71 0.39 0.42 0.64 1.00

4.2. Agreement Analysis of Similarity Measures

As pointed out above, the second analysis is the agreement between the similarity
measures to provide insights on the performance of similarity measures relative to each
other. Again, this analysis is performed by applying the Pearson’s ranked correlation
coefficient to the obtained Drug Ranking values presented in Tables 6–9.

The results of the agreement analysis using Pearson ranked correlation coefficient
shows various levels of agreement between the four measures in measuring the similarities
between AEDs. The values in the last rows of Table 12 represent the average agreement
between different pairs of measures over all AEDs. It is obvious that Euclidian and
Manhattan measures have the highest agreement. This can be attributed to the similar
working mechanisms of the two measures where they measure the similarity in terms of the
distance between the vectors in a Cartesian space. In addition, both Manhattan and Jaccard
show a quite high degree of agreement between them, though both measures evaluate the
similarity work on a different basis; however, the simplicity of the two measures could
interpret the high degree of agreement between them. On the other hand, the Cosine
similarity measure shows a low agreement with other measures, where it is the lowest with
Jaccard. This reflects the inherent differences of the Cosine measure with others.
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Table 12. AEDs Drug-Drug Similarities from DrugSimDB.

CS & ED ED & MD CS & MD CS & JC ED & JC MD & JC AVG. Performance

Carbamazepine 0.11 0.99 0.13 0.10 0.95 0.97 0.54
Oxcarbazepine 0.34 0.98 0.33 0.31 0.96 0.95 0.65
Gabapentin 0.64 0.94 0.58 0.60 0.24 0.40 0.57
Pregabalin 0.84 0.78 0.69 0.62 0.52 0.89 0.72
Acetazolamide 0.11 0.96 0.02 −0.01 0.95 1.00 0.51
Lamotrigine 0.84 0.60 0.55 0.32 0.48 0.93 0.62
Levetiracetam 0.56 0.97 0.53 0.46 0.96 0.98 0.74
Topiramate 0.87 0.89 0.65 0.30 0.61 0.86 0.70
Phenytoin 0.51 0.99 0.45 0.56 0.96 0.96 0.74
Diazepam 0.40 0.96 0.27 0.53 0.74 0.71 0.60
Clonazepam 0.57 0.95 0.42 0.51 0.85 0.89 0.70
Klonopin 0.78 0.86 0.73 0.58 0.22 0.49 0.61
Divalproex 0.47 0.98 0.42 0.34 0.23 0.29 0.46
Divalproex-ER 0.35 0.95 0.20 0.02 0.85 0.95 0.55
Average Performance 0.53 0.91 0.43 0.37 0.68 0.80

4.3. Evaluation

To evaluate the discovered similarity-based correlations among AEDs, it is mean-
ingful to compare the obtained similarity from social media with the AEDs similarities
that are based on drug-centric data mentioned above. For this sake, this research uses the
DrugSimDB [45] tool which integrates multiple sources of drug-centric data to compute
DDS among a comprehensive list of drugs. It includes 238,635 significant multi-modal
DDS for 10,317 small-molecule medications that are either unlawful or withdrawn (2466 ap-
proved and 7212 investigational). DrugSimDB uses a variety of public datasets. This
covers protein sequences and their functional annotations, drug-induced pathways, chemi-
cal structure descriptors, interactions between proteins and proteins and between drugs,
to determine the degree to which each combination of medications has the same targets,
structures, activities, and routes. DrugSimDB is a web-based application that enables users
to browse or download the complete drug database or any crucial processed files. Table 13
presents the results of AEDs similarities obtained from DrugSimDB and Figure 3 shows
their representation as a network.

Figure 3. AEDs . Drug-Drug Similarity-based correlations from DrugSimDB.



Bioengineering 2023, 10, 182 16 of 18

Table 13. Agreement Analysis of Similarity Measures Performance.

Drug_1 Drug_2 Structure
Similarity

Target
Similarity

Pathway
Similarity

GO_CC
Similarity

GO_MF
Similarity

GO_BP
Similarity Average

Clonazepam Diazepam 0.47 0.95 1 0.85 0.86 0.85 0.796
Carbamazepine Phenytoin 0.42 0.65 NA 0.92 0.95 0.9 0.768
Carbamazepine Oxcarbazepine 0.64 0.48 NA 0.77 0.8 0.78 0.694
Oxcarbazepine Phenytoin 0.38 0.57 NA 0.79 0.79 0.83 0.672
Diazepam Topiramate 0 0.86 1 0.84 0.8 0.72 0.644
Diazepam Lamotrigine 0.22 0.78 NA 0.69 0.75 0.7 0.628
Clonazepam Lamotrigine 0.2 0.74 NA 0.72 0.7 0.68 0.608
Lamotrigine Topiramate 0 0.73 NA 0.65 0.82 0.75 0.59
Clonazepam Topiramate 0 0.83 1 0.64 0.73 0.66 0.572
Phenytoin Valproic Acid 0 0.57 NA 0.65 0.73 0.61 0.512
Gabapentin Pregabalin 0.21 0.34 1 0.69 0.67 0.62 0.506
Carbamazepine Valproic Acid 0.01 0.41 NA 0.74 0.72 0.6 0.496

Assuming the average DDS obtained from DrugSimDB tool as ground truth, the evalu-
ation of the AEDs DDS obtained from social media can be performed in terms of Precision,
Recall, and F1 as given in the following equations. In doing so, threshold values of AEDs’
drug-drug similarity-based correlations shown in Table 11 need to be specified so as two
drugs are considered similar when their similarity-based correlation is above the threshold.
Table 14 illustrates the obtained P, R, and F1 values for several threshold values. As shown
in Table 14, the best F1 is obtained when the chosen threshold is 0.75. These results provide
evidence on the feasibility of using drug-centric data from social media.

Table 14. AEDs Drug-Drug Similarity Evaluation Results.

Threshold 0.5 0.6 0.7 0.75 0.80

Precision (P) 0.29 0.35 0.44 0.54 0.40
Recall (R) 0.67 0.67 0.67 0.58 0.33
F1 0.40 0.46 0.53 0.56 0.36

5. Conclusions

In this research, a framework for computing source data for computing drug-drug
similarity based on a novel data source that represents patient perspective on drugs is
proposed. The proposed framework employs text similarity methods to compute DDS from
patients’ reviews collected from social media. A case study for computing DDS of a specific
set of drugs, AEDs, is presented and the obtained results are analyzed using Pearson’s
correlation coefficient method to investigate the AEDs DDS and the performance of four
similarity measures. The AEDs DDS are compared with DDS obtained from DrugSimDB
which depends on the commonly used drug-centric data and the results provide evidence
on the feasibility of using drug-centric data for computing DDS. The outcomes of this
research are expected to contribute to the healthcare at a practical as well as theoretical level.
At the theoretical level, this research is considered the first of its kind to investigate patient’s
centric data for computing DDS, which can inspire further research in this direction to fully
exploit this novel source of data. At a practical level, this research can inform practical
applications of drug discovery and development, which rely on computing DDS, with a
new source of data to compensate for missing data across professional data sources and
provide a multi-view perspective to compute DDS.

This research can be extended in several directions. First, there are abundant text
similarity methods that can be investigated for improving the computation of DDS. Second,
more sophisticated NLP methods can be utilized in the preprocessing of the textual data
of drug documents to improve the computation of DDS. Finally, for the sake of gener-
ality, the proposed DDS framework can be experimented on an extended set of Central
Nervous System CNS-acting drugs such as anti-Alzheimer, anti-Parkinson’s, and antipsy-
chotic drugs.
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