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Abstract: Background: Tumor heterogeneity and vascularity can be noninvasively quantified using
histogram and perfusion analyses on computed tomography (CT) and magnetic resonance imaging
(MRI). We compared the association of histogram and perfusion features with histological prognostic
factors and progression-free survival (PFS) in breast cancer patients on low-dose CT and MRI.
Methods: This prospective study enrolled 147 women diagnosed with invasive breast cancer who
simultaneously underwent contrast-enhanced MRI and CT before treatment. We extracted histogram
and perfusion parameters from each tumor on MRI and CT, assessed associations between imaging
features and histological biomarkers, and estimated PFS using the Kaplan–Meier analysis. Results:
Out of 54 histogram and perfusion parameters, entropy on T2- and postcontrast T1-weighted MRI
and postcontrast CT, and perfusion (blood flow) on CT were significantly associated with the status
of subtypes, hormone receptors, and human epidermal growth factor receptor 2 (p < 0.05). Patients
with high entropy on postcontrast CT showed worse PFS than patients with low entropy (p = 0.053)
and high entropy on postcontrast CT negatively affected PFS in the Ki67-positive group (p = 0.046).
Conclusions: Low-dose CT histogram and perfusion analysis were comparable to MRI, and the
entropy of postcontrast CT could be a feasible parameter to predict PFS in breast cancer patients.

Keywords: breast neoplasms; quantitative evaluation; computed tomography; magnetic resonance
imaging; survival; histogram analysis; perfusion analysis

1. Introduction

Increased heterogeneity and vascularity of the tumor are poor prognostic factors for
breast cancer. The heterogeneous nature of tumors is manifested at gross, cellular, and
genetic levels because various mutations occur during tumor development [1]. Tumor
heterogeneity limits targeted therapies and increases treatment resistance [2]. Angiogenesis
is a process of new vessel formation that supplies oxygen and nutrients for tumor growth
and promotes metastasis [3,4]. Therefore, the investigation of tumor heterogeneity and
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vascularity is necessary to evaluate treatment response, predict prognosis, and establish a
treatment strategy tailored to each cancer patient. Tumor heterogeneity and vascularity can
be evaluated histologically by tissue biopsy before treatment planning. However, a biopsy
is only a partial sample of a cancer, making it difficult to capture the characteristics of the
entire tumor. In addition, a biopsy is an invasive method that makes repeated treatment
evaluation examinations uncomfortable, difficult, or even impossible.

Many studies have shown that quantification tools using histogram and perfusion
analysis in magnetic resonance imaging (MRI) or computed tomography (CT) are use-
ful for noninvasively measuring tumor heterogeneity and vascularity in breast cancer in
prospective and retrospective cohorts [5–10]. In those studies, the histogram and perfusion
parameters are associated with prognostic factors or responses to neoadjuvant chemother-
apy. However, radiation exposure has limited the use of CT in breast cancer [11,12]. The
breast is a radiation-sensitive organ and should be examined at a low radiation dose.
However, as the radiation dose is reduced, the image quality deteriorates. Therefore, a
CT scan with the lowest possible radiation dose is needed in order to maintain optimal
image quality. Park et al. [13] demonstrated the potential of low-dose perfusion CT for
quantifying vascularity in breast cancer with a significantly low radiation dose (an effective
dose of 1.30–1.40 mSv for each patient) and the correlations of perfusion parameters on
CT with histological prognostic factors and MRI kinetic characteristics. Since then, recent
studies using low-dose perfusion CT or conventional chest CT demonstrated that quanti-
tative histogram and perfusion parameters perform well in predicting prognostic factors,
survival outcomes, and treatment failure rate in breast cancer [10,14–16]. Compared with
MRI, CT has the advantages of a quick scan time, less discomfort during examination, and
the ability to evaluate extensive lymph node enlargement, including mediastinum, lower
neck, or internal mammary area, and distant metastases in the lungs and bony thorax.
Therefore, CT can be useful in patients with advanced breast cancer or patients who are
difficult to examine by MRI. Typical contraindications for breast MRI include allergy to
gadolinium-based contrast media, implantable devices, severe obesity, and inability to
undergo long examination (such as severe claustrophobia, inability to lie prone, or marked
spinal deformity) [17].

To date, few comparative studies between CT and MRI have used the histogram
and perfusion quantitative characteristics of breast cancer to evaluate their association
with prognostic factors or survival. Here, we hypothesized that the quantitative tumor
heterogeneity and vascularity parameters captured by low-dose CT would be comparable
to those of MRI in association with histological biomarkers and survival outcomes and that
CT could be an alternative in patients for whom it is difficult to perform MRI.

The aim of this study is to compare the association of histogram and perfusion analyses
with histological prognostic biomarkers and progression-free survival (PFS) outcomes in
breast cancer patients on low-dose CT and MRI.

2. Materials and Methods
2.1. Patients

The Institutional Review Board of Korea University Ansan Hospital approved this
prospective study. Written informed consent was received from all participants. Consec-
utively, 159 women with pathologically proven invasive breast carcinomas underwent
dynamic contrast-enhanced breast MRI and low-dose breast CT before starting treatment
from May 2017 to October 2018. These participants were included in two previous prospec-
tive studies to evaluate the usefulness of histogram and perfusion analyses on CT or MRI
used to predict prognostic factors in breast cancer [14,18]. In the current study, we com-
pared the associations between image-analyzing parameters and histological biomarkers
and survival outcomes of breast cancers on low-dose CT and MRI. Inclusion criteria for this
study were as follows: (a) patients diagnosed pathologically with invasive breast carcino-
mas with core needle biopsy, not excision or vacuum-assisted biopsy; (b) patients without
previous ipsilateral breast surgery within the last five years; and (c) patients with no history
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of allergic reaction to CT contrast media. Twelve patients were excluded because of ductal
carcinoma in situ or microinvasive cancer in the final pathologic report after the operation
(n = 7), image quality degradation due to motion artifact (n = 2), or cancer of too small a
size to be identified on perfusion map (n = 3). Finally, 147 women (mean age 52.3 years, age
range 25–81 years) with invasive breast carcinomas were included in our study. Figure 1
summarizes the study population, and Table 1 shows the tumor characteristics. Tumor
sizes on MRI ranged from 6 to 109 mm (mean size ± standard deviation 23.9 ± 14.8 mm).
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Table 1. Tumor characteristics.

Characteristic No. of Breast Cancers (n = 147)

ER
Negative 48 (33%)
Positive 99 (67%)

PR
Negative 50 (34%)
Positive 97 (66%)
HER2

Negative 123 (84%)
Positive 24 (16%)

Ki67
Negative 73 (50%)
Positive 74 (50%)

Tumor grade
Low 96 (65%)
High 51 (35%)

Molecular subtype
Luminal A 65 (44%)
Luminal B 38 (26%)

HER2-enriched 18 (12%)
Triple-negative 26 (18%)

ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2.
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2.2. MRI Analysis

Two radiologists (J.Y.L. and B.K.S., with 10 and 21 years of experience in breast imaging,
respectively) evaluated MRI and CT images and reached a consensus. They were blinded
to the clinical and histological information. If a patient had simultaneous bilateral cancers,
the largest tumor was selected.

MRI was performed in the prone position using a dedicated 4-channel breast coil
on a 3.0 T MRI system (MAGNETOM Skyra; Siemens Healthineers, Erlangen, Germany).
MRI was conducted according to a previous study [18]. Bilateral axial T2-weighted two-
dimensional turbo spin-echo imaging with fat saturation (repetition time [ms] 4050, echo
time [ms] 56, field of view [mm] 340 × 340, matrix [pixel] 307 × 384, flip angle [◦] 120,
reconstruction voxel size [mm] 0.44 × 0.44 × 3, slice thickness [mm] 3) and T1-weighted
three-dimensional volumetric interpolated breath–hold imaging with fat saturation (repeti-
tion time 3.44, echo time 1.36, field of view 320 × 320, matrix 320 × 320, reconstruction voxel
size 1 × 1 × 1, slice thickness 1) were obtained. Precontrast T1 mapping was generated
using two different flip angles (2◦, 9◦) in the axial plane encompassing the whole tumor
volume before dynamic examination. Postcontrast images were acquired after gadoterate
meglumine (Uniray; Dongkook Life Science Co. Ltd., Seoul, Republic of Korea) was injected
intravenously at a dose of 0.2 mL/kg of body weight, followed by a 30 mL saline flush.
One precontrast image and five postcontrast images were obtained for dynamic exami-
nation. Postcontrast images were acquired at 93 s, 180 s, 268 s, 356 s, and 443 s after the
injection of contrast media. T2-weighted images (T2), T1-weighted images before contrast
media injection (PrecontrastT1), and T1-weighted images scanned at the first phase—93 s
after contrast injection—(PostcontrastT1) were used for histogram analysis. Histogram
features were analyzed using commercial software (TexRAD; Feedback Medical Ltd., Lon-
don, UK), which is a first-order statistical-based histogram analysis technique [8,10,14,18].
Perfusion features were analyzed using a commercial algorithm (Tissue 4D; Siemens Health-
ineers) with Toft’s model implementation. [5,19,20]. On MRI, 18 histogram parameters and
16 perfusion parameters were obtained from each tumor.

For histogram analysis, a region of interest (ROI) was drawn along the entire tumor
enhancement on PostcontrastT1 in the largest cross-sectional area of the tumor, and this
was then used for PrecontrastT1 and T2 lesions corresponding to those on PostcontrastT1.
After tumor segmentation, six parameters were extracted from each ROI without filtering:
(a) mean pixel intensity, (b) standard deviation (variation from the mean), (c) means of
positive pixels (the average gray level intensity above zero threshold), (d) entropy (the
randomness of gray-level distribution), (e) kurtosis (the peakedness of the distribution),
and (f) skewness (asymmetry of the distribution) (Figure 2a,b).

For perfusion analysis, measurements were made in two ROIs for the entire tumor and
hot spot (high perfusion area within the tumor; Figure 2c–e). Perfusion parameters were
calculated using voxel-wise T1 perfusion maps, gadolinium concentration–time, arterial
course input function, and fitting with a pharmacokinetic model. Four perfusion parameters
were extracted from two ROIs for each tumor: (a) Ktrans (the constant representing the
transfer of contrast medium from blood plasma to the extracellular extravascular space
per minute), (b) kep (the rate constant representing transfer of contrast medium from the
extracellular extravascular space into blood plasma per minute), (c) Ve (the extracellular
extravascular space per unit volume of tissue), and (d) iAUC (the initial area under the
contrast concentration–time) [18,21,22]. The hot spot was selected as the high perfusion
area on the Ktrans-based perfusion map. The median and mean values of each parameter
were automatically calculated from the two ROIs.
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Figure 2. Histogram and perfusion analyses conducted on breast MRI in a 42-year-old woman with a
30 mm triple-negative invasive ductal carcinoma of the left breast (a,b). Histogram analysis on MRI:
Axial contrast-enhanced T1-weighted MRI image shows an oval shaped, irregular marginated, and
heterogeneous enhancing mass in the left breast. The region of interest (ROI) was drawn manually for
the entire tumor, and a histogram was obtained (a). From the histogram, six statistically based metrics
were extracted: mean, standard deviation (SD), mean of positive pixels (MPP), entropy, skewness,
and kurtosis (b). (c–e) Perfusion analysis on MRI: Two ROIs (ROI1: entire tumor and ROI2: hot spot)
were manually delineated (c), and eight perfusion parameters from each ROI were obtained: median
and mean values of Ktrans, kep, Ve, and iAUC (d,e).

2.3. CT Analysis

Low-dose perfusion CT was performed according to a previous study [16]. CT was
conducted using an IQon Spectral CT scanner (Philips Health Systems, Cleveland, OH,
USA). An additional table pad with a rectangular hole was inserted for placing the breast
on a normal CT table for examination in the prone position [13,16]. A radiologist (B.K.S)
evaluated prior mammography, ultrasound, or MRI before the CT scans and performed a
targeted ultrasound to localize the tumor. After localizing the cancer, a skin marker (X-spot;
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Beekley Medical, Bristol, CT, USA) was applied to the skin at the cancer site. Low-dose
perfusion CT was performed as follows: tube voltage 80 kVp, tube current 25 mA or 30 mA,
collimation 64 mm × 0.625 mm, rotation time 0.5 s, matrix 512 × 512, and slice thickness
5 mm. The scan range was 40 mm along the z-axis, including the skin markers. After
setting the scan range on a precontrast scan, the skin marker was removed, and contrast
media was injected. A total of 60 mL of Xenetix 350 (Guerbet, Aulnay-sous-Bois, France)
was administered at a rate of 4 mL/s. Eighteen scans were performed at 3 s intervals after
contrast media injection, and four scans at 30 s intervals (effective dose for each patient,
1.01–1.38 mSv). Histogram features on CT were analyzed using the same commercial
software as MRI. Perfusion features were calculated with a maximum slope algorithm
using a commercial software (Functional CT; Philips Health Systems). On CT, 12 histogram
parameters and 8 perfusion parameters were obtained from each tumor.

Histogram analysis on CT was performed on pre- and postcontrast images using the
same method as on MRI (Figure 3a,b). When the tumor was maximally enhanced, an ROI
containing the entire tumor was drawn [14]. In perfusion analysis on CT, similarity to
MRI, two ROIs, total tumor area and hot spot were measured. In addition, time–intensity
curves and perfusion color maps for the tumors were measured automatically when we
drew ROIs. Four parameters on CT perfusion maps were measured from the two ROIs for
each cancer: (a) perfusion (blood flow; mL/min per 100 mL), (b) blood volume (total blood
volume over the region during the scan period; mL/100 g), (c) peak enhancement intensity
(peak enhancement after contrast media injection; Hounsfield units [HU]), and (d) time to
peak (time to reach peak contrast enhancement; seconds; Figure 3c,d).
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Figure 3. Histogram and perfusion analyses on breast CT in a 42-year-old woman with a
30 mm triple-negative invasive ductal carcinoma of the left breast (the same patient as Figure 2).
(a,b) Histogram analysis on CT: Axial contrast-enhanced low-dose CT shows an oval shaped, irregu-
lar marginated, and heterogeneous enhancing mass. Histogram analysis on CT was performed using
the same method on MRI. (c,d) Perfusion analysis on CT: Two ROIs (ROI1: entire tumor and ROI2:
hot spot) were manually delineated and four perfusion parameters from each ROI were obtained,
perfusion, peak enhancement intensity (PEI), time to peak (TTP), and blood volume (BV).

2.4. Histological Evaluation

The histological reports were reviewed in order to evaluate the status of prognostic fac-
tors and molecular subtypes. After the CT and MRI examinations, surgery was performed
in 129 (88%) patients, neoadjuvant chemotherapy plus surgery was performed in 11 (7%)
patients, and chemotherapy was performed in 7 (5%) patients. Thus, histological findings
were obtained from 129 surgical and 18 tissue biopsy specimens. We evaluated the status
of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor
receptor 2 (HER2), Ki67, grade, and subtype, and dichotomized their results for statistical
analysis, i.e., ER, PR, HER2, and Ki67 status were divided into positive or negative. The
Allred scoring system defined ER and PR positivity as a score of 3 or greater [23]. HER2
positivity was defined when the tumor had 2+ for immunohistochemical staining plus
HER2 gene amplification in silver-stained in situ hybridization or 3+ immunohistochemical
staining [24]. Ki67 positivity was defined when the expression was greater than 20% [25].
The grade was divided into low (1 or 2) and high (3) [26,27]. Molecular subtypes were
divided into luminal A (ER and/or PR positive, HER2 negative, and Ki67 negative), luminal
B (ER and/or PR positive and HER2 positive; or ER and/or PR positive, HER2 negative,
and Ki67 positive), HER2-enriched (ER negative, PR negative, and HER2 positive), and
triple-negative cancer (ER negative, PR negative, and HER2 negative) [28].

2.5. Statistical Analysis

The Mann–Whitney U-test or t-test was used to compare the associations between
MRI and CT imaging phenotype and dichotomized histologic biomarker groups such as
ER, PR, HER2, Ki67, and grade. To evaluate the association between imaging features
and molecular subgroups, the Kruskal–Wallis test and analysis of variance followed by
a post hoc test were used to identify the different subgroups. A p-value < 0.003 (0.05/18)
for MRI histogram parameters, a p-value < 0.003 (0.05/16) for MRI perfusion parameters,
a p-value < 0.004 (0.05/12) for CT histogram parameters, and a p-value < 0.006 (0.05/8)
for CT perfusion parameters were used to decide significance. For multiple comparisons,
p-values were adjusted using the Bonferroni correction.
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PFS was defined from the date of histologic diagnosis until the date of the first observa-
tion of documented disease relapse, progression, or death. For patients without progression,
PFS was defined as the date of the last follow-up [29]. Disease progression was defined as
locoregional recurrence, new primary contralateral breast cancer, and distant metastasis
after treatment completion, except for patients with distant metastases or contralateral
breast cancer at diagnosis [30]. We confirmed locoregional recurrence by tissue biopsy and
metastasis by either tissue biopsy or imaging studies [30,31]. The Kaplan–Meier analysis
was performed to estimate PFS, and the results were compared using the log-rank test.
Statistical analyses were performed using IBM SPSS Statistics (version 25.0, IBM Corp.,
Armonk, NY, USA) and Python 3.52 in December 2022.

3. Results
3.1. Associations between MRI and Histological Biomarkers

The associations between MRI histogram parameters and histological findings are
shown in Table 2 and Figure 4a. Entropy on PostcontrastT1 was significantly associated
with all histological factors, namely subtype, ER, PR, HER2, Ki67, and grade (p < 0.003).
Entropy on the T2 image was significantly correlated with all histological biomarkers except
for Ki67 (p < 0.003). Entropy on Postcontrast T1 and T2 was higher in cancers with poor
prognostic factors such as ER negativity, PR negativity, HER2 positivity, Ki67 positivity,
high grade, and nonluminal subtypes including HER2-enriched and triple-negative cancers
(Table 3). The mean value, standard deviation, and mean of positive pixels on T2 were
significantly correlated with the status of subtype, ER, PR, Ki67, or grade (p < 0.003).
Entropy on PrecontrastT1 were correlated with the status of HER2 (p < 0.003).

Table 2. p values for association between MRI histogram features and histological biomarkers.

Histogram Feature Subtype ER PR HER2 Ki67 Grade

Mean on T2 0.001 0.001 0.003 0.012 <0.001 0.001
Standard deviation on T2 0.009 0.001 0.001 0.060 0.032 0.002

Mean of positive pixels on T2 0.001 0.001 0.003 0.012 <0.001 0.001
Entropy on T2 <0.001 <0.001 <0.001 0.002 0.004 <0.001
Kurtosis on T2 0.039 0.063 0.050 0.023 0.043 0.198

Skewness on T2 0.138 0.107 0.152 0.008 0.285 0.196
Mean on PrecontrastT1 0.019 0.031 0.016 0.950 0.026 0.561
Standard deviation on

PrecontrastT1 0.020 0.173 0.301 0.692 0.012 0.156

Mean of positive pixels on
PrecontrastT1 0.019 0.031 0.016 0.950 0.026 0.561

Entropy on PrecontrastT1 0.069 0.073 0.052 0.001 0.323 0.061
Kurtosis on PrecontrastT1 0.127 0.196 0.155 0.054 0.028 0.021

Skewness on PrecontrastT1 0.853 0.275 0.377 0.123 0.946 0.770
Mean on PostcontrastT1 0.326 0.692 0.174 0.880 0.348 0.044
Standard deviation on

PostcontrastT1 0.592 0.977 0.548 0.981 0.432 0.101

Mean of positive pixels on
PostcontrastT1 0.442 0.692 0.174 0.880 0.348 0.044

Entropy on PostcontrastT1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Kurtosis on PrecontrastT1 0.598 0.523 0.514 0.714 0.683 0.801

Skewness on PostcontrastT1 0.824 0.502 0.266 0.740 0.598 0.702
ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2; T2:
T2-weighted images; PrecontrastT1: T1-weighted images before contrast media injection; and PostcontrastT1:
T1-weighted images obtained in the first phase after contrast injection. A p value < 0.003 (0.05/18 parameters)
was considered statistically significant.
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Figure 4. Manhattan plots representing the association between MRI or CT parameters and histologi-
cal biomarkers. A p value < 0.003 (0.05/18 parameters) for MRI histogram features, a p value < 0.003
(0.05/16 parameters) for MRI perfusion features, a p value of < 0.004 (0.05/12 parameters) for CT
histogram features, and a p value < 0.006 (0.05/8 parameters) for CT perfusion features were used
to decide significance using Bonferroni correction for multiple comparisons. A blue line represents
p < 0.05, and red line represents corrected p values after Bonferroni correction for each imaging
analysis. (a) Histogram analysis on MRI: Histogram parameters were significantly associated with all
histological findings, such as molecular subtype, expression of estrogen receptor (ER), progesterone
receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki67, and grade (p < 0.003).
(b) Perfusion analysis on MRI: Perfusion parameters were significantly correlated with the status
of subtype, ER, PR, and Ki67 (p < 0.003). (c) Histogram analysis on CT: Histogram parameters
were significantly associated with all histological biomarkers except for Ki67 expression (p < 0.004).
(d) Perfusion analysis on CT: Perfusion parameters were significantly correlated with all histological
findings (p < 0.006).
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Table 3. MRI and CT entropy values according to histological biomarker status.

Histological
Biomarker PostcontrastT1 MRI T2 MRI Postcontrast CT (HU)

Molecular subtype
Luminal A 4.667 ± 0.491 4.775 ± 0.506 4.491 ± 0.337
Luminal B 4.996 ± 0.535 4.996 ± 0.455 4.577 ± 0.276

HER2-enriched 5.303 ± 0.384 5.327 ± 0.511 4.803 ± 0.212
Triple-negative 5.012 ± 0.347 5.069 ± 0.549 4.705 ± 0.218

ER
Negative 5.133 ± 0.424 5.156 ± 0.577 4.734 ± 0.234
Positive 4.774 ± 0.516 4.853 ± 0.479 4.519 ± 0.316

PR
Negative 5.092 ± 0.395 5.165 ± 0.537 4.734 ± 0.214
Positive 4.787 ± 0.540 4.842 ± 0.495 4.515 ± 0.323
HER2

Negative 4.811 ± 0.505 4.887 ± 0.517 4.551 ± 0.312
Positive 5.300 ± 0.343 5.284 ± 0.477 4.788 ± 0.194

Ki67
Negative 4.717 ± 0.509 4.829 ± 0.519 4.522 ± 0.348
Positive 5.063 ± 0.462 5.072 ± 0.517 4.656 ± 0.248

Tumor grade
Low 4.763 ± 0.517 4.851 ± 0.511 4.542 ± 0.336
High 5.132 ± 0.418 5.141 ± 0.518 4.679 ± 0.225

HER2: human epidermal growth factor receptor 2; PostcontrastT1: T1-weighted images obtained in the first phase
after contrast injection; T2: T2-weighted images; HU: Hounsfield unit.

The associations between MRI perfusion parameters and histological factors are
shown in Table 4 and Figure 4b. The median and mean Ve of the entire tumor were
significantly correlated with the status of the subtype, ER, PR, or Ki67 (p < 0.003). The
other tumor and hot spot perfusion parameters were not significantly correlated with any
histological biomarkers.

Table 4. p values for the association between MRI perfusion features and histological biomarkers.

Perfusion Feature Subtype ER PR HER2 Ki67 Grade

Median Ktrans of entire tumor 0.145 0.264 0.089 0.942 0.173 0.969
Median kep of entire tumor 0.364 0.227 0.675 0.208 0.092 0.488
Median Ve of entire tumor <0.001 0.005 0.002 0.055 0.002 0.360

Median iAUC of entire tumor 0.412 0.361 0.343 0.131 0.385 0.804
Mean Ktrans of entire tumor 0.074 0.117 0.061 0.883 0.187 0.219

Mean kep of entire tumor 0.789 0.484 0.731 0.365 0.610 0.784
Mean Ve of entire tumor <0.001 0.002 0.001 0.030 0.003 0.187

Mean iAUC of entire tumor 0.204 0.209 0.225 0.046 0.218 0.605
Median Ktrans of hot spot 0.573 0.924 0.635 0.836 0.212 0.291

Median kep of hot spot 0.629 0.768 0.940 0.803 0.845 0.346
Median Ve of hot spot 0.200 0.302 0.290 0.798 0.059 0.740

Median iAUC of hot spot 0.837 0.846 0.906 0.912 0.416 0.497
Mean Ktrans of hot spot 0.353 0.444 0.422 0.863 0.090 0.146

Mean kep of hot spot 0.661 0.918 0.976 0.896 0.498 0.227
Mean Ve of hot spot 0.131 0.205 0.195 0.560 0.093 0.936

Mean iAUC of hot spot 0.763 0.798 0.674 0.912 0.329 0.660
ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2; Ktrans: the
constant representing the transfer of contrast medium from blood plasma to the extracellular extravascular space
per minute; kep: the rate constant representing the transfer of contrast medium from the extracellular extravascular
space into blood plasma per minute; Ve: the extracellular extravascular space per unit volume of tissue; iAUC:
the initial area under the contrast concentration–time curve. A hot spot within the tumor was selected as an area
of high perfusion on the Ktrans-based perfusion map. A p value < 0.003 (0.05/16 parameters) was considered
statistically significant.
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3.2. Associations between CT and Histological Biomarkers

The entropy values on postcontrast CT were higher in cancers with poor prognostic
factors such as ER negativity, PR negativity, HER2 positivity, Ki67 positivity, high grade,
and nonluminal subtypes, including HER2-enriched and triple-negative cancers (Table 3).
These differences were statistically significant according to the status of subtype, ER, PR, and
HER2 (p < 0.004). The associations between CT histogram features and histological factors
are shown in Table 5 and Figure 3c. Other histogram parameters on postcontrast images did
not show any correlations with histological biomarkers. On precontrast CT images, entropy,
mean, and skewness correlated with the status of ER, PR, or grade (p < 0.004).

Table 5. p values for the association between CT histogram features and histological biomarkers.

Histogram Feature Subtype ER PR HER2 Ki67 Grade

Mean on precontrast CT 0.092 0.498 1.000 0.039 0.018 0.002
Standard deviation on

precontrast CT 0.015 0.611 0.237 0.322 0.068 0.252

Mean of positive pixels on
precontrast CT 0.541 0.477 0.806 0.060 0.163 0.002

Entropy on precontrast CT 0.007 0.002 <0.001 0.025 0.127 0.033
Kurtosis on precontrast CT 0.133 0.058 0.130 0.141 0.047 0.014

Skewness on precontrast CT 0.347 0.090 0.221 0.194 0.247 0.259
Mean on postcontrast CT 0.087 0.175 0.663 0.037 0.014 0.021

Standard deviation on
postcontrast CT 0.199 0.721 0.585 0.492 0.153 0.473

Mean of positive pixels on
postcontrast CT 0.226 0.218 0.832 0.080 0.042 0.041

Entropy on postcontrast CT <0.001 <0.001 <0.001 <0.001 0.005 0.006
Kurtosis on postcontrast CT 0.203 0.082 0.426 0.801 0.118 0.092

Skewness on postcontrast CT 0.196 0.074 0.390 0.724 0.467 0.089
ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2.
A p value < 0.004 (0.05/12 parameters) was considered statistically significant.

The associations between CT perfusion features and histological biomarkers are shown
in Table 6 and Figure 3d. The perfusion of hot spots was associated with all histological
factors (p < 0.006). The peak enhancement intensity, the time to peak, and the blood
volume obtained from hot spots were correlated with subtype, ER, PR, Ki67, or grade.
The perfusion and the blood volume measured from the entire tumor were significantly
associated with subtype, ER status, Ki67 status, or grade (p < 0.006). The time to peak and
the peak enhancement intensity of the entire tumor did not show any correlations with
histological biomarkers.

Table 6. p values for the association between CT perfusion features and histological biomarkers.

Perfusion Feature Subtype ER PR HER2 Ki67 Grade

Perfusion of entire tumor 0.023 0.004 0.189 0.183 0.018 0.002
Peak enhancement intensity

of entire tumor 0.062 0.090 0.442 0.212 0.007 0.070

Time to peak of entire tumor 0.088 0.007 0.112 0.127 0.340 0.009
Blood volume of entire tumor 0.001 0.189 0.407 0.690 <0.001 0.005

Perfusion of hot spot <0.001 <0.001 <0.001 0.004 <0.001 <0.001
Peak enhancement intensity

of hot spot 0.002 0.002 0.047 0.023 <0.001 <0.001

Time to peak of hot spot <0.001 <0.001 0.002 0.006 0.013 0.007
Blood volume of hot spot <0.001 0.157 0.408 0.287 0.001 0.002

ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2.
A p value < 0.006 (0.05/8 parameters) was considered statistically significant.
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3.3. Progression-Free Survival

The median follow-up time was 57 months (range, 0–67 months). Events occurred in
23 patients out of a total of 147 patients: five deaths, nine locoregional recurrences, seven
new distant metastases, one disease progression, and one new contralateral breast cancer.
For survival analysis, the collected CT and MRI histogram and perfusion parameter data
were dichotomized based on the median value and were evaluated with the Kaplan–
Meier curve. Among the CT histogram and perfusion parameters, the high-entropy group
(>4.62 HU) on postcontrast CT images showed decreased PFS compared with the low-
entropy group (≤4.62 HU) on postcontrast CT images (p = 0.053) (Figure 5a). In the
subgroup analysis, in Ki67-positive patients, the group with high-postcontrast CT entropy
(>5.10 HU) showed a statistically significant decrease in PFS compared with the group
with low postcontrast CT entropy (≤5.10 HU) (p = 0.046; Figure 5b). Furthermore, the
high-postcontrast CT entropy group (>5.05 HU) showed a reduced PFS in the younger
age group (age < 50 years), but this difference was not statistically significant (≤5.05 HU;
p = 0.065; Figure 5c). Other factors such as the status of ER, PR, and HER2 (positive
vs negative), tumor grade (1, 2 vs 3), and subtype (luminal vs nonluminal) showed no
difference in PFS between the subgroups. Among MRI histogram and perfusion parameters,
the high-entropy group (>4.95) on postcontrast T1-weighted MRI showed a decrease in
PFS compared with the low-entropy group (≤4.95), but this was not statistically significant
(p = 0.301; Figure 5d).
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of histogram parameters on CT and MRI. For survival analysis, the collected CT and MRI histogram
parameter data were dichotomized based on median value. (a) Entropy on postcontrast CT: High
entropy group (>4.62 Hounsfield unit [HU]) on postcontrast CT images showed decreased PFS
compared to the low entropy group (≤4.62 HU) on postcontrast CT images (p = 0.053). (b) Entropy
on postcontrast CT in Ki67-positive group: In the subgroup analysis, in Ki67-positive patients, the
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group with high postcontrast CT entropy (>5.10 HU) showed a statistically significant decrease in
PFS compared to the group with low postcontrast CT entropy (≤5.10 HU) (p = 0.046). (c) Entropy
on postcontrast CT in the younger age group, less than 50 years: In the subgroup analysis, the
high postcontrast CT entropy group (>5.06 HU) showed a reduced PFS in the younger age group
(age <50 years), but this was not statistically significant (≤5.05 HU) (p = 0.065). (d) Entropy on
postcontrast T1-weighted MRI: The high entropy group (>4.95) on postcontrast T1-weighted MRI
showed a decrease in PFS compared to the low entropy group (≤4.95), but this was not statistically
significant (p = 0.301).

4. Discussion

Our study showed that noninvasive quantification of tumor heterogeneity and vas-
cularity are associated with histological prognostic factors, namely, molecular subtype,
ER, PR, HER2, Ki67, and grade, and MRI and CT of invasive breast cancer. Of the MRI
parameters, the entropy on PostcontrastT1 was significantly correlated with all prognostic
biomarkers, and the subtype and entropy on T2 were associated with all biomarkers except
for Ki67. Of the CT parameters, the perfusion of hot spots correlated with all prognostic
factors and subtypes, and the entropy on postcontrast images was associated with subtypes,
ER, PR, and HER2. Notably, the entropy on postcontrast CT images was related to survival
outcome, and the group with high-postcontrast CT entropy showed a significant decrease
in PFS in the Ki67-positive group.

Based on our study, entropy was the most valuable quantitative imaging parameter
for the prediction of prognostic biomarkers in patients with invasive breast cancer on
MRI and CT. Entropy shows the randomness of the gray-level distribution of a histogram
in a given ROI [32]. Our results are consistent with previous studies. Since entropy is
higher in malignant breast lesions than in benign lesions, it is useful for differentiating
benign breast lesions from malignant ones [33,34]. In breast cancers, entropy was signifi-
cantly different according to the subtypes and prognostic histological factors and increased
in aggressive cancers [18,35]. In addition, we demonstrated in this study that the en-
tropy of postcontrast CT was related to PFS. In the subgroup analysis, the high-entropy
group on postcontrast CT had a negative effect on PFS in the Ki67-positive group and
the younger age group (under 50 years of age). It is already known that Ki67 positivity
and young age are indicators of poor prognosis and poor response to treatment in breast
cancer [36–41]. This finding could imply that entropy on CT images after contrast injection
could be promising as an imaging biomarker in precision medicine and useful for treatment
planning and posttreatment surveillance monitoring of high-risk breast cancer patients.
Chamming’s et al. [8] reported that kurtosis of histogram parameters on MRI was related
to ER and tumor grade, and kurtosis in particular showed good performance in identifying
triple-negative cancer. The authors also demonstrated that kurtosis on contrast-enhanced
T1-weighed MRI is an important histogram feature to predict complete pathological re-
sponse to neoadjuvant chemotherapy in breast cancer. However, in this study, kurtosis was
not related to histological prognostic biomarkers and subtypes.

Considering the perfusion parameters, the perfusion value of the hot spot on CT
shows correlations with all histological factors, and the Ve of the entire tumor on MRI was
associated with subtype, ER, PR, and Ki67. Perfusion on CT measures blood flow through
the vasculature in a defined tumor volume [13,42,43]. Tumor angiogenesis refers to the
formation of new vessels, the development of arteriovenous shunts, and hyperpermeability,
which increases the volume and rate of blood flow. Therefore, increased perfusion value on
CT could be associated with increased angiogenesis and aggressive tumor. Perfusion CT
for oncology is valuable for staging, predicting prognosis, and evaluating tumor response
to chemo- or radiation therapy. However, the analysis of perfusion CT has not been
standardized in various organs [44]. In the breast, perfusion (blood flow) and blood volume
are significantly correlated with microvessel density in the tumor area in murine breast
cancer in rats. These parameters were associated with prognostic histological factors in
human studies [13,16,45]. In this study, we quantified perfusion, blood volume, time to
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peak, and peak enhancement intensity. These were associated with various prognostic
biomarkers, and the results were consistent with previous perfusion CT studies [13,16]. Ve
on MRI measures the volume fraction of extracellular extravascular space per unit of tissue
volume. Thus, Ve is associated with tumor cellularity and viable tumor portions. Ve has
been shown to decrease in breast cancers with ER negativity and Ki67 positivity in previous
studies, and our results were consistent with previous MRI perfusion studies [22,46,47].
In addition, Nagasaka et al. [46] reported that the variation in Ve was greater in cancers
with ER negativity and Ki67 positivity compared to cancers with ER positivity and Ki67
negativity on histogram analysis of quantitative perfusion MRI parameters. Therefore,
both Ve value and variation in Ve within tumors may be associated with poor prognostic
factors in breast cancer. Except for Ve, other MRI perfusion parameters—Ktrans, Kep, and
iAUC—were not associated with prognostic biomarkers in this study, so the number of
points showing statistically significant correlations with histological biomarkers was low
in the Manhattan plot of MRI perfusion when compared to the plots of MRI histogram,
CT histogram, and CT perfusion. Quantitative perfusion parameters on CT and MRI were
found to be associated with histological prognostic factors in breast cancer but were not
associated with PFS in this study.

This study suggests three advances in quantifying medical imaging in breast cancer.
First, in a prospective cohort, we compared the associations of prognostic biomarkers and
quantitative histogram and perfusion parameters between CT and MRI in patients who
underwent both imaging modalities concomitantly. Few comparative studies between
CT and MRI have used quantitative imaging features of breast cancer to evaluate their
association with prognostic factors or survival outcomes. CT has advantages in terms of
oncology imaging and quantifying medical images of breast cancer. CT can evaluate the
lungs, bony thorax, mediastinum, lymph nodes, and breast. It consumes much less energy
than MRI [48] and provides absolute pixel intensity values and Hounsfield units. Second,
commercial software was used to quantify breast cancer heterogeneity and vascularity
in this study, and the results may be applied to multicenter studies. Third, we used a
low-dose perfusion CT protocol. The effective dose ranged from 1.30 mSv to 1.40 mSv
for each patient. The average effective dose for acceptable low-dose chest CT screening is
approximately 2 mSv, which is very low compared to a standard-dose chest CT [49]. Given
that the average annual effective dose from natural background radiation in the United
States is about 3 mSv [50,51], our CT protocol used very low radiation doses.

Despite our best efforts, our study has several limitations. First, this prospective study
was conducted with only a small number of patients in a single institution. Further efforts
are needed to include different patient cohorts from several institutions and evaluate the
clinical utility of these results. Second, low-dose CT was performed using a perfusion
protocol, and CT scans were taken over a 4 cm range along the z-axis. Therefore, this
approach could not cover the full extent of large tumors. Instead, we examined the center of
large cancers measuring >40 mm. In the near future, advances in CT technology will allow
the perfusion scan range to be extended while maintaining low radiation doses. Third,
image standardization or non-uniform artifact correction before histogram analysis can
improve reliability and reproducibility [32,52]. We did not perform image standardization
or non-uniform correction before histogram analysis in this single-center preliminary study.
However, a previous study showed that the use of commercial software (TexRAD) for
histogram analysis in this study shows excellent inter- and intra-reader agreement for
segmentation and Pearson correlation between each software pair [53]. Many studies used
the same histogram analysis software in breast cancer and other body cancers, and these
studies show correlations with prognostic factors or treatment responses [8,18,54]. For
widespread clinical implementation of histogram analysis, standardization of segmentation,
preprocessing and postprocessing of MRI and CT images are required. We will conduct
further studies using image normalization and preprocessing for image uniformity in a
large population to validate the results and evaluate clinical applications. Fourth, the
histogram analysis software we used analyzes two-dimensional images, so the data may
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not fully reflect the textural features of the entire tumor in three dimensions. However,
Lubner et al. [55] demonstrated that the histogram analysis results of two-dimensional and
three-dimensional images are similar. Fifth, segmentation reproducibility was not assessed
in this study. We manually drew ROIs to quantify perfusion and histogram characteristics
based on the consensus of two experienced radiologists. Generalizing our findings in the
near future will require automatic lesion segmentation and inter-observer variability.

5. Conclusions

In this prospective study, we found that data quantifying tumor heterogeneity and
vascularity in invasive breast cancers using histogram and perfusion analysis algorithms
correlated with molecular subtypes and histological prognostic biomarkers in MRI and
CT images. Notably, high entropy (the randomness of the gray-level distribution) on
postcontrast CT was associated with PFS in breast cancer, and high entropy on postcontrast
CT images negatively affected PFS in the Ki67-positive group. Therefore, low-dose CT
histogram and perfusion analysis were comparable to MRI. The entropy on postcontrast
CT could be a feasible imaging parameter for the prediction of survival outcomes in breast
cancer patients. However, since this prospective study was conducted with a small number
of patients from a single institution, further studies with larger populations from diverse
institutions are needed to verify our results and evaluate their usefulness in clinical practice.
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CT computed tomography
MRI magnetic resonance imaging
PFS progression-free survival
ROI region of interest
T2 T2-weighted images
PrecontrastT1 T1-weighted images before contrast media injection
PostcontrastT1 T1-weighted images obtained in the first phase after contrast injection
Ktrans the constant for the transfer of the contrast medium
kep the rate constant of the contrast medium
Ve the extracellular extravascular space
iAUC the initial area under the contrast concentration–time curve
HU Hounsfield units
ER estrogen receptor
PR progesterone receptor
HER2 human epidermal growth factor receptor 2



Bioengineering 2023, 10, 504 16 of 18

References
1. Davnall, F.; Yip, C.S.P.; Ljungqvist, G.; Selmi, M.; Ng, F.; Sanghera, B.; Ganeshan, B.; Miles, K.A.; Cook, G.J.; Goh, V. Assessment of

tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 2012, 3, 573–589. [CrossRef] [PubMed]
2. Just, N. Improving tumour heterogeneity MRI assessment with histograms. Br. J. Cancer 2014, 111, 2205–2213. [CrossRef]
3. Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [CrossRef]
4. Madu, C.O.; Wang, S.; Madu, C.O.; Lu, Y. Angiogenesis in Breast Cancer Progression, Diagnosis, and Treatment. J. Cancer 2020,

11, 4474–4494. [CrossRef]
5. Cho, N.; Im, S.-A.; Park, I.-A.; Lee, K.-H.; Li, M.; Han, W.; Noh, D.-Y.; Moon, W.K. Breast Cancer: Early Prediction of Response

to Neoadjuvant Chemotherapy Using Parametric Response Maps for MR Imaging. Radiology 2014, 272, 385–396. [CrossRef]
[PubMed]

6. Ashraf, A.B.; Daye, D.; Gavenonis, S.; Mies, C.; Feldman, M.; Rosen, M.; Kontos, D. Identification of Intrinsic Imaging Phenotypes
for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles. Radiology 2014, 272, 374–384. [CrossRef]
[PubMed]

7. Agner, S.C.; Rosen, M.A.; Englander, S.; Tomaszewski, J.E.; Feldman, M.D.; Zhang, P.; Mies, C.; Schnall, M.D.; Madabhushi, A.
Computerized Image Analysis for Identifying Triple-Negative Breast Cancers and Differentiating Them from Other Molecular
Subtypes of Breast Cancer on Dynamic Contrast-enhanced MR Images: A Feasibility Study. Radiology 2014, 272, 91–99. [CrossRef]

8. Chamming’s, F.; Ueno, Y.; Ferré, R.; Kao, E.; Jannot, A.-S.; Chong, J.; Omeroglu, A.; Mesurolle, B.; Reinhold, C.; Gallix, B.; et al.
Features from Computerized Texture Analysis of Breast Cancers at Pretreatment MR Imaging Are Associated with Response to
Neoadjuvant Chemotherapy. Radiology 2018, 286, 412–420. [CrossRef]

9. García-Figueiras, R.; Goh, V.J.; Padhani, A.R.; Baleato-González, S.; Garrido, M.; León, L.; Gómez-Caamaño, A. CT Perfusion in
Oncologic Imaging: A Useful Tool? AJR Am. J. Roentgenol. 2013, 200, 8–19. [CrossRef]

10. Song, S.E.; Seo, B.K.; Cho, K.R.; Woo, O.H.; Ganeshan, B.; Kim, E.S.; Cha, J. Prediction of Inflammatory Breast Cancer Survival
Outcomes Using Computed Tomography-Based Texture Analysis. Front. Bioeng. Biotechnol. 2021, 9, 695305. [CrossRef]

11. Yi, A.; Seo, B.K.; Cho, P.K.; Pisano, E.D.; Lee, K.Y.; Je, B.K.; Kim, H.-Y.; Min, B.W.; Son, G.S. Optimal Multidetector Row CT
Parameters for Evaluations of the Breast: A Phantom and Specimen Study. Acad. Radiol. 2010, 17, 744–751. [CrossRef]

12. Hurwitz, L.M.; Yoshizumi, T.T.; Reiman, R.E.; Paulson, E.K.; Frush, D.P.; Nguyen, G.T.; Toncheva, G.I.; Goodman, P.C. Radiation
Dose to the Female Breast from 16-MDCT Body Protocols. AJR Am. J. Roentgenol. 2006, 186, 1718–1722. [CrossRef]

13. Park, E.K.; Seo, B.K.; Kwon, M.; Cho, K.R.; Woo, O.H.; Song, S.E.; Cha, J.; Lee, H.Y. Low-Dose Perfusion Computed Tomography
for Breast Cancer to Quantify Tumor Vascularity: Correlation with Prognostic Biomarkers. Investig. Radiol. 2019, 54, 273–281.
[CrossRef]

14. Park, H.-S.; Lee, K.-S.; Seo, B.-K.; Kim, E.-S.; Cho, K.-R.; Woo, O.-H.; Song, S.-E.; Lee, J.-Y.; Cha, J. Machine Learning Models
That Integrate Tumor Texture and Perfusion Characteristics Using Low-Dose Breast Computed Tomography Are Promising for
Predicting Histological Biomarkers and Treatment Failure in Breast Cancer Patients. Cancers 2021, 13, 6013. [CrossRef] [PubMed]

15. Sun, Z.-Q.; Hu, S.-D.; Shao, L.; Jin, L.-F.; Lv, Q.; Li, Y.-S.; Yan, G. A pilot study of low-dose CT perfusion imaging (LDCTPI)
technology in patients with triple-negative breast cancer. J. X-ray Sci. Technol. 2019, 27, 443–451. [CrossRef] [PubMed]

16. Park, E.K.; Lee, K.-S.; Seo, B.K.; Cho, K.R.; Woo, O.H.; Son, G.S.; Lee, H.Y.; Chang, Y.W. Machine Learning Approaches to
Radiogenomics of Breast Cancer using Low-Dose Perfusion Computed Tomography: Predicting Prognostic Biomarkers and
Molecular Subtypes. Sci. Rep. 2019, 9, 17847. [CrossRef] [PubMed]

17. Dhillon, G.S.; Bell, N.; Ginat, D.T.; Levit, A.; Destounis, S.; O’Connell, A. Breast MR Imaging: What the Radiologist Needs to
Know. J. Clin. Imaging Sci. 2011, 1, 48. [CrossRef]

18. Lee, J.Y.; Lee, K.-S.; Seo, B.K.; Cho, K.R.; Woo, O.H.; Song, S.E.; Kim, E.-K.; Lee, H.Y.; Kim, J.S.; Cha, J. Radiomic machine learning
for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis
properties on MRI. Eur. Radiol. 2022, 32, 650–660. [CrossRef]

19. Yeo, D.-M.; Oh, S.N.; Jung, C.-K.; Lee, M.A.; Oh, S.T.; Rha, S.E.; Jung, S.E.; Byun, J.Y.; Gall, P.; Son, Y. Correlation of dynamic
contrast-enhanced MRI perfusion parameters with angiogenesis and biologic aggressiveness of rectal cancer: Preliminary results.
J. Magn. Reson. Imaging 2013, 41, 474–480. [CrossRef]

20. Tofts, P. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J. Magn. Reson. Imaging 1997, 7, 91–101. [CrossRef]
21. Liu, F.; Wang, M.; Li, H. Role of perfusion parameters on DCE-MRI and ADC values on DWMRI for invasive ductal carcinoma at

3.0 Tesla. World J. Surg. Oncol. 2018, 16, 239. [CrossRef]
22. Koo, H.R.; Cho, N.; Song, I.C.; Kim, H.; Chang, J.M.; Yi, A.; Yun, B.L.; Moon, W.K. Correlation of perfusion parameters on

dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers. J. Magn. Reson. Imaging 2012, 36, 145–151.
[CrossRef] [PubMed]

23. Hammond, M.E.H.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein,
N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations
for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer. J. Clin. Oncol. 2010, 28, 2784–2795.
[CrossRef] [PubMed]

https://doi.org/10.1007/s13244-012-0196-6
https://www.ncbi.nlm.nih.gov/pubmed/23093486
https://doi.org/10.1038/bjc.2014.512
https://doi.org/10.1038/35025220
https://doi.org/10.7150/jca.44313
https://doi.org/10.1148/radiol.14131332
https://www.ncbi.nlm.nih.gov/pubmed/24738612
https://doi.org/10.1148/radiol.14131375
https://www.ncbi.nlm.nih.gov/pubmed/24702725
https://doi.org/10.1148/radiol.14121031
https://doi.org/10.1148/radiol.2017170143
https://doi.org/10.2214/AJR.11.8476
https://doi.org/10.3389/fbioe.2021.695305
https://doi.org/10.1016/j.acra.2010.02.008
https://doi.org/10.2214/AJR.04.1917
https://doi.org/10.1097/RLI.0000000000000538
https://doi.org/10.3390/cancers13236013
https://www.ncbi.nlm.nih.gov/pubmed/34885124
https://doi.org/10.3233/XST-180465
https://www.ncbi.nlm.nih.gov/pubmed/30856155
https://doi.org/10.1038/s41598-019-54371-z
https://www.ncbi.nlm.nih.gov/pubmed/31780739
https://doi.org/10.4103/2156-7514.85655
https://doi.org/10.1007/s00330-021-08146-8
https://doi.org/10.1002/jmri.24541
https://doi.org/10.1002/jmri.1880070113
https://doi.org/10.1186/s12957-018-1538-8
https://doi.org/10.1002/jmri.23635
https://www.ncbi.nlm.nih.gov/pubmed/22392859
https://doi.org/10.1200/JCO.2009.25.6529
https://www.ncbi.nlm.nih.gov/pubmed/20404251


Bioengineering 2023, 10, 504 17 of 18

24. Wolff, A.C.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.; Bilous, M.;
Fitzgibbons, P.; et al. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American
Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. Arch. Pathol. Lab. Med. 2014,
138, 241–256. [CrossRef] [PubMed]

25. Bustreo, S.; Osella-Abate, S.; Cassoni, P.; Donadio, M.; Airoldi, M.; Pedani, F.; Papotti, M.; Sapino, A.; Castellano, I. Optimal Ki67
cut-off for luminal breast cancer prognostic evaluation: A large case series study with a long-term follow-up. Breast Cancer Res.
Treat. 2016, 157, 363–371. [CrossRef] [PubMed]

26. Rakha, E.A.; El-Sayed, M.E.; Lee, A.H.S.; Elston, C.W.; Grainge, M.J.; Hodi, Z.; Blamey, R.W.; Ellis, I.O. Prognostic Significance of
Nottingham Histologic Grade in Invasive Breast Carcinoma. J. Clin. Oncol. 2008, 26, 3153–3158. [CrossRef]

27. Genestie, C.; Zafrani, B.; Asselain, B.; Fourquet, A.; Rozan, S.; Validire, P.; Vincent-Salomon, A.; Sastre-Garau, X. Comparison of
the prognostic value of Scarff-Bloom-Richardson and Nottingham histological grades in a series of 825 cases of breast cancer:
Major importance of the mitotic count as a component of both grading systems. Anticancer Res. 1998, 18, 571–576.

28. Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.-J. Personalizing the treatment
of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early
Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [CrossRef]

29. Park, H.; Lim, Y.; Ko, E.S.; Cho, H.-H.; Lee, J.E.; Han, B.-K.; Ko, E.Y.; Choi, J.S.; Park, K.W. Radiomics Signature on Magnetic
Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer. Clin. Cancer Res. 2018, 24,
4705–4714. [CrossRef]

30. Nielsen, H.M.; Overgaard, M.; Grau, C.; Jensen, A.R.; Overgaard, J. Study of Failure Pattern among High-Risk Breast Cancer
Patients with or without Postmastectomy Radiotherapy in Addition to Adjuvant Systemic Therapy: Long-Term Results from the
Danish Breast Cancer Cooperative Group DBCG 82 b and c Randomized Studies. J. Clin. Oncol. 2006, 24, 2268–2275. [CrossRef]

31. Kim, J.Y.; Kim, J.J.; Hwangbo, L.; Suh, H.B.; Kim, S.; Choo, K.S.; Nam, K.J.; Kang, T. Kinetic Heterogeneity of Breast Cancer
Determined Using Computer-aided Diagnosis of Preoperative MRI Scans: Relationship to Distant Metastasis-Free Survival.
Radiology 2020, 295, 517–526. [CrossRef]

32. Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic
Correlates, and Challenges. Radiographics 2017, 37, 1483–1503. [CrossRef]

33. Gibbs, P.; Turnbull, L.W. Textural analysis of contrast-enhanced MR images of the breast. Magn. Reson. Med. 2003, 50, 92–98.
[CrossRef]

34. Karahaliou, A.; Vassiou, K.; Arikidis, N.S.; Skiadopoulos, S.; Kanavou, T.; Costaridou, L. Assessing heterogeneity of lesion
enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis. Br. J. Radiol. 2010, 83, 296–309. [CrossRef]
[PubMed]

35. Li, H.; Zhu, Y.; Burnside, E.S.; Huang, E.; Drukker, K.; Hoadley, K.A.; Fan, C.; Conzen, S.D.; Zuley, M.; Net, J.M.; et al. Quantitative
MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast
Cancer 2016, 2, 16012. [CrossRef] [PubMed]

36. Kontzoglou, K.; Palla, V.; Karaolanis, G.; Karaiskos, I.; Alexiou, I.; Pateras, I.; Konstantoudakis, K.; Stamatakos, M. Correlation
between Ki67 and Breast Cancer Prognosis. Oncology 2013, 84, 219–225. [CrossRef] [PubMed]

37. Fasching, P.A.; Heusinger, K.; Haeberle, L.; Niklos, M.; Hein, A.; Bayer, C.M.; Rauh, C.; Schulz-Wendtland, R.; Bani, M.R.;
Schrauder, M.; et al. Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC
Cancer 2011, 11, 486. [CrossRef]

38. de Azambuja, E.; Cardoso, F.; De Castro, G.; Colozza, M.; Mano, M.S.; Durbecq, V.; Sotiriou, C.; Larsimont, D.; Piccart-Gebhart,
M.; Paesmans, M. Ki-67 as prognostic marker in early breast cancer: A meta-analysis of published studies involving 12,155
patients. Br. J. Cancer 2007, 96, 1504–1513. [CrossRef] [PubMed]

39. Cheang, M.C.U.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.S.; Parker, J.S.; et al.
Ki67 Index, HER2 Status, and Prognosis of Patients with Luminal B Breast Cancer. JNCI J. Natl. Cancer Inst. 2009, 101, 736–750.
[CrossRef]

40. Kroman, N.; Jensen, M.-B.; Wohlfahrt, J.; Mouridsen, H.T.; Andersen, P.K.; Melbye, M. Factors influencing the effect of age on
prognosis in breast cancer: Population based study. BMJ 2000, 320, 474–479. [CrossRef]

41. Chen, H.-L.; Zhou, M.-Q.; Tian, W.; Meng, K.-X.; He, H.-F. Effect of Age on Breast Cancer Patient Prognoses: A Population-Based
Study Using the SEER 18 Database. PLoS ONE 2016, 11, e0165409. [CrossRef] [PubMed]

42. Petralia, G.; Bonello, L.; Viotti, S.; Preda, L.; D’Andrea, G.; Bellomi, M. CT perfusion in oncology: How to do it. Cancer Imaging
2010, 10, 8–19. [CrossRef] [PubMed]

43. Prezzi, D.; Khan, A.; Goh, V. Perfusion CT imaging of treatment response in oncology. Eur. J. Radiol. 2015, 84, 2380–2385.
[CrossRef]

44. Sinitsyn, V. Analysis and Interpretation of Perfusion CT in Oncology: Type of Cancer Matters. Radiology 2019, 292, 636–637.
[CrossRef]

45. Park, C.M.; Goo, J.M.; Lee, H.J.; Kim, M.A.; Kim, H.-C.; Kim, K.G.; Lee, C.H.; Im, J.-G. FN13762 Murine Breast Cancer: Region-
by-Region Correlation of First-Pass Perfusion CT Indexes with Histologic Vascular Parameters. Radiology 2009, 251, 721–730.
[CrossRef] [PubMed]

https://doi.org/10.5858/arpa.2013-0953-SA
https://www.ncbi.nlm.nih.gov/pubmed/24099077
https://doi.org/10.1007/s10549-016-3817-9
https://www.ncbi.nlm.nih.gov/pubmed/27155668
https://doi.org/10.1200/JCO.2007.15.5986
https://doi.org/10.1093/annonc/mdt303
https://doi.org/10.1158/1078-0432.CCR-17-3783
https://doi.org/10.1200/JCO.2005.02.8738
https://doi.org/10.1148/radiol.2020192039
https://doi.org/10.1148/rg.2017170056
https://doi.org/10.1002/mrm.10496
https://doi.org/10.1259/bjr/50743919
https://www.ncbi.nlm.nih.gov/pubmed/20335440
https://doi.org/10.1038/npjbcancer.2016.12
https://www.ncbi.nlm.nih.gov/pubmed/27853751
https://doi.org/10.1159/000346475
https://www.ncbi.nlm.nih.gov/pubmed/23364275
https://doi.org/10.1186/1471-2407-11-486
https://doi.org/10.1038/sj.bjc.6603756
https://www.ncbi.nlm.nih.gov/pubmed/17453008
https://doi.org/10.1093/jnci/djp082
https://doi.org/10.1136/bmj.320.7233.474
https://doi.org/10.1371/journal.pone.0165409
https://www.ncbi.nlm.nih.gov/pubmed/27798652
https://doi.org/10.1102/1470-7330.2010.0001
https://www.ncbi.nlm.nih.gov/pubmed/20159664
https://doi.org/10.1016/j.ejrad.2015.03.022
https://doi.org/10.1148/radiol.2019191265
https://doi.org/10.1148/radiol.2513081215
https://www.ncbi.nlm.nih.gov/pubmed/19474375


Bioengineering 2023, 10, 504 18 of 18

46. Nagasaka, K.; Satake, H.; Ishigaki, S.; Kawai, H.; Naganawa, S. Histogram analysis of quantitative pharmacokinetic parameters
on DCE-MRI: Correlations with prognostic factors and molecular subtypes in breast cancer. Breast Cancer 2019, 26, 113–124.
[CrossRef] [PubMed]

47. Yi, B.; Kang, D.K.; Yoon, D.; Jung, Y.S.; Kim, K.S.; Yim, H.; Kim, T.H. Is there any correlation between model-based perfusion
parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients?
Eur. Radiol. 2014, 24, 1089–1096. [CrossRef] [PubMed]

48. Heye, T.; Knoerl, R.; Wehrle, T.; Mangold, D.; Cerminara, A.; Loser, M.; Plumeyer, M.; Degen, M.; Lüthy, R.; Brodbeck, D.; et al.
The Energy Consumption of Radiology: Energy- and Cost-saving Opportunities for CT and MRI Operation. Radiology 2020, 295,
593–605. [CrossRef] [PubMed]

49. Larke, F.J.; Kruger, R.L.; Cagnon, C.H.; Flynn, M.J.; McNitt-Gray, M.M.; Wu, X.; Judy, P.F.; Cody, D.D. Estimated Radiation Dose
Associated with Low-Dose Chest CT of Average-Size Participants in the National Lung Screening Trial. AJR Am. J. Roentgenol.
2011, 197, 1165–1169. [CrossRef] [PubMed]

50. Mettler, F.A., Jr.; Bhargavan, M.; Faulkner, K.; Gilley, D.B.; Gray, J.E.; Ibbott, G.S.; Lipoti, J.A.; Mahesh, M.; McCrohan, J.L.; Stabin,
M.G.; et al. Radiologic and Nuclear Medicine Studies in the United States and Worldwide: Frequency, Radiation Dose, and
Comparison with Other Radiation Sources—1950–2007. Radiology 2009, 253, 520–531. [CrossRef] [PubMed]

51. Schauer, D.; Linton, O.W. National Council on Radiation Protection and Measurements Report Shows Substantial Medical
Exposure Increase. Radiology 2009, 253, 293–296. [CrossRef] [PubMed]

52. Materka, A.; Strzelecki, M. On the importance of MRI nonuniformity correction for texture analysis. In Proceedings of the 2013
Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 26–28 September 2013;
pp. 118–123.

53. Doshi, A.M.; Tong, A.; Davenport, M.S.; Khalaf, A.M.; Mresh, R.; Rusinek, H.; Schieda, N.; Shinagare, A.B.; Smith, A.D.;
Thornhill, R.; et al. Assessment of Renal Cell Carcinoma by Texture Analysis in Clinical Practice: A Six-Site, Six-Platform Analysis
of Reliability. AJR Am. J. Roentgenol. 2021, 217, 1132–1140. [CrossRef] [PubMed]

54. Eun, N.L.; Kang, D.; Son, E.J.; Park, J.S.; Youk, J.H.; Kim, J.-A.; Gweon, H.M. Texture Analysis with 3.0-T MRI for Association of
Response to Neoadjuvant Chemotherapy in Breast Cancer. Radiology 2020, 294, 31–41. [CrossRef] [PubMed]

55. Lubner, M.G.; Stabo, N.; Lubner, S.J.; del Rio, A.M.; Song, C.; Halberg, R.B.; Pickhardt, P.J. CT textural analysis of hepatic
metastatic colorectal cancer: Pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom. Imaging
2015, 40, 2331–2337. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s12282-018-0899-8
https://www.ncbi.nlm.nih.gov/pubmed/30069785
https://doi.org/10.1007/s00330-014-3100-6
https://www.ncbi.nlm.nih.gov/pubmed/24553785
https://doi.org/10.1148/radiol.2020192084
https://www.ncbi.nlm.nih.gov/pubmed/32208096
https://doi.org/10.2214/AJR.11.6533
https://www.ncbi.nlm.nih.gov/pubmed/22021510
https://doi.org/10.1148/radiol.2532082010
https://www.ncbi.nlm.nih.gov/pubmed/19789227
https://doi.org/10.1148/radiol.2532090494
https://www.ncbi.nlm.nih.gov/pubmed/19864524
https://doi.org/10.2214/AJR.21.25456
https://www.ncbi.nlm.nih.gov/pubmed/33852355
https://doi.org/10.1148/radiol.2019182718
https://www.ncbi.nlm.nih.gov/pubmed/31769740
https://doi.org/10.1007/s00261-015-0438-4
https://www.ncbi.nlm.nih.gov/pubmed/25968046

	Introduction 
	Materials and Methods 
	Patients 
	MRI Analysis 
	CT Analysis 
	Histological Evaluation 
	Statistical Analysis 

	Results 
	Associations between MRI and Histological Biomarkers 
	Associations between CT and Histological Biomarkers 
	Progression-Free Survival 

	Discussion 
	Conclusions 
	References

