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Abstract: Most of the existing multi-lead electrocardiogram (ECG) detection methods are based
on all 12 leads, which undoubtedly results in a large amount of calculation and is not suitable for
the application in portable ECG detection systems. Moreover, the influence of different lead and
heartbeat segment lengths on the detection is not clear. In this paper, a novel Genetic Algorithm-
based ECG Leads and Segment Length Optimization (GA-LSLO) framework is proposed, aiming to
automatically select the appropriate leads and input ECG length to achieve optimized cardiovascular
disease detection. GA-LSLO extracts the features of each lead under different heartbeat segment
lengths through the convolutional neural network and uses the genetic algorithm to automatically
select the optimal combination of ECG leads and segment length. In addition, the lead attention
module (LAM) is proposed to weight the features of the selected leads, which improves the accuracy
of cardiac disease detection. The algorithm is validated on the ECG data from the Huangpu Branch
of Shanghai Ninth People’s Hospital (defined as the SH database) and the open-source Physikalisch-
Technische Bundesanstalt diagnostic ECG database (PTB database). The accuracy for detection of
arrhythmia and myocardial infarction under the inter-patient paradigm is 99.65% (95% confidence
interval: 99.20–99.76%) and 97.62% (95% confidence interval: 96.80–98.16%), respectively. In addition,
ECG detection devices are designed using Raspberry Pi, which verifies the convenience of hardware
implementation of the algorithm. In conclusion, the proposed method achieves good cardiovascular
disease detection performance. It selects the ECG leads and heartbeat segment length with the lowest
algorithm complexity while ensuring classification accuracy, which is suitable for portable ECG
detection devices.

Keywords: electrocardiogram (ECG); Genetic Algorithm-Based ECG Leads and Segment Length
Optimization (GA-LSLO) framework; portable ECG detection devices; cardiovascular disease detection

1. Introduction

According to the latest research from the World Health Organization, cardiovascular
diseases (CVDs) are the leading cause of death worldwide [1]. Statistics indicate that
approximately 17.9 million people died of cardiovascular disease in 2019, accounting for
32% of global deaths. Therefore, the diagnosis of CVDs has an important role. Electrocar-
diogram (ECG) reflects the electrical activity of the heartbeat cycle, which is an important
tool for the diagnosis of cardiovascular disease. The most commonly used ECG contains
12 leads: limb leads (I, II, III, avR, avL, avF) and chest leads (V1, V2, V3, V4, V5, V6).
Cardiologists analyze the patient’s condition based on these multi-lead ECGs. However, it
takes a lot of time and effort for cardiologists to manually diagnose with an ECG, so an
accurate and efficient automatic multi-lead ECG diagnosis technology is urgently needed.
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With the development of artificial intelligence, automatic analysis of multi-lead ECG
based on machine learning has attracted the interest of researchers. Traditional ma-
chine learning methods mainly include two stages: feature extraction and classification.
Shi et al. [2], Alim and Islam [3], and Shen et al. [4] extracted various manual features such
as RR interval, morphology features, average QRS interval, average QTC interval, and ST-
segment to detect cardiovascular diseases. In addition, Khorrami et al. [5], Desai et al. [6],
and Raj et al. [7] used discrete cosine transform (DCT) and discrete wavelet transform
(DWT) for feature processing, while Zhao et al. [8], Martis et al. [9], and Kanaan et al. [10]
used principal component analysis (PCA) for feature dimensionality reduction, which can
further improve the quality of extracted features. As for the classification stage, it is crucial
to choose the appropriate classifier. Uyar et al. [11] and Chauhan et al. [12] used logistic
regression (LR), Shen et al. [4], Kanaan et al. [10], Padhy et al. [13], and Han et al. [14] used
support vector machine (SVM), Sahoo et al. [15] and Park et al. [16] used decision tree, and
Yang et al. [17], Dilmac et al. [18], and Sun et al. [19] used k-nearest neighbor (KNN) as an
automatic classifier and achieved acceptable results in the classification of cardiac diseases
such as myocardial infarction [13,14,19] and arrhythmia [5,11,12,18]. The above-mentioned
feature extraction-based methods may achieve automatic detection of cardiovascular dis-
ease, but they also have several shortcomings. The results of the above methods are
dependent on the quality of the extracted features. The classification process requires
manual intervention and relies heavily on the medical knowledge of the experimenter.

The above drawbacks can be overcome in deep learning (DL). DL can learn useful
features from raw data without requiring extensive data preprocessing, feature engineer-
ing, or handcrafted rules, making it particularly suitable for interpreting ECG data [20].
Currently, the convolutional neural network (CNN) is the most commonly used deep
learning algorithm. With the advancement of CNNs, automatic detection algorithms
for cardiac disease based on a single lead, multiple leads (fewer than 12 leads), and all
12 leads have been widely developed. Kharshid et al. [21] implemented atrial fibrilla-
tion detection by using single-lead ECG. Acharya et al. [22] and Xiaolin et al. [23] de-
tected myocardial infarction and five arrhythmias based on lead II, respectively. However,
single-lead ECG carries limited information, resulting in insufficient detection accuracy.
Reasat et al. [24] used three-lead (II, III, and avF) ECG signals to diagnose myocardial
infarction. Liu et al. [25] used leads V2, V3, V5, and avL to detect generalized anterior
myocardial infarction. Zhang et al. [26] proposed a CNN-based multi-lead branch fusion
network (MLBF-Net) architecture, which achieves an average F1 score of 0.855 in the
classification of nine types for arrhythmia by using twelve-lead signals. Ye et al. [27],
Yang et al. [28], and Baloglu et al. [29] also obtained acceptable results in cardiac detection
based on 12-lead ECG. Jekova et al. [30] explored the effect of different ECG lead combi-
nations on disease detection. Each single lead and different lead combinations were used
to detect atrial fibrillation and achieved good results. However, for multiple leads, the
classification algorithm may not be universal. For example, in [24], leads II, III, and avF
performed well in the detection of MI, but may not achieve satisfactory results when ap-
plied to arrhythmias. For all 12 lead methods, complex algorithms are inevitably required,
which do not meet the requirements of portable devices.

Another issue worth noting is ECG segmentation. In reality, the time length of the orig-
inal ECGs collected by the ECG machine is not fixed, so a reasonable signal segmentation
method is critical for disease detection. Reasat et al. [24] segmented the original signal into
short segments (196 samples) of 3.072 s. Ye et al. [27] extracted ten 6 s segments from each
ECG recording and then stacked them. Hussein et al. [31] performed experiments using
1 min long ECG segments. Krasteva et al. [32] analyzed the effect of a 2 s to 10 s duration on
performance in the detection of shockable (Sh) and non-shockable (NSh) rhythms, and the
best performance was achieved at 5 s. Obviously, no standard rules for heartbeat segmenta-
tion exist. Short ECG segments may miss information, affecting diagnostic results. Too long
segments often result in more complex algorithms and greater amounts of computation,
which is detrimental to the real-time capability of the algorithm.
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With the advancement of medical technology, portable ECG monitoring devices [33–35]
are constantly developed. For example, Yang et al. [33] have designed a portable ECG
acquisition system, which transmits the collected ECG to a cloud platform via Wi-Fi and
displays the ECG through a smart terminal. Sun et al. [34] developed a health shirt
integrated with ECG electrodes to provide ECG monitoring during exercise, which can
diagnose six types of cardiovascular diseases. Liu et al. [35] have designed an IoT-based
portable 12-lead ECG monitoring system that can transmit the collected ECGs to a cloud
server. For portable CVD diagnostic devices, it is crucial to select appropriate leads and
length of ECG signal segments intelligently. Fortunately, the genetic algorithm (GA) has
impressive performance in finding optimal solutions [36] and is inspired by biological
evolutionary processes to optimize populations through selection, crossover, and mutation
to generate high-quality optimal solutions.

The objective of this study was to automatically generate optimal ECG lengths and
lead combinations for different disease classification tasks while balancing classification
performance and algorithm complexity. Specifically, the validation was performed on
the SH database and PTB database [37] to achieve efficient arrhythmia and myocardial
infarction detection, respectively. Moreover, a Raspberry Pi was used to explore the
effectiveness of the proposed method in terms of hardware implementation.

2. Materials and Methods
2.1. Datasets

The experiments in this article verify the algorithms by arrhythmia and myocardial
infarction detection. The arrhythmia data are from the non-public SH database and the my-
ocardial infarction data are from the public PTB database. The details of the two databases
are as follows:

2.1.1. The SH Database

The data come from the Cardiology Department of Huangpu Branch of Shanghai Ninth
People’s Hospital, preserving most of the original ECG signals collected by the hospital,
which makes the experiment more generalizable. The SH database provides 75, 111 12-lead
ECG records. The length of the records varies from 11 s to 92 s, and the sampling rate is
1000 Hz. Each record is overall diagnosed and labeled by a professional cardiologist, and the
diagnosis includes 46 types, such as normal ECG, atrial premature beats, tachycardia, etc.
The identification information of each patient is removed to preserve personal privacy, only
the ECG and diagnostic results are retained. For this experiment, five of the most common
signals with a relatively high number are selected, including normal ECG (N), premature
atrial contractions (PAC), premature ventricular contractions (PVC), sinus tachycardia (T,
sinus heart rate more than 100 beats per minute), and sinus bradycardia (B, sinus heart rate
less than 60 beats per minute). The datasets in the experiments are divided according to the
inter-patient paradigm, i.e., data from the same patient will not be present in both training
and test sets. We randomly select 80% of the patients to constitute the training set and the
remaining 20% are used as the test set. Table 1 shows the quantitative information for each
type of ECG signal and the number of patients in the training and test sets.

Table 1. Statistics of SH database.

Signal Type Number of Patients in
Training Set

Number of Patients in
Test Set

Normal ECG (N) 1336 334
Premature atrial contractions (PAC) 1024 260

Premature ventricular contractions (PVC) 328 82
Tachycardia (T) 532 137
Bradycardia (B) 606 147
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2.1.2. The PTB Database

The PTB database [38] is an open-source database provided by the National Metrology
Institute of Germany. It contains 549 records from 290 subjects. The length of the records
is not fixed, ranging from 32 s to 120 s, and the sampling rate is 1000 Hz. The records
are collected and diagnosed by cardiologists. The PTB database includes nine diagnostic
categories, such as myocardial infarction, cardiomyopathy, dysrhythmia, healthy controls,
etc. In this study, standard 12-lead ECGs from 148 myocardial infarction subjects and
52 normal subjects in the PTB database are used for research. The dataset is divided into
training and test sets using the same paradigm employed for the SH database. Detailed
information is shown in Table 2.

Table 2. Statistics of the PTB database.

Signal Type Number of Patients in
Training Set

Number of Records in
Training Set

Number of Patients in
Test Set

Number of Records in
Test Set

Healthy
controls (HC) 41 63 11 17

Myocardial
infarction (MI) 118 294 30 74

2.2. The Genetic Algorithm-Based ECG Leads and Segment Length Optimization Framework

As shown in Figure 1, the method proposed in this paper can be mainly divided
into four parts: the first one is the original signal preprocessing, which includes signal
denoising, signal segmentation to different lengths, and signal normalization. The second
is to extract the features of 12 leads separately under different segment lengths. Then, the
optimal solutions for the combination of ECG leads and segment length are automatically
generated by a GA-based algorithm. Finally, the final classification results can be obtained.
Detailed descriptions of each part are as follows.

2.2.1. Raw ECG Data Preprocessing

Electrocardiograms record the electrical activity of the heart. Due to the bad con-
tact between the electrode and the body, the subject’s muscle activity, etc., the collected
ECG signals inevitably contain noise, such as baseline wandering, electromyogram noise,
etc. [39]. These noises affect the detection results of heart disease. The advantages of
wavelet transform in ECG signal denoising have been demonstrated, and the Daubechies
6 wavelet transform [40] is used for denoising in this study.

Since the length of the original ECG data is not fixed, but the input of our network
models requires fixed-length heartbeat segments, the original signal needs to be segmented.
In this study, to explore the effect of different fragment lengths on disease detection, as
shown in Figure 1, nine segmentation types are used to cut the original signal into fragments
of 1 s to 9 s, which are respectively input into nine structurally identical networks. The
fragments are segmented sequentially from the beginning of the ECG and no additional
QRS wave detection is performed, which simplifies the whole algorithm system, reduces
the reliance on R-peak detection, and improves the robustness and generality of the system.
The statistics of the fragments are shown in Table 3. In the segmentation phase, each
fragment is labeled with the same label as the original ECG records. Although some short
(such as 1 s, 2 s) fragments may not contain a completely abnormal heartbeat (such as
premature atrial contractions (PAC), premature ventricular contractions (PVC)), since the
disease exists in the long record, the short fragment may have implied information about
an impending abnormality, which can also be captured by the deep learning model as
valid information. In addition, to mitigate the effects of baseline offset, all segments are
processed using Z-score normalization.
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Figure 1. The overall structure of the proposed method. Contains four parts: ECG preprocessing,
feature extraction of 12-lead ECG signals in different segments, GA-based algorithm to generate
optimal solutions, and final classification results.

Table 3. Quantity information of each type of signal at different fragment lengths for the
two used databases.

Fragment
Length

The SH Database The PTB Database

Number of Fragments Number of Fragments

N PAC PVC T B HC MI

1 s 47,032 33,464 14,553 21,131 17,499 9515 41,455
2 s 22,985 16,458 7169 10,418 8608 4783 20,748
3 s 15,210 10,690 4736 6859 5548 3215 13,945
4 s 11,069 7877 3484 5053 4074 2417 10,388
5 s 8777 6156 2737 3982 3196 1966 8575
6 s 7083 5042 2258 3248 2625 1647 7156
7 s 6030 4139 1889 2732 2129 1407 6087
8 s 5088 3644 1645 2350 1861 1248 5369
9 s 4614 3213 1474 2118 1646 1089 4668

N: normal ECG. PAC: premature atrial contractions. PVC: premature ventricular contractions. T: tachycardia.
B: bradycardia. HC: healthy controls. MI: myocardial infarction.

2.2.2. Feature Extraction at Different Fragment Lengths

This section introduces the process of ECG signal feature extraction based on ResNet [41].
Traditional multi-lead classification methods [26,27,29] train all leads simultaneously. In
this study, two feature extraction models are designed for arrhythmia and myocardial
infarction to extract the features of 12 leads separately with higher quality.
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As shown in Figure 2, the feature extraction model (FEM) is developed on the basis
of ResNet. Since each disease and each lead requires feature extraction for nine frag-
ment lengths (1 s to 9 s), for inputs of different sizes, nine networks suitable for segment
lengths from 1 s to 9 s are designed by modifying the input layer. Each network contains
13 convolutional layers and the structure and configuration are shown in Table 4. The fea-
ture extraction process is performed by the FEM trained on the classification task. For the
different classification tasks (arrhythmia and myocardial infarction), the feature extraction
models can be obtained by modifying the number of nodes in the fully connected layers
and the activation function in the network, respectively. For the SH database, the FEMs are
trained on the classification task of normal ECG, PAC, PVC, tachycardia, and bradycardia,
so the number of nodes in the fully connected layer is set to 5 and the activation function is
Softmax. For the PTB database, the models are trained using a binary classification task of
MI and normal signal, so the number of nodes in the fully connected layer is set to 2 and
the activation function is sigmoid. Each lead is trained separately at each length to obtain
features. Finally, the training set and test set data are re-input into the trained FEM, and
the output of the global average pooling (GAP) layer in the network structure is used as
the final extracted features. In this way, features for two disease categories (arrhythmia
and myocardial infarction) are obtained, each containing 12 leads at 9 ECG lengths. These
features can be used directly in later classification, for example, when testing the case of
ECG lengths for 3 s and lead combinations for II, avR, V3, and V4, the features of the
4 leads with a heartbeat segment of 3 s are directly selected and concatenated, and then the
classifier is used to classify and test the performance.

Table 4. Detailed configuration information of the feature extraction network.

Layer Name Number of Filters
× Kernel Size Stride Activation Function

Input Input size = 1000 (1 s)–9000 (9 s)

Conv1+BN 64 × 13 1 ReLU

Max Pool1 — 2 —

Conv2_x

Conv2_1+BN 64 × 3 1 ReLU

Conv2_2+BN 64 × 3 2 ReLU

Average Pool2 — 2 —

Conv3_x

Conv3_1+BN 64 × 3 1 ReLU

Conv3_2+BN 64 × 3 2 ReLU

Average Pool3 — 2 —

Conv4_x

Conv4_1+BN 128 × 3 1 ReLU

Conv4_2+BN 128 × 3 2 ReLU

Average Pool4 — 2 —

Conv5_x

Conv5_1+BN 256 × 3 1 ReLU

Conv5_2+BN 256 × 3 2 ReLU

Average Pool5 — 2 —

Conv6_x

Conv6_1+BN 512 × 3 1 ReLU

Conv6_2+BN 512 × 3 2 ReLU

Average Pool6 — 2 —

Conv7_x

Conv7_1+BN 512 × 3 1 ReLU

Conv7_2+BN 512 × 3 2 ReLU

Average Pool7 — 2 —

GAP, FC (Units = 2 or units = 5), Softmax (Arrhythmia), or Sigmoid (Myocardial infarction)
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The cross-entropy loss function is used during network training on the SH database.
In addition, for PTB data, since the amount of myocardial infarction data is much larger
than that of the healthy control data, the weighted cross-entropy loss function [42] is used to
deal with the class imbalance problem. The Adam optimizer is used to reduce the loss [21],
and the learning rate is set to 0.001. The batch size is set to 128, and each lead with different
segment lengths is trained for 40 epochs.

2.2.3. Generating Optimal Combination by Genetic Algorithm
The Proposed Encoding Strategy

In the proposed method, the set C = [TL, L1, L2, . . . Li . . . L12] represents the combi-
nation of the time length (TL) of the heartbeat fragment and the ECG leads (Li). Among
them, TL = 1,2, . . . , 9 indicates that the length of the heartbeat is from 1 s to 9 s. Li = 0 or
1 and, when it is 0, it means that the ECG signal of the ith lead is not used, and when it
is 1, the ECG signal of the ith lead is used. It is worth noting that L1–L12 cannot be 0 at
the same time, which means 0 leads are selected for classification. The combination of
ECG leads and heartbeat segment length can be determined by C. Disease classification is
performed using the features of the selected leads (leads with Li = 1) at the selected lengths
(length = TL) extracted by the feature extraction model. As shown in Figure 3, taking
C = [3,0,1,0,1,0,0,0,0,1,1,0,0] as an example, the length of the heartbeat fragment is 3 s, and
the features of leads II, avR, V3, V4 are selected and concatenated for further classification.
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Theoretically, the best solution can be given by running all the possible values of set
C, but this non-GA-based approach inevitably takes a lot of time. The genetic algorithm
has a great advantage in seeking solutions, so this study uses the GA to reduce the time of
searching for the optimal solution. The following experiments verify the effectiveness of
the proposed algorithm.

Classification Algorithm Combined with the Lead Attention Module

In the classification stage, the concatenated features are used as the input data of
the classification network. An innovative lead attention module (LAM) is proposed. The
LAM is inspired by the channel attention module [43] and it is updated based on the
ECG lead properties. As shown in Figure 4a (still taking C = [3,0,1,0,1,0,0,0,0,1,1,0,0] as
an example), the LAM is composed of a convolutional layer, fully connected layer, and
activation function. The number of FC layer nodes in the LAM is set to be the same as the
number of leads (the number of leads in the example is 4, then the number of FC layer
nodes is 4), so the Softmax layer will output the same number of weights as the selected
number of leads. The features from each lead are multiplied by their respective weights
and added to the original features to obtain the lead-weighted features. Then, a multi-layer
perceptron (MLP) composed of fully connected layers and activation functions is used for
the final disease classification. Compared with the pure MLP-based classification algorithm
in Figure 4b, the classification algorithm combined with the LAM can effectively capture
the dependencies between ECG leads and improve the classification effect of the network.

Bioengineering 2023, 10, x FOR PEER REVIEW 9 of 23 
 

 

 

(a) (b) 

Figure 4. Classification network structure. (a) The algorithm combined with LAM. (b) The pure 

MLP-based algorithm. 

Generating the Optimal Solutions 

This section describes the process of generating the optimal solutions for the combi-

nation of segment lengths and ECG leads. 

The genetic algorithm (GA) is a global optimization method that originated from 

computer simulations performed on biological systems. It simulates the natural selection, 

crossover, and mutation that occur in genetics. The genetic algorithm starts from a random 

initial population and produces individuals more adapted to the environment through 

selection, crossover, and mutation operations. The population evolves toward a better 

search space. Moreover, it iterates continuously and finally converges on the most adapted 

individual to find the optimal solution to the problem. In this paper, each individual is 

represented by a C defined above, corresponding to a combination of the heartbeat seg-

ment and the ECG leads. Algorithm 1 gives the algorithm framework, mainly including 

initialization, fitness calculation, selection, crossover and mutation, and iterative pro-

cesses. The detailed introduction is as follows. 

Algorithm 1 Generation of optimal ECG lengths and lead combinations based on GA 

Input: Feature data of each lead with different segment lengths extracted in Section 2.2.2. Algorithm settings, 

population size = 100, maximum number of iterations = 20 

Output: Optimal combination of ECG leads and segment length 

1 G0: number of iterations: i = 0. Initialize the population with the given population size using the proposed encoding 

strategy. 

2 for i = 0, 1, 2, …, 20 do 

3    Calculate the fitness of each individual in the population Gi 

4    Select the individuals with the top 50 fitness as the parent 

5    Generate Gi by the selected parents using crossover and mutation operations 

6    i = i + 1 

7    if the maximum fitness in the population remains unchanged for three generations 

8        break from step 2 

9    else 

10       continue the iteration 

11 end 

12 Return the individual with the maximum fitness in the iterative process 

In the initialization phase of this experiment, a uniformly distributed population is 

randomly generated, and the size of the population is set to 100. 

Figure 4. Classification network structure. (a) The algorithm combined with LAM. (b) The pure
MLP-based algorithm.

Generating the Optimal Solutions

This section describes the process of generating the optimal solutions for the combina-
tion of segment lengths and ECG leads.

The genetic algorithm (GA) is a global optimization method that originated from
computer simulations performed on biological systems. It simulates the natural selection,
crossover, and mutation that occur in genetics. The genetic algorithm starts from a random
initial population and produces individuals more adapted to the environment through
selection, crossover, and mutation operations. The population evolves toward a better
search space. Moreover, it iterates continuously and finally converges on the most adapted
individual to find the optimal solution to the problem. In this paper, each individual
is represented by a C defined above, corresponding to a combination of the heartbeat
segment and the ECG leads. Algorithm 1 gives the algorithm framework, mainly including
initialization, fitness calculation, selection, crossover and mutation, and iterative processes.
The detailed introduction is as follows.
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Algorithm 1 Generation of optimal ECG lengths and lead combinations based on GA

Input: Feature data of each lead with different segment lengths extracted in Section 2.2.2.
Algorithm settings, population size = 100, maximum number of iterations = 20

Output: Optimal combination of ECG leads and segment length
1 G0: number of iterations: i = 0. Initialize the population with the given population size using the

proposed encoding strategy.
2 for i = 0, 1, 2, . . . , 20 do
3 Calculate the fitness of each individual in the population Gi
4 Select the individuals with the top 50 fitness as the parent
5 Generate Gi by the selected parents using crossover and mutation operations
6 i = i + 1
7 if the maximum fitness in the population remains unchanged for three generations
8 break from step 2
9 else
10 continue the iteration
11 end
12 Return the individual with the maximum fitness in the iterative process

In the initialization phase of this experiment, a uniformly distributed population is
randomly generated, and the size of the population is set to 100.

In the fitness calculation phase, the combination of heartbeat segments and ECG leads
represented by each individual is evaluated using the classification algorithm introduced
above to obtain the classification accuracy (Acc) and F1 score (F1) (large F1 and Acc represent
good classification performance). Considering the impact of the lead number used in the
classification and the length of the heartbeat segment on the algorithm complexity, the
fitness formula is given as:

fitness = α × F1 + β × Acc − γ × TL − σ × ∑i=12
i=1 Li (1)

where F1 and Acc represent the F1 score and classification accuracy, respectively. TL and
Li are defined in the proposed encoding strategy. The principle of the parameter settings
here is to first ensure the results of disease detection, and on this basis, preferentially select
individuals with low algorithm complexity for application on the portable ECG detection
systems. After several experimental adjustments, α, β, γ, and σ are set to 1, 1, 0.002, and
0.01, respectively.

In the selection stage, each individual in the population uses Formula (1) to calculate
their fitness, and then the top 50 individuals in terms of fitness are selected as the parents of
the next generation, which can retain the individuals with high quality in the population.

Then, the next population is generated through crossover and mutation operations.
ECG leads can reflect the heart parts [44]. For the crossover operation, two individuals in
the parent generation are randomly selected, and the crossover is carried out according
to the heart parts reflected by the leads in Table 5. {[TL], [L1, L5], [L2, L3, L6], [L4], [L7, L8],
[L9, L10], [L11, L12]} are crossed according to the probability of [0.8, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5].
By exchanging the lead information of the 6 heart parts of the two parent individuals,
the parents’ information from the 6 critical groups (shown in Table 5) can be retained.
Twenty groups of crossover operations can generate forty offspring individuals. For
the mutation operation, 10 individuals in the parent generation are randomly taken,
and 13 elements [TL, L1, L2, . . . L11, L12] in each individual are mutated with probabil-
ity [0.8, 0.5, 0.5, . . . 0.5, 0.5]. That is, for the first element TL, it changes to other fragment
lengths with a probability of 0.8, and for the 2nd element to the 13th element, they mutate
to the opposite value with a probability of 0.5 (0 to 1, 1 to 0). Figure 5 shows examples of
crossover and mutation.
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Table 5. Heart part information reflected by ECG leads.

ECG Leads Parts of the Heart

I (L1), avL (L5) Anterior side wall of the left ventricle
II(L2), III(L3), avF (L6) Ventricle posterior wall

avR (L4) Inner chamber of ventricle
V1 (L7), V2 (L8) Right ventricle
V3 (L9), V4 (L10) Ventricular septum
V5 (L11), V6 (L12) Left ventricle
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Population iteration is achieved through the above selection, crossover, and mutation
operations. The population evolves in the direction of increasing overall fitness. The
maximum number of iterations set in the experiment is 20, and in order to improve the
efficiency of the algorithm, when the maximum fitness in the population does not change
for three consecutive generations, the iteration is terminated. The individual with the
greatest fitness in the entire iterative process can be obtained, which is the optimal solution.

2.2.4. Performance Metrics

This study comprehensively evaluates the final disease detection effect by calculating
sensitivity (Sen), specificity (Spe), positive predictivity (Ppr), accuracy (Acc), and F1 score
(F1). The calculation formula is as follows:

Sen =
TP

TP + FN
(2)

Spe =
TN

TN + FP
(3)

Ppr =
TP

TP + FP
(4)

Acc =
TP + TN

TP + TN + FN + FP
(5)



Bioengineering 2023, 10, 607 11 of 21

F1 =
2 × Sen × Ppr

Sen + Ppr
(6)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively. In the evaluation of disease detection performance, these metrics are
calculated separately for each category.

2.3. The Hardware Implementation of the Algorithm

To verify the convenience of the proposed algorithm in hardware implementation, car-
diac disease detection devices are fabricated using Raspberry Pi 3 Model B. The Raspberry
Pi is small in size and easy to carry and can be used to simulate a portable ECG device. As
shown in Figure 6 (taking the solution [9,1,1,0,1,1,1,0,1,1,0,1,0,0] for arrhythmia detection as
an example), for the arrhythmia and myocardial infarction detection devices, the feature
extraction model trained in Section 2.2.2 and the classification model trained in Section 2.2.3
are transferred to the Raspberry Pi. The input ECG is feature extracted and classified using
the optimal solution of ECG length and lead combinations generated in Section 2.2.3.
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3. Results
3.1. Arrhythmia Detection in SH Database

Through the method combined with the GA proposed in this paper, the final generated
solution for arrhythmia detection in the SH database is C1 = [9,1,1,0,1,1,0,1,1,0,1,0,0]. This
means for the detection of arrhythmia in the SH database, after evaluation of algorithm
complexity and classification efficiency through the GA, the optimal segment length is 9 s
and the optimal lead combination is seven leads (I, II, avR, avL, V1, V2, and V4). The final
classification results are shown in Tables 6 and 7.

Table 6. Confusion matrix for SH database.

Predicted Class

N PAC T B PVC

True
Class

N 998 0 0 0 0
PAC 1 655 0 0 5

T 0 0 429 0 0
B 0 1 0 332 0

PVC 5 12 0 0 279
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Table 7. Performance of the SH database.

Class Sen (%) Spe (%) Ppr (%) Acc (%) F1 (%)

N 100.00 99.65 99.40 99.78 99.70
PAC 99.09 99.37 98.05 99.30 98.57

T 100.00 100.00 100.00 100.00 100.00
B 99.70 100.00 100.00 99.96 99.85

PVC 94.26 99.79 98.24 99.19 96.21
Average 98.61 99.76 99.14 99.65 98.87

N: normal ECG. PAC: premature atrial contractions. PVC: premature ventricular contractions. T: tachycardia.
B: bradycardia. C1 = [9,1,1,0,1,1,0,1,1,0,1,0,0].

The proposed method achieves an accuracy of 99.65% (95% confidence interval:
99.20–99.76%) for arrhythmia detection in the SH database using seven ECG leads. Clini-
cally, P-waves are key to the diagnosis of PAC and PVC. Leads II and V1 reflect the P-wave
most clearly, so these two leads are the most commonly used for arrhythmia analysis.
The optimal solution given by the proposed method includes leads II and V1, which is
consistent with the clinical diagnostic criteria. More importantly, leads I, avR, avL, V2, and
V4 are also included in the optimal solution. It can be speculated that these five leads (I,
avR, avL, V2, and V4) are also critical for the diagnosis of arrhythmia, which has guiding
significance for doctors to analyze arrhythmia.

3.2. MI Detection in PTB Database

For MI detection in the PTB database, the final generated solution is C2 = [5,1,0,1,0,
0,1,0,1,0,1,0,1]. It shows for the detection of MI in PTB, after evaluating the algorithm
complexity and classification efficiency through the GA, the optimal segment length is
5 s, and the optimal lead combination is six leads (I, III, avF, V2, V4, and V6). The final
detection results are shown in Tables 8 and 9.

Table 8. Confusion matrix for PTB database.

Predicted Class

HC MI

True
Class

HC 391 28
MI 22 1663

Table 9. Performance in the PTB database.

Class Sen (%) Spe (%) Ppr (%) Acc (%) F1 (%)

HC 93.32 98.69 94.67 97.62 93.99
MI 98.69 93.32 98.34 97.62 98.52

Average 96.01 96.01 96.51 97.62 96.25
HC: healthy controls. MI: myocardial infarction. C2 = [5,1,0,1,0,0,1,0,1,0,1,0,1].

It can be seen that the proposed method achieves an accuracy of 97.62% (95% confi-
dence interval: 96.80–98.16%) in MI detection. Although the sensitivity and F1 of healthy
controls are lower than the myocardial infarction, the result is acceptable due to the lower
number of HC than MI and the weighted cross-entropy has been used in the experiment to
mitigate the category imbalance. According to [45], six leads (I, III, avF, V2, V4, and V6)
are critical for the detection of MI, which proves the theoretical medical significance of the
proposed method. In general, the proposed method uses six leads to achieve effective detec-
tion of myocardial infarction. It ensures the detection results while selecting the algorithm
with the lowest complexity, indicating the efficiency of automatic lead and segment length
optimization. The inter-patient paradigm makes the results more clinically meaningful.
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3.3. The Comparison of Lead Selection Methods

The algorithm automatically generates combinations of leads and segment lengths
through a GA-based approach. The optimal solutions given in the SH database and PTB
database are C1 = [9,1,1,0,1,1,0,1,1,0,1,0,0] and C2 = [5,1,0,1,0,0,1,0,1,0,1,0,1], respectively. In
order to verify the validity of the solution, 12 single-lead ECG data and all 12 lead ECG
data are used for comparative experiments under the same segment length as C1 and C2.
The datasets for the experiments are partitioned in the same way as in Sections 3.1 and 3.2.
The features of each lead can be obtained from the feature extraction stage, the features are
input into the classification model (LAM+MLP), and they are retrained to be suitable for
single-lead and all 12 lead classification (for all 12 leads, the features are concatenated first).
The experimental results are shown in Tables 10 and 11. Due to the large number of results,
the results of multi-leads (fewer than 12 leads) are not listed in the table, but multi-lead
cases (fewer than 12 leads) have been screened during the iteration of the genetic algorithm.

Table 10. Comparison experiments of 12 single-lead ECG data and all 12 lead ECG data from the
SH database.

Lead Coding Sen (%) Spe (%) Ppr (%) Acc (%) F1 (%)

I [9,1,0,0,0,0,0,0,0,0,0,0,0] 79.58 94.71 77.50 91.93 78.29
II [9,0,1,0,0,0,0,0,0,0,0,0,0] 81.17 95.17 79.24 92.55 79.73
III [9,0,0,1,0,0,0,0,0,0,0,0,0] 79.01 94.28 77.66 91.37 78.07

avR [9,0,0,0,1,0,0,0,0,0,0,0,0] 80.23 95.06 79.55 92.52 79.73
avL [9,0,0,0,0,1,0,0,0,0,0,0,0] 77.80 93.77 73.83 90.15 74.81
avF [9,0,0,0,0,0,1,0,0,0,0,0,0] 79.75 94.36 76.37 91.06 77.45
V1 [9,0,0,0,0,0,0,1,0,0,0,0,0] 76.66 93.97 75.84 90.87 76.05
V2 [9,0,0,0,0,0,0,0,1,0,0,0,0] 78.83 94.48 79.40 91.87 78.54
V3 [9,0,0,0,0,0,0,0,0,1,0,0,0] 78.41 94.63 79.38 91.96 78.11
V4 [9,0,0,0,0,0,0,0,0,0,1,0,0] 79.56 94.64 77.45 91.59 77.98
V5 [9,0,0,0,0,0,0,0,0,0,0,1,0] 80.57 94.93 77.63 92.11 78.85
V6 [9,0,0,0,0,0,0,0,0,0,0,0,1] 77.10 94.10 75.19 90.74 75.80

All 12 leads [9,1,1,1,1,1,1,1,1,1,1,1,1] 97.84 99.68 99.12 99.53 98.41
Proposed [9,1,1,0,1,1,0,1,1,0,1,0,0] 98.61 99.76 99.14 99.65 98.87

Table 11. Comparison experiments of 12 single-lead ECG data and all 12 lead ECG data from the PTB
database.

Lead Coding Sen (%) Spe (%) Ppr (%) Acc (%) F1 (%)

I [5,1,0,0,0,0,0,0,0,0,0,0,0] 89.41 89.41 93.47 94.68 91.26
II [5,0,1,0,0,0,0,0,0,0,0,0,0] 82.15 82.15 81.37 88.21 81.75
III [5,0,0,1,0,0,0,0,0,0,0,0,0] 76.24 76.24 82.78 87.79 78.82

avR [5,0,0,0,1,0,0,0,0,0,0,0,0] 87.24 87.24 87.72 92.06 87.48
avL [5,0,0,0,0,1,0,0,0,0,0,0,0] 73.82 73.82 78.25 85.65 75.65
avF [5,0,0,0,0,0,1,0,0,0,0,0,0] 75.17 75.17 76.75 85.08 75.91
V1 [5,0,0,0,0,0,0,1,0,0,0,0,0] 74.28 74.28 75.54 84.36 74.87
V2 [5,0,0,0,0,0,0,0,1,0,0,0,0] 73.90 73.90 87.18 88.36 78.07
V3 [5,0,0,0,0,0,0,0,0,1,0,0,0] 68.42 68.42 76.02 84.03 70.94
V4 [5,0,0,0,0,0,0,0,0,0,1,0,0] 77.70 77.70 84.08 88.55 80.26
V5 [5,0,0,0,0,0,0,0,0,0,0,1,0] 86.23 86.23 89.78 92.59 87.84
V6 [5,0,0,0,0,0,0,0,0,0,0,0,1] 86.20 86.20 90.09 92.68 87.95

All 12 leads [5,1,1,1,1,1,1,1,1,1,1,1,1] 93.24 93.24 91.97 95.20 92.59
Proposed [5,1,0,1,0,0,1,0,1,0,1,0,1] 96.01 96.01 96.51 97.62 96.25

According to Tables 10 and 11, the GA-based approach is attractive in the optimization
of ECG lead selection. The proposed method achieves the best classification results on
both the SH database and the PTB database. Especially in the PTB database, the advantage
of MI detection is relatively obvious. Compared with the single-lead-based methods, the
proposed method has more accurate detection results, and both the accuracy and F1 score
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are greatly improved. Compared with the method based on all 12 ECG leads, the proposed
method achieves an optimized scheme with suitable length and ECG leads. This verifies
that it is not true that the more ECG leads, the better the classification effect. The detection
method based on all 12 leads has information redundancy, and the redundant information
of ECG leads will affect the classification results. Furthermore, fewer leads correspond to
less complex algorithms, proving the practical significance of this work. In conclusion, the
method proposed in this paper can reduce the algorithm complexity while ensuring the
results of disease detection.

3.4. The Performance of the Algorithm with a Fixed Lead Number

In portable medical devices, some users may require a fixed number of leads. This
section takes the limited numbers of leads of two, three, and four as examples to analyze
the performance of the algorithm. For the SH database and the PTB database, under the
same segment length of C1 and C2 (the optimal solution given in Sections 3.1 and 3.2), the
optimal lead combinations with a fixed total number of leads of two, three, and four are
generated through GA iteration. The experimental dataset is divided in the same way as in
Sections 3.1 and 3.2. The experimental results are shown in Table 12.

Table 12. The results of disease detection based on a fixed number of ECG leads.

Solutions

SH Database PTB Database

Optimal Lead
Combination Acc (%) F1 (%) Optimal Lead

Combination Acc (%) F1 (%)

Optimal solution I, II, avR, avL, V1, V2, V4 99.65 98.87 I, III, avF, V2, V4, V6 97.62 96.25
Optimal solution fixed

with 2 leads avR, V4 90.65 89.48 I, V6 95.10 92.29

Optimal solution fixed
with 3 leads I, avR, V4 94.63 93.89 I, avF, V6 96.10 93.62

Optimal solution fixed
with 4 leads I, II, avR, V4 96.95 96.12 I, III, avF, V6 96.87 96.13

As shown in Table 12, for arrhythmia detection in the SH database, the heartbeat
segment length is fixed at 9 s (consistent with C1). The best lead combinations based on
two, three, and four leads are included in the optimal solution. It is worth noting that lead
V1 is not included in these lead combinations, which is slightly different from the clinical
theory. This may be because other leads in the optimal solution (such as leads I, avR, and
V4) carry critical information, but are difficult to identify manually. For the neural network
model, the characteristics of this information carried by these leads are obvious. These
leads are also critical for disease analysis and require physician attention when diagnosing
arrhythmias. For MI detection in the PTB database, the heartbeat segment length is fixed at
5 s (consistent with C2). The best lead combinations based on two, three, and four leads
are included in the optimal solution. This experiment shows that the proposed method
can accurately find the most critical leads for disease detection, which further proves the
effectiveness of the lead optimization algorithm.

For the classification results, the accuracy is slightly lower than the optimal solution
since the number of leads used is less than the optimal solution. However, the detection
accuracies of above 90% for arrhythmia and above 95% for MI are acceptable. In conclusion,
the proposed method can generate optimal lead combinations for different diseases with a
fixed total lead number, indicating its strong flexibility. In addition, it has flexible guiding
significance for the hardware implementation system. For example, if a wearable device
requires three leads, the proposed method can generate the best lead combination based on
the three leads. This further addresses the need for portable medical devices.
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3.5. The Results of Ablation Experiments
3.5.1. The Effect of the Lead Attention Module

The lead attention module (LAM) can capture the dependencies between ECG leads
and improve the classification effect. However, it is still necessary to verify the advantages
of the LAM through ablation experiments. In this section, based on the solutions C1 and C2
given in Sections 3.1 and 3.2, disease detection is described using the algorithm combined
with the LAM (Figure 4a) and the pure MLP-based algorithm (Figure 4b), respectively. The
results are shown in Figures 7 and 8.
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According to Figures 7 and 8, compared with the pure MLP algorithm, the proposed
algorithm combined with the LAM has advantages for arrhythmia detection in the SH
database and MI detection in the PTB database, both of which have improvement in F1. For
the electrocardiogram, not every lead carries the key information for disease detection, and
there may be redundant information. The LAM can automatically generate lead weights to
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weight selected ECG leads, helping the model to highlight key leads, which has a positive
effect on disease detection.

3.5.2. The Effect of the Weighted Cross-Entropy Loss Function on PTB Database

In this section, the effect of the weighted cross-entropy loss function on MI detec-
tion is analyzed experimentally. Based on the solution C2 (ECG length of 5 s, six leads)
given in Section 3.2, this section shows the comparison of myocardial infarction detec-
tion results using weighted cross-entropy and standard cross-entropy. The results are
shown in Tables 13 and 14. It can be seen from the tables that compared with the standard
cross-entropy, the weighted cross-entropy reduces the probability of the prediction model
incorrectly predicting HC as the MI class, which improves the overall performance of the
MI detection model.

Table 13. Confusion matrix of MI detection using standard cross-entropy loss function.

Predicted Class

HC MI

True
Class

HC 356 63
MI 19 1666

Table 14. Performance comparison of the weighted cross-entropy loss function.

Loss Function Sen (%) Spe (%) Ppr (%) Acc (%) F1 (%)

Cross-entropy 91.92 91.92 95.64 96.10 93.64
Weighted cross-entropy 96.01 96.01 96.51 97.62 96.25

3.6. The Results of Model Cross-Checking

In this section, the proposed models are cross-checked, i.e., the arrhythmia model
is used to test HC and MI from the PTB database, and the MI model is used to test N,
PAC, T, B, and PVC from the SH database. The results of the cross-check are shown in
Tables 15 and 16.

Table 15. Results of testing HC and MI data from PTB database using arrhythmia detection model.

Predicted Class

N PAC T B PVC

True
Class

HC 1081 8 0 0 0
MI 163 126 2222 0 2157

Table 16. Results of testing N, PAC, T, B, PVC data from SH database using MI detection model.

Predicted Class

HC MI

True
Class

N 8754 23
PAC 5297 859

T 27 3955
B 3174 22

PVC 146 2591

According to the tables above, the accuracy of HC detection using the arrhythmia
model is high, i.e., most of the HC data are predicted to be N, which is because the N and
HC data are normal signals with high similarities in waveforms. When testing MI data
using the arrhythmia model, a large number of MI data are classified as tachycardia (T)
and premature ventricular contractions (PVC), which is also in accordance with medical
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principles because myocardial infarction often leads to increased adrenaline tone which
causes tachycardia. In addition, patients with myocardial infarction tend to develop PVC
as well [45]. When testing the data from the SH database using the MI model, the vast
majority of N are classified as HC, which is reasonable. Moreover, the large majority of
T and PVC are classified as MI, which may be due to the fact that myocardial infarction
and some arrhythmias are interconnected. In conclusion, MI and arrhythmias are not
mutually exclusive, and MI patients often have different arrhythmias (e.g., tachycardia,
premature ventricular beats, etc.), so MI may also contain arrhythmia features, which are
easily misclassified by the neural network. However, the results of model cross-checking are
consistent with clinical theory, which validates the performance of the proposed method.

3.7. The Results of Hardware Implementation of the Algorithm

For the arrhythmia detection device (optimal solution: [9,1,1,0,1,1,0,1,1,0,1,0,0]), the
feature extraction models trained in Section 2.2.2 for leads I, II, avR, avL, V1, V2, and
V4 with segment length of 9 s are transferred to the Raspberry Pi. The features of the
input signals of these seven leads are extracted and concatenated by the Raspberry Pi.
The corresponding classification model trained in Section 2.2.3 is also transferred to the
Raspberry Pi to classify the concatenated features and give the classification results. For
the MI detection device (optimal solution: [5,1,0,1,0,0,1,0,1,0,1,0,1]), the leads used for
classification are I, III, avF, V2, V4, and V6, the length of the heartbeat segment is 5 s, and
other steps are similar to the algorithm of arrhythmia detection. During the experiment,
each detection device is tested with 128 data. The results are shown in Table 17.

Table 17. Test results for ECG detection devices in this article.

Disease Categories Segment Length
of the Input Signal (s)

Processing Time of
Raspberry Pi (s) Time Ratio Accuracy of Hardware

Implementation

Arrhythmia 9.00 1.16 0.129 100%
MI 5.00 0.64 0.128 100%

Time ratio: processing time of Raspberry Pi/segment length of the input signal. Accuracy of hardware imple-
mentation: the number of data for which the Raspberry Pi has the same detection result as PC/total number of
test data (128).

The time ratio is introduced to evaluate the efficiency of the Raspberry Pi in processing
the input signal, which is calculated by the ratio of the processing time of the input signal
to the length of the input data on the Raspberry Pi. The smaller the time ratio, the faster the
device processes the input signal, and if the time ratio is much less than 1, it means that the
device can process the signal in real time. For the input signal with a segment length of
9 s, the processing time of the device is 1.16 s, and the time ratio is 0.129. For the detection
device of MI, the input signal segment length and the processing time are 5 s and 0.64 s,
respectively, and the time ratio is 0.128. Compared with the disease detection process in
the PC, the accuracy of the hardware implementation in the Raspberry Pi is 100%, which
means that the prediction results on the Raspberry Pi are exactly the same as the prediction
results on the PC. This experiment proves that the ECG signal detection device designed
in this study can realize the real-time processing of ECG signals with high accuracy. For
portable ECG disease detection equipment, it is necessary to consider the resource limitation
of the hardware platform, and the algorithm with lower complexity has a tremendous
advantage in hardware implementation. This method can flexibly select the algorithm
with appropriate complexity under different conditions while ensuring the efficiency of
disease detection, which is suitable for hardware implementation and demonstrates its
practical application. Moreover, it can select the optimal ECG leads and segment length for
different diseases, which reflects its generalization. In conclusion, the experiments verify
the convenience of the hardware implementation of the proposed method, which can be
used in portable ECG detection devices.
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4. Discussion
4.1. The Analysis of the Results

According to the results, the algorithm provided two different classification frame-
works for the diagnosis of cardiac arrhythmias and myocardial infarction, respectively.
Premature atrial contractions and premature ventricular contractions in the SH database
may be closely related to other cardiovascular diseases such as atrial fibrillation (AF), atrial
flutter, myocardial infarction, etc. Therefore, it is meaningful to realize the automatic
detection of premature atrial contractions and premature ventricular contractions. Our
results (Tables 10 and 11) show that GA-LSLO provides the optimized lead selection scheme
while balancing the classification performance and the algorithm complexity. This also
verifies that it is not the case that more ECG leads are better for classification. This may
be because, in deep learning, more leads will reduce the sensitivity of the convolutional
neural network, and the most important features for disease detection may be submerged
in a large number of features, resulting in a decrease in the classification performance of
the algorithm. Moreover, the algorithm complexity also increases with the number of leads.
Furthermore, when the number of leads is limited (two, three, or four leads), the proposed
method can also provide the optimal solution, which is suitable for portable ECG device
applications. The ablation experiments in Section 3.5 demonstrate that the LAM can help
highlight key leads and improve disease detection performance. Moreover, the weighted
cross-entropy loss function improves the detection performance of categories with low
quantities. The cross-checking experimental results are consistent with clinical theory,
which further verifies the effectiveness of the proposed method. Regarding the utility of
the method, the hardware implementation experiments in Section 3.7 demonstrate that the
ECG detection device based on the proposed algorithm can achieve real-time processing of
ECG signals with high accuracy. The proposed method can provide the most appropriate
algorithm with consideration of the resource limitations on the hardware platform while
ensuring the efficiency of disease detection, which proves its practical value.

4.2. The Comparison with Existing Works

In this section, the classification results of the generated optimal solutions are com-
pared with other existing ECG detection works. Since the detection of arrhythmias is based
on the non-public SH database, the comparison of arrhythmia detection is not given here
to ensure fairness and the results are only compared with other works in MI detection.
Table 18 lists the comparison of MI detection with other works. All results are based on the
inter-patient paradigm.

Table 18. Comparison of existing methods and the proposed method in MI detection.

Research Database ECG Leads Number of
Categories Method ECG Length (s) Acc (%) F1 (%)

[22] 2017 PTB II 2 CNN 0.651 95.22 -
[24] 2017 PTB II, III, avF 2 Shallow CNN 3.072 84.54 -
[14] 2019 PTB All 12 leads 2 SVM 0.8 92.69 83.26
[46] 2020 PTB All 12 leads 2 MLA-CNN-BiGRU 0.651 96.50 -
Proposed PTB I, III, avF, V2, V4, V6 2 GA-LSLO 5 97.62 96.25

PTB: Physikalisch-Technische Bundesanstalt. CNN: convolutional neural network. SVM: support vector machine.
MLA: multi-lead attention. BiGRU: bidirectional gated recurrent unit.

According to Table 18, the proposed method achieved the highest classification ac-
curacy of 97.62% and F1 score of 96.25% using six leads. Overall, compared with other
existing works, the proposed method has obvious advantages. Firstly, it is based on the
deep learning model for disease detection and does not require human intervention in
feature extraction. Secondly, it automatically optimizes the algorithm through a GA. Se-
lecting the optimal lead and segment length for different types of disease (such as MI and
arrhythmia) detection shows strong generalization. Furthermore, the LAM is used in the
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classification process, highlighting the key lead information to achieve a more accurate
disease detection. In addition, the proposed method has lower algorithm complexity than
the methods based on all 12 leads [14,46] and is more flexible than the methods with a fixed
lead combination [22,24]. In summary, the proposed method can ensure the efficiency of
disease detection while optimizing the algorithm with the lowest complexity.

4.3. The Contributions

GA-LSLO extracts the features of every single lead under different segment lengths
(1–9 s) by a modified ResNet to provide the optimal combination of leads and heartbeat seg-
ment length for different disease detection tasks while balancing classification performance
and algorithm complexity. The combination of leads and segment length is represented by
the encoding strategy proposed in the article, and then the optimal solution is obtained
through GA iteration. Compared with other methods using all 12 leads, this method is
more flexible and suitable for portable devices.

According to the lead properties of ECG, the lead attention module (LAM) is proposed
to capture the dependencies between leads, then update each lead map with lead weights.
The LAM is inspired by the channel attention module and it is updated based on the ECG
lead properties. Compared with pure multi-layer perceptron (MLP) classifiers, the LAM
achieves better performance in heart disease detection.

The generalizability of the algorithm is verified using databases of different disease
types. The detection of five categories of arrhythmias in the SH database and the recognition
of MI in the Physikalisch-Technische Bundesanstalt (PTB) database obtains good perfor-
mance. For different databases, the optimal combinations of leads and heartbeat segment
length are automatically generated. Moreover, all experiments are based on the inter-patient
paradigm, which makes the proposed method more practical and generalizable.

Based on the optimal solutions generated by the genetic algorithm, disease detection
devices for arrhythmia and MI are designed using Raspberry Pi, which can realize real-time
processing of ECG signals with high accuracy. It is demonstrated that the proposed method
has developmental potential and can be implemented in portable ECG devices.

4.4. The Limitations

In this paper, the proposed GA-LSLO framework is validated using the SH database
and the PTB database, and the results show that it can provide appropriate ECG segment
length and lead combination solutions for cardiovascular disease detection tasks. The limi-
tation is that some rare cardiovascular diseases (those that require a long-term monitoring
of the patient’s ECG and analysis of the long-term ECG) are not validated. In the future, it
will be one of our important works to continue validating the algorithm using more types
of cardiovascular disease signals to expand the application of our algorithm. In addition,
the hardware implementation is verified on Raspberry Pi, so exploring more hardware
platforms is also one of our future works.

5. Conclusions

Our proposed GA-LSLO framework can generate the optimal ECG segment length
and lead combinations, ensuring the efficiency of disease detection while selecting the
algorithm with the lowest complexity. Moreover, ECG detection devices based on the pro-
posed method are realized in Raspberry Pi, which shows the convenience of the hardware
implementation and the feasibility of the application on portable devices. In the future,
we will apply the algorithm to the detection of other cardiovascular diseases and further
explore the field of portable and wearable medical devices.
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