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Abstract: Colorectal cancer is associated with a high mortality rate and significant patient risk.
Images obtained during a colonoscopy are used to make a diagnosis, highlighting the importance
of timely diagnosis and treatment. Using techniques of deep learning could enhance the diagnostic
accuracy of existing systems. Using the most advanced deep learning techniques, a brand-new
EnsemDeepCADx system for accurate colorectal cancer diagnosis has been developed. The optimal
accuracy is achieved by combining Convolutional Neural Networks (CNNs) with transfer learning
via bidirectional long short-term memory (BILSTM) and support vector machines (SVM). Four pre-
trained CNN models comprise the ADaDR-22, ADaR-22, and DaRD-22 ensemble CNNs: AlexNet,
DarkNet-19, DenseNet-201, and ResNet-50. In each of its stages, the CADx system is thoroughly
evaluated. From the CKHK-22 mixed dataset, colour, greyscale, and local binary pattern (LBP) image
datasets and features are utilised. In the second stage, the returned features are compared to a
new feature fusion dataset using three distinct CNN ensembles. Next, they incorporate ensemble
CNNs with SVM-based transfer learning by comparing raw features to feature fusion datasets. In
the final stage of transfer learning, BILSTM and SVM are combined with a CNN ensemble. The
testing accuracy for the ensemble fusion CNN DarD-22 using BILSTM and SVM on the original, grey,
LBP, and feature fusion datasets was optimal (95.96%, 88.79%, 73.54%, and 97.89%). Comparing the
outputs of all four feature datasets with those of the three ensemble CNNs at each stage enables the
EnsemDeepCADx system to attain its highest level of accuracy.

Keywords: colorectal cancer; ensemble fusion CNNs; bidirectional long short-term memory (BiLSTM);
support vector machine (SVM); CKHK-22 mixed dataset; feature fusion

1. Introduction

Global health has a wide range of complicated aspects. The development of globalisa-
tion has had a significant negative impact on people’s health across the world. People who
reside in underdeveloped countries, where such services may be rare, may be significantly
affected by environmental factors such as air pollution, contaminated water, and poor
sanitation [1]. Despite having improved access to medical care, people living in wealthy
countries still confront challenges, including increased incidence of non-communicable
diseases such as obesity, diabetes, and heart disease brought on by sedentary lives and bad
eating practices. Cultural differences have a big influence on health outcomes, too. The
great variety of cultural practices that exist may make it more difficult to promote universal
health policies and strategies. All individuals must have access to healthcare, education,
and resources to promote healthy lifestyle habits. Environmental problems that contribute
to health inequities must also be addressed.

Cancer, one of the leading causes of mortality, affects individuals all over the globe. It
is a complex problem that requires a comprehensive approach to diagnosis, care, and pre-
vention. According to the World Health Organization (WHO), there will be approximately
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19 million new cases of cancer worldwide in 2020. In 2020, cancer will be responsible
for an estimated 9.9 million fatalities worldwide [2]. Seventy percent of all cancer fatal-
ities occur in low- and middle-income countries, indicating that the disease burden is
not distributed evenly across the globe. Access disparities to cancer-trained healthcare
professionals exacerbate the difficulty of coping with the disease. According to the World
Health Organization, there is a global scarcity of 18 million healthcare personnel, with
the shortage being most severe in countries with low per capita incomes. It is estimated
that there are 1.5 physicians per 1000 persons in the world, but this figure varies widely
based on location and level of prosperity [3]. In low- and middle-income countries, the
lack of qualified medical personnel is a significant barrier to providing effective cancer
treatment. The distribution of healthcare, particularly cancer services, must be enhanced
across regions and socioeconomic classes, necessitating the development of policies to
increase the number of healthcare workers. Additionally, there is a need for increased
investment in research in order to improve cancer care delivery worldwide and develop
more effective treatments for the disease.

An estimated 1.9 million new instances of colorectal cancer (which may affect either
the colon or the rectum) and 935,000 deaths were recorded worldwide in 2020, according to
the World Health Organization [4]. It is the second leading cause of cancer mortality and
the third most prevalent malignancy diagnosed globally. Colorectal cancer is increasingly
prevalent in wealthy nations, although its occurrence varies widely around the globe.
According to the American Cancer Society, the United States has the highest prevalence
of colorectal cancer in the world, with an estimated 145,600 new cases and 51,000 deaths
in 2019 [5]. It is estimated that there are around 45,000 new instances of colorectal cancer
diagnosed each year in India, making it the fourth most frequent disease there. Colorectal
cancer rates have been increasing at a rate of 1.8% per year in India between 1990 and
2016. Cities such as Delhi, Mumbai, and Kolkata have a greater prevalence of colorectal
cancer than rural parts of India [6]. The rising trend in colorectal cancer incidence makes it
a major health issue even if the incidence is lower in India than in industrialised nations.
Particularly in outlying places, it is difficult to have access to adequate screening programs
and medical treatment [7]. Raising awareness and funding programs for early diagnosis
and treatment are essential steps towards reducing the prevalence of colorectal cancer
in India.

A multitude of variables, including but not limited to age, family history, and lifestyle
factors such as smoking, alcohol use, lack of physical activity, and poor nutrition, may
contribute to the high incidence of colorectal cancer. Late diagnosis and poor outcomes
are worsened in low- and middle-income countries by a lack of access to quality screening
programs and healthcare services. Despite these challenges, colorectal cancer may be
avoided if it is discovered early and treated immediately. Screening procedures such as
colonoscopy, stool-based testing, and computed tomography colonography (CT) may all
detect precancerous or early-stage cancers, allowing for more successful treatment [8].

Colonoscopy is the most reliable method for detecting and diagnosing colorectal
cancer at an early stage. The rectum and colon are inspected for polyps and other growths
using a flexible conduit equipped with a miniature camera [9]. Colonoscopy has several
advantages over other colorectal cancer screening methods, including the capacity to detect
and remove polyps. To stop the cancer from spreading to other regions of the body, the
malignant cells must be removed or eradicated. Cancer survival and recurrence rates
could be substantially improved by early detection and treatment. Screenings for colorectal
cancer should be routine. Those who are at risk for colorectal cancer due to their age or
other factors should receive regular screenings. In the United States and Canada, those at
ordinary risk should commence colorectal cancer screening at age 45. Beginning at age 50,
screening is advised in the United Kingdom and other countries. Those with a personal or
familial history of colorectal cancer, as well as those with additional risk factors, may be
advised to begin screening earlier or more frequently.
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Images collected during colonoscopy, a common colorectal cancer screening method,
can be used to train artificial intelligence (AI), machine learning (ML), and deep learning
(DL) systems for computer-aided diagnosis (CADx) [10]. By analysing and interpreting
the colonoscopy images, these diagnostic tools may facilitate a more precise diagnosis of
colorectal cancer. Artificial intelligence (AI), machine learning (ML), and deep learning
(DL) enable CADx systems to process enormous amounts of data quickly and provide
physicians with instantaneous results. Consequently, patients with colorectal cancer may
receive treatment more quickly and experience improved outcomes. In collaboration
with the advancement of AI and ML technologies, the potential for CADx systems to
considerably enhance colorectal cancer screening and detection is growing.

Convolutional Neural Networks (CNNs) are an effective method for detecting and
diagnosing colorectal cancer when applied to colonoscopy images. Convolutional neural
networks (CNNs) are well-suited for identifying polyps and other aberrant growths in
the colon because they evaluate visual input and discover patterns using deep learning
techniques. In recent years, the use of ensemble learning approaches to improve CNNs’
ability to detect colorectal cancer has been investigated [11,12]. Fusion CNNs is one such
technique; it integrates multiple CNN models to create a more dependable and accurate
system. Researchers have demonstrated that fusion CNNs are more effective at diagnosing
colorectal cancer than standalone CNN models. Fusion CNNs combine the strengths of
multiple CNN models to compensate for their shortcomings and provide more precise
and reliable diagnoses [13]. The advancement of these technologies bodes well for their
application in the early detection and diagnosis of digestive tract malignancies.

Diverse methods, such as Fusion CNNs, bidirectional long short-term memory (BIL-
STM) networks, and support vector machines (SVMs), have been used to examine the
accuracy of identifying colorectal cancer from colonoscopy images. The term “transfer
learning” refers to the process of adapting a neural network’s training on one task to
another task that is similar [14]. A neural network can be trained on a massive dataset of
generic medical images using transfer learning in order to detect colorectal cancer. BILSTMs
are a type of recurrent neural network that can process data sequences both forward and
backward. BILSTMs have been demonstrated to be effective for analysing colonoscopy
images due to their ability to detect both local and global patterns. Support vector machines
(SVMs) are classification applications of supervised learning algorithms. They function
by identifying the optimal hyper-plane for data clustering. There is evidence that com-
bining SVMs with BILSTMs and transfer learning improves the diagnostic accuracy of
colorectal cancer.

The proposed CADx for colorectal cancer detection, the EnsemDeepCADx system,
employs a multistage technique in order to locate and identify polyps that may be indicative
of the disease.

• The initial stage is to generate a dataset for feature fusion by combining the CKHK-22
mixed image datasets with others, such as the Grey and LBP datasets.

• Developing and training three ensemble fusion CNNs using the feature fusion CNN
and the other featured datasets is the next step.

• In the subsequent stage, all CNNs are trained with SVM and transfer learning.
• In the final stage, temporal and spatial information is extracted using transfer learning

ensemble fusion CNNs with BILSTM and SVM multi-class classification.
• At each stage, the EnsemDeepCADx model is inspected for inconsistencies and other per-

formance metrics, and the resulting data is compared to determine the optimal approach.

1.1. Organisation of Study

The research article is divided into multiple sections. The second section provides a
comprehensive literature review of the extant studies and research relevant to the proposed
CADx system for diagnosing colorectal cancer. In Section 3, the study’s materials and
methods are enumerated and explained in depth. This comprises the dataset used, method-
ologies for feature extraction, and training and testing procedures for the proposed CADx
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system. The results of the experiments, including performance metrics, are presented
and discussed in Section 4. Section 5 concludes the research by summarising the main
findings, discussing the study’s limitations, and proposing future research directions in
this area.

1.2. Literature Survey

Alba Nogueira-Rodriguez et al. [15], who identified and categorised polyps using
DL techniques, extensively discussed polyps as significant precursors to colorectal cancer.
As inputs for DL-based systems, they examined colonoscopy datasets for public and
commercial use. In addition, the authors examined the numerous DL technologies currently
used in cancer diagnosis. Specifically, they investigated the DL-based CADx system used
to detect malignancy on computers. Precision, recall accuracy, and F1 score are all valuable
metrics for evaluating the classification performance of a DL-based system. The authors
also discussed the difficulty of accurately identifying lesions smaller than 5 mm and how
DL techniques may be able to assist with this issue. Although this study employs DL to
identify cancer lesions, the authors do not provide a streamlined method.

Hwang, Y.K. et al. [16] proposed a method that employs convolutional neural net-
works (CNNs) to automatically identify and classify colorectal lesions. This study utilised
a compilation of colonoscopy images obtained from the Tada Tomohiro Institute of Gas-
troenterology and Proctology in Japan. The compilation included 16,418 images from
12,895 patients between December 2013 and March 2017. After being pre-processed, the
enhanced images were used in the system’s training and testing phases. For polyp detection
and classification, the system utilised the Single Shot Multibox Detector (SSD), a neural
network with 16 convolutional layers. Caffe, a framework for deep learning, was used to
construct and test CNN. White-light imaging facilitated an 83% detection rate for colorectal
lesions and a 97% detection rate for adenomas. However, pre-trained or isolated datasets
were not used to evaluate the effectiveness of the system in this study.

Omneya Attallah et al. [17] introduced gastro-CADx for the first time, which is a
deep learning-based method for categorising numerous GI disorders. This technique is
composed of three stages. Initially, spatial information is extracted using four distinct CNNs
as feature extractors. In the second phase, the temporal-frequency and spatial-frequency
characteristics are used as inputs for the discrete wave transform (DWT) and discrete cosine
transform (DCT), respectively. In the final phase, the optimal feature set is determined by
combining multiple feature sets and analysing their influence on the CADx output results.
Dataset I is the Kvasir dataset, while Dataset II is the Hyper Kvasir dataset. The concept of
semantic segmentation for the localisation and detection of malignant polyps has not been
clarified, nor has the method been validated with additional datasets.

Muthu Subhash Kavitha et al. [18] highlighted convolutional neural networks (CNN)
as a potential solution for datasets consisting of colonoscopy images in their discussion of
deep learning approaches for the early diagnosis of colorectal cancer. The researchers com-
pared numerous techniques for identifying and localising lesions in the colorectal region,
such as CNN transfer learning, end-to-end learning, hybrid learning, and explainable AI.
However, the authors discussed only the theoretical aspects of these methodologies and
made no reference to experimental or actual work.

Zheng Cao et al. [19] proposed using Raman spectra and a method of deep learning
to identify colorectal cancer cases. The authors obtained Raman spectroscopy data from
26 patients with colorectal cancer. The Raman displacements of the patients ranged from
385 cm−1 to 1545 cm−1. These datasets were submitted to a 1D-ResNet CNN to generate
classifications. The investigation revealed a detection success rate of 98.5% for colorectal
cancer. One CNN model was employed for cancer identification, but it was not evaluated
on other image datasets. It is also believed that Raman spectroscopy of the colorectal region
is a time-consuming and laborious process.



Bioengineering 2023, 10, 738 5 of 36

Mahmoud Ragab et al. [14] provided the optimal deep transfer learning strategy for
the early detection of colorectal cancer. This study detected colorectal cancer using an
algorithm inspired by slime mould (SMADTL-CCDC) and deep transfer learning. The
primary objective of the SMADTL-CCDC strategy is to detect colorectal cancer at an early
stage. This study employed the dense-EfficientNet method to generate feature vectors
from the pre-processed images. We were able to identify and classify cases of colorectal
cancer using SMADTL-CCDC and the Discrete Hopfield Neural Network (DHNN) method.
The SMADTL-CDC model performed better than more recent methods. For testing, fewer
histopathological datasets were utilised than for training; the ratio was 90:10. Consequently,
the concept’s utility may be limited.

Saban Ozturik et al. [20] investigated the efficacy of artificial intelligence methods in
producing an accurate colon cancer diagnosis. In particular, the study compared the efficacy
of numerous CNN models on a small collection (2000–6000 images) of colonoscopy image
datasets. Each CNN pooling layer from models such as AlexNet, GoogleNet, and ResNet50
was converted into an LSTM layer for use in the overall classification procedure. There
were only three CNN models examined, and a large reference dataset for colonoscopy was
not utilised.

Using a deep learning-based polyp detector, Meryem Souaidi et al. [21] hypothesised
an anomaly in the polyp area of WCE and colonoscopy localisation and visualisation. The
authors recommend an MP-FSSD polyp identification model constructed on VGG-16 back-
bones. However, only convolutional neural network (CNN) models such as VGG-16 are
employed, and neither their benefits nor drawbacks are discussed in this study. In addition,
the authors analysed only the WCE and CVC clinic database sets for polyp detection.

Nguyen Thanh Duc et al. [22] proposed a novel deep learning technique for detecting
lesions in the colon. To aid in the detection of lesions in colonoscopy images, scientists
have developed “ColonFormer”, a deep learning architecture based on the concept of
semantic segmentation. In the proposed encoder–decoder architecture, a lightweight
encoder modelling global semantic connections across scales is combined with a hierarchical
decoder to enhance feature representations. Using five distinct reference datasets, the
authors evaluated the efficacy of the proposed method. This model incorporates the
advantages of a transformer and a CNN to generate accurate multiscale representations
of features. It can, however, only analyse data from five distinct datasets and a single
architecture. The findings of the breakthrough comparison analysis strongly suggest that
this strategy has produced the best results.

Saito et al. [23] used anatomical images from robotic colonoscopies in a study that
relied on classification by a deep convolutional neural network. The most prevalent
locations for colon cancer are the terminal ileum, cecum, ascending colon, transverse colon,
descending colon, sigmoid colon, rectum, and anus. To identify potentially malignant
cells in the colon, scientists developed a CNN-classified CAD system. Multiple sets of
colonoscopy images, up to and including 9995, were used to evaluate the capability of
the CAD system to provide exhaustive findings for the entire colon. This study utilised
real-time data from colonoscopies performed from January to October 2017. GoogleNet,
CNN’s primary model, has an aggregate accuracy of 91.7% across 507 images. There are
additional CNN models, but they were not examined in this study. Moreover, there is
a substantial underutilisation of the numerous datasets that are accessible for this type
of research.

2. Materials and Methods

This study’s primary objective is to develop a trustworthy system for the automated
and human-reviewed detection and classification of colorectal cancer. The research suggests
developing a CADx (Computer-Aided Diagnosis) [24] system for this purpose, which is
EnsemDeepCADx. The proposed method analyses and interprets colorectal medical images
using cutting-edge technology to expedite the diagnostic process. Figure 1 is a visual
representation of the block diagram of the proposed system, which details the diagnostic
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procedure’s different stages. The EnsemDeepCADx system seeks to provide accurate and
rapid colorectal cancer detection by combining automated analysis with human knowledge,
which may contribute to enhanced patient outcomes and disease management.
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2.1. Colonoscopy Medical Motion Images

During a colonoscopy, medical images are captured as the colonoscope is passed
through each section of the intestine. To begin the procedure, the colonoscope is inserted
into the rectum and cecum on the right side of the lower abdomen. The colonoscope is
inserted through the right side of the abdomen and travels through the ascending colon,
transverse colon, and descending colon. The colonoscope is used to access the sigmoid
colon, which connects the lower left abdomen to the upper right. The connected camera
captures high-resolution images as the colonoscope passes through each segment, enabling
clinicians to carefully examine the colon’s walls for irregularities or diseases, such as polyps
or fibroid tumours. These images are essential for the precise diagnosis and staging of
colorectal cancer because they enable clinicians to identify and monitor the progression
of abnormal tissue in the colon. In conclusion, the colonoscopy procedure stores medical
images of the entire length of the colon, allowing doctors to detect and diagnose problems
in this vital digestive organ.

Datasets

The colonoscopy medical image collections are accessible to anyone with internet
access. Various online resources offer the CVC Clinic DB [25], Kvasir2 [26,27], and
Hyper Kvasir [28,29] datasets, among others, for free download. There may be any-
where from two to twenty-three subclasses labelled for the lower and upper gastroin-
testinal tracts, depending on the extent of the dataset. CVC Clinic DB contains a total of
1640 images, equitably divided between polyps and non-polyps. Eight distinct classes are
represented in the 8000 images comprising the Kvasir2 dataset. The Hyper Kvasir collec-
tion contains 10,672 images divided into 23 subclasses that represent the lower and upper
digestive systems.

Classes are further organised and labelled into 24 classifications, resulting in a new
mixed dataset named CKHK-22 that combines the previously mentioned datasets. The
diverse collection of data contains 19,621 images. However, fourteen of these classifica-
tions are extremely unbalanced, which may hinder the performance of image classification
techniques. Using the 24-class mixed CKHK-22 datasets, they discovered that the large
bias towards these 14 classes resulted in a decline in accuracy and severe misclassifica-
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tion. By disregarding the 14 problematic classes, the authors of this study were able to
improve the accuracy and efficacy of the system by concentrating on the most stable classes
and images.

To surmount the limitations of the mixed dataset and enhance the performance and
accuracy of image classification, the authors conducted experiments with the 10 most con-
sistent classes from the dataset. The image collection used in this classification experiment
is composed of 14,287 images equitably distributed across 10 balanced classes based on the
colon component type. The distribution of the heterogeneous CKHK datasets is shown in
Table 1. This approach increased the system’s adaptability to user requirements.

Table 1. Description of dataset images.

Classes CKHK-22 Mixed Dataset Images

0 bbps-0-1 653

1 bbps-2-3 1148

2 cecum 2009

3 dyed-lifted-polyps 2003

4 dyed-resection-margins 1990

5 non-polyps 818

6 polyps 818

7 pylorus 2150

8 retroflex-stomach 765

9 z-line 1933

Total images in dataset 14,287

The CKHK-22 mixed dataset consists of 14,287 images from 10 distinct classes (bbps-
0-1, bbps-2-3, cecum, dyed-lifted-polyps, dyed-resection-margins, non-polyps, polyps,
pylorus, retroflex-stomach, and z-line). In terms of total images, class sizes vary from
653 for bbps-0-1 to 2150 for pylorus. The collection contains images from a variety of
endoscopic techniques, including magnified narrow-band imaging (NBI) endoscopy, white
light endoscopy (WLE), and chromoendoscopy. The dataset was constructed to facilitate
the development of an EnsemDeepCADx system for image classification of colorectal
cancer. Figure 2 depicts sample images from the CKHK-22 mixed dataset, which consists of
14,287 images in 10 classes.

2.2. Image Pre-Processing

Image pre-processing is crucial for improving image quality and classification model
efficacy in colonoscopy images [30]. To facilitate the processing of images by deep learning
models, it is customary to resize them to a uniform resolution of 224 by 224 pixels as part
of the initial processing phase. Noise reduction is performed to prevent models from
misclassifying data or omitting features. This includes removing imperfections such as
grain, specks, and distortions. By colour correction, images’ colour balance can be made
more consistent, which aids in classification. Normalisation helps standardise the pixel
intensity values across the entire dataset, which is crucial for the efficient operation of
various algorithms. Together, these pre-processing techniques optimise the classification
quality of colonoscopy images.
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2.2.1. Google Cloud

The procedures for uploading the CKHK-22 dataset of colonoscopy medical images to
Google Cloud for use with Co-lab [31] are as follows:

• Sign up for Google Cloud and create your first project to start;
• To begin storing the data, create a new container using the Cloud Storage interface;
• Using the Cloud Storage user interface or the command line utility, the CKHK-22

dataset may be added to the container;
• Ensure that the bucket is accessible to the public before uploading the data;
• Launch Google Authenticator and log in to your Co-lab account;
• Using gcsfuse, it can mount the container to Co-lab and access its contents as you

would any other local disc;
• After mounting the container, the CKHK-22 dataset in Co-lab becomes as accessible as

if it had been saved locally.
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This article describes how to upload the CKHK-22 dataset of colonoscopy medical
motion images for analysis and processing using Google Cloud and Co-lab.

2.2.2. Image Augmentation

Image augmentation is a method for artificially increasing the size of a dataset by
synthesising new images from the originals using a variety of techniques [32]. In the context
of the colonoscopy dataset, image enhancement involves altering the relative proportions of:

• Resize: creates images that are 224 by 224 pixels in dimension;
• Noise reduction enhances image clarity by removing distracting ambient noise;
• Image colour correction is the process of standardising the image’s colour distribution

to reduce variations;
• Using the zoom function, it can double or halve the image size;
• Images can be rotated by a maximum of 15 degrees;
• The horizontal flip function mirrors the image by horizontally rotating it.

These modifications enhance the aesthetic allure of the images and reduce the likeli-
hood of over fitting during training. The augmented images are then added to the original
dataset, expanding and diversifying it, which may improve the model’s precision and re-
silience. Using the enhanced dataset, the deep learning model is then trained on a platform
such as Google Co-lab.

2.3. Train Test Split

The CKHK-22 dataset contains 14,287 images and 10 classes, as previously described.
To facilitate model training and evaluation, the dataset is divided into a training set and a
test set with a 70:30 division [33]. This indicates that 10,001 images (or 70% of the data) are
used to train the model, whereas 4286 images (or 30% of the data) are reserved for evaluating
the model on new data. The training set is used to teach the convolutional neural network
to recognise patterns and make accurate predictions. To evaluate the generalisability of
a model, its efficacy on new data (the test set) is evaluated. This technique prevents the
model from being over fit to its training data, which could lead to substandard results when
applied to novel data. By separating the dataset into training and test sets, the efficacy of
convolutional neural networks for image classification can be evaluated more precisely on
new data, allowing for a more accurate evaluation of the model’s performance.

2.3.1. Extracting Grey Scale Features from Original Image Dataset

As a typical method in image processing, converting colour images to greyscale re-
moves colour differences that may not be pertinent to the work at hand and compresses the
data [34]. Greyscale conversion of the colour images in the CKHK-22 dataset may facilitate
the classification process by eliminating colour-based information that is superfluous to the
objective at concern. Greyscale images are produced by linearly combining the red, green,
and blue (RGB) channels of the original colour image. In a greyscale image, the intensity
values of individual pixels are calculated as follows:

I = 0.2989 × R + 0.5870 × G + 0.1140 × B (1)

where, here, we symbolise the greyscale intensity and R, G, and B represent the original
colour image’s red, green, and blue values. The brightness levels of the three colours are
used to calculate these coefficients, with the red channel carrying the least weight and the
green channel carrying the greatest.

The CKHK-22 colour images may be converted to greyscale by following these steps:

• Use a library for processing images, such as OpenCV, to read the source colour images;
• Apply the following formula to transform every image from the RGB colour space

into the greyscale colour space;
• Create a new folder to store the greyscale images in so they may be used in the image

classification model’s testing and training stages.
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Since greyscale images only have one channel as opposed to colour images’ three, this
transformation simplifies the dataset and speeds up the training process. This may also
lessen the likelihood of the model being overfit to colour-specific traits that might not transfer
well to other images. The pattern recognition and classification accuracy of convolutional
neural networks (CNNs) can be enhanced by extracting greyscale image features from the
CKHK-22 mixed dataset. By applying convolutional filters to the greyscale images, CNN
can recognise edges, lines, and forms. The image is classified into one of ten classes after
combining and supplying these features to entirely linked layers. By extracting greyscale
image features, the model’s overall efficacy and performance on image classification tasks
may be improved. The greyscale images are depicted in Figure 3. The conversion of the
original colour images was used to generate the other type of CKHK-22 datasets.
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2.3.2. Extracting Local Binary Pattern Features from Greyscale Dataset

Local binary pattern (LBP) features are extracted from greyscale images to generate the
LBP CKHK-22 dataset. The texture descriptor is then applied to the greyscale image, and a
binary pattern is computed for each pixel based on the values of the adjacent pixels. The
LBP operator establishes the pattern by comparing the central pixel’s intensity to that of its
immediate companions. The value 1 is allocated to neighbouring pixels whose intensities
are greater than or equal to the central pixel, while the value 0 is assigned otherwise. A
pixel’s texture pattern is depicted by the decimal value obtained by translating its binary
pattern [35]. The LBP features are extracted by sliding a 3 × 3 window across the greyscale
CKHK-22 images and computing the LBP pattern for each pixel in the window. This
procedure is repeated for each pixel, resulting in a new image in which each pixel has
an LBP value. A histogram is then generated for each of the 16 × 16 non-overlapping
segments that comprise the LBP image. The histograms constitute the LBP feature vector
of the image.

The procedures for converting greyscale Images into LBP features are as follows:

• Create greyscale images that are typically 3 × 3 or 5 × 5 pixels in size;
• Determine the LBP of each pixel in the region by comparing its intensity to that of its

neighbouring pixels;
• Replace the pixel’s original intensity value with a binary code representing the pattern

of intensity differences between the central pixel and its companions;
• The LBP values of each pixel in the sub-region are added together to generate a

singular LBP code;
• To generate a full set of LBP codes, the procedure must be repeated for each im-

age’s subregion;
• To generate a feature vector that adequately characterises the image, the LBP codes

are aggregated across the entire image using a histogram-based technique.

The resulting LBP CKHK-22 dataset contains ten classes and 14,287 greyscale images
annotated with LBP features, 70:30 divided between a training set and a test set. These LBP
features capture the texture information present in colonoscopy images, which is necessary
for accurate image classification. The greyscale images are depicted in Figure 4. The con-
version of the greyscale images was used to generate the other type of CKHK-22 datasets.

2.3.3. Feature Fusion as New Dataset

The EnsemDeepCADx system for detecting colorectal cancer employs a multi-stage
strategy that incorporates various features to effectively detect and identify polyps, with
feature integration constituting an integral part of the system [36]. To extract features from
the CKHK-22 dataset, they employ local binary patterns (LBPs), greyscale images, and
raw RGB images. The result of combining these three datasets is the feature fusion dataset.
Combining the full-size dataset with the greyscale and LBP datasets along the feature
dimension yields a new dataset with three times as many images as the full-size dataset.
The combined feature fusion dataset contains 42,861 images from the same 10 classes, with
each of the three datasets contributing 14,287 images.

The derived features from the three datasets are combined into a singular feature
vector during the fusion procedure. Combining several feature vectors by concatenat-
ing them along the feature dimension is one technique for fusing features [37]. Con-
sidering an input image size of 224 × 224, the original RGB dataset would consist of
3 × 224 × 224 = 150,528 features per image. Applying the same formula to the greyscale
and LBP datasets would result in 50,176 and 2,650,816 features per image, respectively.
Therefore, the final feature vector for each image in the feature fusion dataset would contain
a total of 3 × 224 × 224 + 224 × 224 × 59 = 2,827,008 features.
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The EnsemDeepCADx system relies significantly on the process of feature fusion,
which unifies disparate data sources into a single representation. After feature fusion, the
final dataset is typically divided 70:30 between training and testing datasets. The mere
size of datasets such as ImageNet necessitates transfer learning at this time so that STM
and SVM classifiers are then employed to classify the CNN-obtained features. CNNs can
utilise the features learned by ensemble fusion CNN models. BiLSTM and SVM classifiers
are then employed to classify the CNN-obtained features. Ensemble fusion CNNs trained
with BiLSTM and SVM classifiers via transfer learning may enhance disease detection and
diagnosis. All features extracted from the original CKHK-22 colour images, including grey
and LBP images, are merged to create a new dataset termed the feature fusion dataset, as
depicted in Figure 5.
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2.4. Image Classification Using Ensemble Fusion CNNs

When it comes to image classification in EnsemDeepCADx, ensemble fusion CNNs are
an excellent method for increasing the accuracy of predictions. This method produces an
enhanced model by integrating multiple convolutional neural networks (CNNs) [38]. The
aDaDR-22, aDaR-22, and DaRD-22 models represent a handful of instances of ensemble
fusion CNNs applied to the CKHK-22 dataset.

The ADaDR-22 model consists of four previously trained networks: AlexNet, DarkNet-19,
DenseNet-201, and ResNet-50. AlexNet is renowned for its accuracy and speed when
processing complex data, while DarkNet-19 is admired for its speed and performance.
DenseNet-201 is optimised for processing intricate features and correlations, whereas
ResNet-50 is suitable for deep learning due to its skip connections. The ADaDR-22 model
combines the most beneficial features of both varieties to achieve superior performance.
aDaR-22 incorporates AlexNet, DarkNet-19, and ResNet-50, three models that were previ-
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ously trained. This model resembles aDaDR-22, with the exclusion of DenseNet-201. This
model’s objective is to simplify it while maintaining a high level of precision. DarkNet-19,
ResNet-50, and DenseNet-201 are the DaRD-22 model’s construction elements. This model
performs extremely well for complex data with associated properties. The DaRD-22 model
integrates these three models to perform a wide range of image classification tasks effi-
ciently and accurately.

During ensemble fusion, multiple CNN models are combined into a single, larger
model. In order to diagnose colorectal cancer, the CADx system analyses and combines
the most effective features from four pre-trained models into a single robust model. This
method generates more precise and reliable forecasts than a single model could. Figures 6–9
show the four pre-trained CNN models. AlexNet is composed of three fully connected
layers and five convolutional layers. Rectified Linear Units (ReLU), a nonlinear activation
function that accelerates training, are utilised. With the aid of local response normalisa-
tion and maximum aggregation, overfitting is minimised. AlexNet [39] was trained with
1.2 million images from 1000 classes, and it has a total of 60 million parameters. Multiple
computer vision initiatives continue to employ this architecture. DarkNet-19 is a neural net-
work architecture specifically designed for object recognition. It is a condensed version of
the DarkNet-53 architecture found in the popular YOLOv3 object detector. DarkNet-19 [40]
is composed of 19 convolutional layers based on the YOLOv2 architecture. To accomplish
this, hybrid architecture composed of convolutional and max pooling layers is utilised. To
facilitate gradient propagation and prevent gradients from dissipating, the network incor-
porates shortcut connections. DarkNet-19 employs batch normalisation and leaky ReLU
activation functions to improve the training process and reduce overfitting. Compared to
more complex models, DarkNet-19 uses fewer computational resources while maintaining
high object identification accuracy. DenseNet-201 [41,42], upon which it is constructed, is
praised for the dense interconnections that define its architecture. DenseNet-201 transmits
feature maps downward through the layers, with each successively higher layer receiving
the feature maps from all lower layers. By increasing gradient flow and utilising features,
dense connections improve accuracy with fewer parameters. The dense structural elements
consist of interconnected levels and systems. To reduce the spatial dimensions of the
feature maps, they are divided into dense units and connected by transition layers such as a
convolutional layer, a pooling layer, and a batch normalisation layer. After a global average
pooling layer and a fully connected layer with a SoftMax activation function, the final
layer of the network outputs the predicted class probabilities. ResNet50 [43,44] is a neural
network with 50 convolutional, pooling, and fully connected layers. Residual connections
enable the training of more complex networks and the learning of residual functions.
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The purpose of this study is to integrate the beneficial features of multiple deep
learning models. Specifically, the objective is to construct a model capable of extracting
high-level features comparable to AlexNet, while employing the efficiency and lightweight
design of DarkNet-19. In addition, the model intends to resolve the issue of DenseNet-201’s
vanishing gradients and effectively manage the complexity of deep networks such as
ResNet-50. The enhanced accuracy and performance of the resulting model are the result
of its capacity to extract multiple features from complex datasets. There are numerous
advantages to utilising multiple CNNs as opposed to one. Ensemble fusion CNNs uses
the most accurate aspects of multiple models to enhance accuracy. Besides being more
adaptable, these varieties are frequently more secure. Through ensemble fusion CNNs,
overfitting, which occurs when a model becomes overly specific to the training data and
underperforms on new data, can also be avoided. When applied to large, complex datasets
such as CKHK-22, ensemble fusion CNNs such as aDaDR-22, aDaR-22, and DaRD-22 may
significantly improve the accuracy of image classification. The detailed parameters of the
ensemble fusion CNNs are described in Table 2.

Table 2. Number of parameters of CNNs.

CNN Architecture Models Introduced Year Total Params Trainable Params Non-Trainable Params Layers

ADaDR-22 2022 89,491,098 47,570,314 41,920,784 293

ADaR-22 2022 70,062,380 46,463,580 23,598,800 92

DaRD-22 2022 61,401,236 19,501,588 41,899,648 270

2.4.1. Bidirectional LSTM

Recurrent neural networks (RNNs) such as the Bidirectional Long Short-Term Mem-
ory (BILSTM) can process data sequences that contain both past and future information.
BILSTMs are bidirectional RNNs, which means they can process information in both di-
rections [45]. This makes the network a useful tool for predicting data sequences, as it can
store both historical and future data. A BILSTM is constructed using two LSTM networks,
one for processing the sequence forward and the other for processing the sequence reverse.
The final result is the combined output of the two LSTMs [46]. This architecture is especially
advantageous for applications requiring voice recognition, natural language processing,
and image captioning, as it permits the network to acquire both immediate and deferred
dependencies in the sequence. BILSTMs are utilised in the creation of image captions. The
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network is trained on a vast corpus of image–caption pairings for it to comprehend the
underlying patterns and correlations between the visual elements of the images and the
text description. Once the network has been trained, it can respond to any given image
with a caption. The BiLSTM architecture is shown in Figure 10.
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In the EnsemDeepCADx system, BILSTM may be utilised as an additional model
to the ensemble fusion CNNs in order to improve classification accuracy. This is known
as transfer learning. The BILSTM is pre-trained on a large dataset, such as ImageNet, to
acquire generic image features. To further aid in the classification of colonoscopy images,
these learned features may be transferred to the CADx system. Using the output features
from the ensemble fusion CNNs, the BILSTM can discover temporal connections between
image features. Due to the sequential nature of colonoscopy recordings, temporal data
may be beneficial for identifying the images. The BILSTM may be beneficial for detecting
early warning signs of cancer because it can record changes in image features over multiple
time periods.

2.4.2. Support Vector Machines

Support vector machines (SVMs), a type of supervised machine learning technique,
can be utilised to perform classification and regression analysis [47]. SVMs can be used for
classification and regression, which can both be linear or non-linear. SVMs aim to identify
the optimal hyperplane for classifying a dataset into its constituent classes. SVMs employ
n-dimensional (as many as the number of features in the dataset) plots of data points. The
method then identifies the hyperplane that partitions the data into classes. Support vectors
are the closest data points to the hyperplane, hence the name support vector machines.

Transfer learning can be used in tandem with multi-class SVMs by employing previ-
ously trained models as feature extractors [48]. The SVM algorithm may use as an input
the features derived from the pre-trained models to classify data. Using pre-trained models
to extract useful features can be advantageous when working with small datasets, as it
eliminates the need for extensive training data. Transfer learning is utilised in conjunction
with ensemble fusion CNNs and BILSTM in the EnsemDeepCADx system’s training on the
CKHK-22 mixed dataset to extract features from the dataset. Finally, the generated feature
vectors are fed to a multi-class SVM classifier for classification. This method permits the
incorporation of temporal information into the feature vectors using BILSTM and the use of
multiple pre-trained models to extract supplementary features. This method may improve
the overall accuracy and efficacy of image classification for colorectal cancer.
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2.5. The Classification Step

The procedure of the entire EnsemDeepCADx system classification process is de-
scribed as follows:

• The input CKHK-22 mixed dataset contains 10 classes and 14,287 images;
• Before extracting local binary pattern (LBP) features, images from the CKHK-22 mixed

dataset are converted to greyscale as part of the pre-processing step. The feature
fusion dataset is created by combining these features with the RGB features from the
original dataset;

• The CADx system’s ensemble fusion CNNs consist of four pre-trained CNN models:
AlexNet, DarkNet-19, DenseNet-201, and ResNet-50. aDaDR-22, aDaR-22, and DaRD-
22 are combined in three ways to create a more robust and accurate CNN model. The
original RGB images and LBP features extracted from greyscale images are used to
train ensemble CNNs on the CKHK-22 mixed dataset;

• The BILSTM recurrent neural network is capable of processing data sequences in both
forward and reverse directions. In the EnsemDeepCADx system, the BILSTM is used
as a transfer learning technique to enhance the efficacy of the ensemble CNNs. The
resultant sequence of image features is then processed by the BILSTM layer, which
receives input from the CNN ensemble. This method may improve the accuracy of a
classification model by capturing temporal dependencies and correlations between
visual features;

• SVMs are a family of machine learning algorithms used for classification and regression
testing. SVMs are utilised as a post-processing stage in the EnsemDeepCADx system
following the acquisition of classification results from an ensemble of CNNs and a
BILSTM. An SVM classifier receives the results from the BILSTM layer and transforms
the features into a higher dimension using a kernel function. The SVM classifier
searches for the hyperplane that divides the input features into distinct categories
in order to classify them. This technique helps improve the classification model’s
accuracy by reducing false positives and enhancing class separation. This discovers
how to partition data into the ten classes provided as input;

• Before performing transfer learning using ensemble CNNs, the final fully connected
layer and SoftMax activation layer were eliminated from each CNN model. The feature
maps produced by the final convolutional layer of each CNN were then provided
to the BiLSTM layer. A total of 64 hidden units within the BiLSTM layer employed
the tanh activation function. The output of the BiLSTM layer was input into a fully
connected layer consisting of 32 hidden units and the ReLU activation function after
final classification using a multi-Class SVM;

• Training the models: in this EnsemDeepCADx system, it can train the models using
the pre-processed datasets and the hyperparameters specified for each model. The
EnsemDeepCADx system can use techniques such as early stopping and learning rate
scheduling to optimise the training process;

• Evaluating the models:Ie EnsemDeepCADx system can evaluate the models on the
test set using metrics such as accuracy, precision, recall, and F1 score. In this system,
the efficacy of a model is evaluated by producing ROC curves and calculating the area
under the curve (AUC). To evaluate the efficacy of the trained models in real-world
scenarios, an independent set of images from the CKHK-22 mixed dataset is used.

• Future images of colorectal cancer can be identified accurately using the completed
EnsemDeepCADx system.

Figure 11 depicts the classification architecture, which integrates ensemble fusion
CNNs with BiLSTM and multi-class SVM.
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The classification procedure within this EnsemDeepCADx system consists of four
experimental stages.

Stage 1:The CKHK-22 mixed image dataset is pre-processed to extract features from the
original RGB images, as well as grey and LBP images, resulting in the creation of
three new feature datasets. These three datasets are then merged to form a new
feature fusion dataset.

Stage 2: Three ensemble fusion CNN models—ADaDR-22, ADaR-22, and DaRD-22—are
trained and tested with each of the four feature datasets (original, grey, LBP, and
feature fusion).

Stage 3: The three trained ensemble fusion CNN models are combined with BiLSTM models
through transfer learning. The resulting models are then trained and tested with
each of the four feature datasets.

Stage 4: The three trained ensemble fusion CNN models are combined with BiLSTM and
multi-class SVM models through transfer learning. The resulting models are then
trained and tested with each of the four feature datasets.

The performance metrics obtained at each stage are then compared to determine which
ensemble fusion CNN with BiLSTM and multi-class SVM provides the best recognition of
colorectal cancer. The flow of the four stages is explained in detail in Figure 12.

The EnsemDeepCADx system developed in this study excels due to its novel com-
bination of DaRD-22 ensemble fusion CNNs, bidirectional long short-term memory (BiL-
STM), and support vector machines (SVM). This multimodal approach enables compre-
hensive analysis and diagnosis of colorectal cancer. The CKHK mixed dataset contains
14,287 images from nine distinct classes. We recognise the value of benchmarking against
previous AI imaging methods, but it is essential to note that the primary objective of our
research was to propose a novel method that combines ensemble learning and multimodal
methodologies. Our research seeks to ascertain whether or not this combination improves
the accuracy of colorectal cancer detection.
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3. Experimental Setup

This article contains the experimental outcomes of the EnsemDeepCADx system. All
testing was conducted on computers equipped with all the required hardware and software.
This project’s software was chosen based on its compatibility with the system’s hardware
and the task at hand. The studies utilised these software and hardware configurations
because they were determined to be optimal for attaining the desired outcomes. The
CADx system was deployed on a Dell Precision Tower T5810 machine outfitted with a
2.20 GHz Intel® Xeon® CPU core i7 E5-2630 processor and 32 GB of RAM. The NVIDIA
Xp GPU accelerated the system’s processing power, making the deep learning models
more accessible. The software stack included Keras and TensorFlow 2.7.0 as deep learning
libraries, while the underlying operating system was Google Co-lab Pro+ running on
Python 3.7.12. The ensemble fusion CNN models, BiLSTM models, and SVM models
all used these libraries for training and testing. The EnsemDeepCADx system system’s
hardware and software components were hand-picked to meet the demanding processing
needs of the deep learning models and provide rapid, accurate classification.

This EnsemDeepCADx system relies heavily on its datasets. There are 10 classes
for CKHK-22 in a mixed-dataset representation. Medical colonoscopy motion images are
archived and made available for CNN training in all the various data classes. Each of
the four feature types—original, grey level, LBP, and the merged dataset of original, grey
level, and LBP—had their own training and testing sets inside the CKHK-22 dataset. Each
feature type had a training set of 10,000 images and a testing set of 4287. There was a
total of 42,861 images in the feature fusion dataset, including 30,000 training images and
12,861 testing images.

All datasets were subjected to transfer learning using BiLSTM and multi-class SVM,
and ensemble fusion CNNs were used for experimental research. The hyperparameters
were considered while planning the experiments. The batch size was 32, the learning rate
was 0.0001, momentum was 0.9, and the number of epochs was 30. The optimiser was
Adam. With a dropout rate of 0.5 and a batch size of 32, 30 epochs were used to train the
BILSTM model. The multi-class SVM model utilised a linear kernel with a C value of 1.0.
However, the batch size was increased to 128 to assure the seamless operation of the system
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on the 42,861-image feature fusion dataset. These hyperparameters were determined
through a combination of empirical testing and comparative project data analysis.

Integrating multiple CNNs may result in the model becoming excessively complex,
overlearning, and overfitting. Our research has taken several measures to resolve this issue.
We have used regularisation techniques, including the dropout and weight decay, to reduce
model complexity and prevent overfitting. These methods have the potential to reduce
the danger of overlearning by employing regularisation constraints during training. Early
stopping is a technique for terminating training early based on a model’s performance on a
validation set. In order to prevent overlearning, training is terminated when no additional
progress can be made or no negative effects can be observed. The hyperparameters of our
model are optimal, establishing a balance between overfitting and underfitting. Changing
the learning rate, sample size, and model architecture are a few of the numerous ways to
avoid overlearning.

4. Results

The EnsemDeepCADx system was created to detect colorectal cancer by fusing to-
gether several variables from the CKHK-22 mixed dataset. Using the original, greyscale,
LBP, and feature fusion datasets, three ensemble CNNs were merged with BiLSTM and
multi-class SVM to boost the system’s accuracy.

Accuracy, precision, the F1 score, and recall were utilised as performance indicators to
evaluate the effectiveness of the system. For each model set, the ROC and confusion curves
were also mapped out. These measurements are the result of the following equations:

Accuracy = (True Positives + True Negatives)/(True Positives + False Positives
+ True Negatives + False Negatives)

(2)

Precision = True Positives/(True Positives + False Positives) (3)

Recall = True Positives/(True Positives + False Negatives) (4)

F1 Score = 2 × Precision × Recall/(Precision + Recall) (5)

The main resulting experiments were divided into the last three stages of the CADx
system, with the findings from each phase compared to find the optimal ensemble for
CADx-based colorectal cancer recognition.

4.1. Stage 1 Experimentation

After converting the original colour images to greyscale, the LBP transformation was
applied to the CKHK-22 mixed dataset to generate LBP-featured images. Next, we fused
the original, greyscale, and LBP featured images to create a new feature fusion dataset. All
final three stages of the experiments employed these four datasets as inputs: the original,
greyscale, LBP, and feature fusion. This is a crucial juncture for the EnsemDeepCADx
system system, enabling crucial experiments to be conducted in subsequent stages. The
subsequent investigations of the CADx system would not have been possible without the
initial construction of the feature fusion dataset, which is the most important dataset for
this system.

4.2. Stage 2 Experimentation: Ensemble Fusion CNNs

In the second stage of the experiment, the EnsemDeepCADx system employs three
ensemble CNN models: ADaDR-22, ADaR-22, and DaRD-22. Each of the four CKHK-22
datasets (original, greyscale, LBP, and feature fusion) is used to train and evaluate these
models; they contain a total of 10,000 training and 4287 testing images in three datasets and
30,000 training and 12,861 testing images in the feature fusion dataset, with 10 classes in
each dataset.



Bioengineering 2023, 10, 738 21 of 36

Each ensemble CNN collects and calculates a variety of performance metrics, includ-
ing accuracy, precision, F1 score, and recall. The system also contrasts the efficacy of
the models and graphically displays the results. This stage of the experiment is crucial
because it contrasts the accuracy of each model with different input data by evaluating the
performance of each CNN ensemble with a variety of datasets. The results can be used to
determine which CNN ensemble performs the best on the CKHK-22 dataset for detecting
colorectal cancer. Table 3 presents the results of the Stage 2 experimental investigations of
EnsemDeepCADx for ensemble CNNs using four datasets.

Table 3. Performance metrics comparison of ensemble CNNs in the Stage 1 experiment.

Datasets Ensemble Fusion CNNs Precision (%) Recall (%) F1 Score (%) Training Accuracy (%) Testing Accuracy (%)

Original CKHK-22 ADaDR-22 90.35 88.11 87.72 95.72 88.11
Datasets ADaR-22 89.34 86.33 85.66 94.22 86.33

DaRD-22 90.78 89 88.52 96.2 89
Datasets Ensemble Fusion CNNs Precision (%) Recall (%) F1 Score (%) Training Accuracy (%) Testing Accuracy (%)
Greyscale ADaDR-22 85.33 82.97 82.22 92.82 82.97

CKHK-22 Datasets ADaR-22 85.47 81.31 82.07 91.33 81.31
DaRD-22 81.95 80.66 79.57 89.66 81.66

Datasets Ensemble Fusion CNNs Precision (%) Recall (%) F1 Score (%) Training Accuracy (%) Testing Accuracy (%)
LBP CKHK-22 ADaDR-22 68.74 66.03 64.4 69.5 66.03

Datasets ADaR-22 67.82 65.31 64.98 67.8 65.31
DaRD-22 69.92 68.96 67.56 71.83 68.96

Datasets Ensemble Fusion CNNs Precision (%) Recall (%) F1 Score (%) Training Accuracy (%) Testing Accuracy (%)
Feature Fusion ADaDR-22 92.62 90.2 89.57 92.06 90.2

CKHK-22 Datasets ADaR-22 91.56 89.69 88.43 91.88 89.69
DaRD-22 93.87 92.31 91.3 95.46 92.31

With a testing accuracy of 89%, DaRD-22 was the ensemble fusion CNN model with
the maximum accuracy. This model’s precision was 90.78%, its recall was 89%, and its F1
score was 88.52%. This model’s training accuracy was 96.2%. The model with the lowest
testing accuracy was ADaR-22, which had an accuracy of 86.33%. This model’s precision
was 89.34%, its recall was 86.33%; and its F1 score was 85.66%. This model’s training
accuracy was 94.22%.

The ADaR-22 model attained the highest accuracy for the Greyscale CKHK-22 dataset
using ensemble fusion CNNs, with a precision of 85.47%, recall of 81.31%, F1 score of
82.07%, training accuracy of 91.33%, and testing accuracy of 82.07%, as shown in the table
above. The DaRD-22 model obtained the lowest accuracy, with a precision of 81.95%, a
recall of 80.66%, an F1 score of 79.57%, a training accuracy of 89.66%, and a testing accuracy
of 81.60%.

Looking at the table, it appears that the DaRD-22 model in the LBP CKHK-22 dataset
obtained the highest performance metrics. This model’s precision was 69.92%, its recall
was 68.96%, and its F1 score was 67.56%. Training accuracy was 71.83%, while assessing
accuracy was 68.96%. This indicates that the DaRD-22 model was able to effectively learn
the LBP CKHK-22 dataset’s features and perform well when classifying the various classes.
In contrast, the precision, recall, and F1 scores for the ADaDR-22 and ADaR-22 models
were 64.4–68.74%, 65.31–66.03%, and 64.98–67.56%, respectively. The accuracy of training
and testing was also inferior to the DaRD-22 model.

The ensemble fusion CNN model with the DaRD-22 architecture performed the best
on the Feature Fusion CKHK-22 dataset, obtaining the highest precision (93.87%), recall
(92.33%), and F1 score (91.3%). In addition, it had the maximum accuracy in training
(95.46%) and testing (92.31%) compared to the other models. The ADaDR-22 model’s
precision, recall, and F1 scores were 92.62%, 90.2%, and 89.5%, respectively. It had a lower
training accuracy (92.06%) than the DaRD-22 model but a testing accuracy (90%) that was
comparable. The ADaR-22 model performed the worst of the three, with precision, recall,
and F1 scores of 91.56%, 89.69%, and 88.43%, respectively. In addition, it had the lowest
accuracy during training (91.88%) and testing (89.69%) compared to the other models.
Figures 13–16 depict the comprehensive graphical analysis of the results of the second stage.
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Using ensemble fusion CNNs, the analysis revealed that DaRD-22 provided the highest
level of accuracy in the Stage 2 experiment.
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4.3. Stage 3 Experimentation: Ensemble Fusion CNNs + Multi-Class SVM

In the third stage of the investigation, the EnsemDeepCADx system integrates the three
ensemble CNN models (ADaDR-22, ADaR-22, and DaRD-22) with a multi-class SVM to
improve the colorectal cancer detection accuracy of the CKHK-22 dataset. Input for this
stage is the feature fusion dataset, which has demonstrated superior performance in Stage 2.

The SVM functions as the final classifier in the EnsemDeepCADx system, receiving
as input the fused features from the ensemble CNN models and producing the output. In
Stage 2, the accuracy, precision, F1 score, recall, are computed for the combined ensemble
CNN-SVM model, and the results are compared with the individual ensemble CNN models.
This crucial stage of the experiment seeks to improve the accuracy of the EnsemDeepCADx
system by integrating the strengths of ensemble CNNs and SVM for detecting colorectal
cancer in the CKHK-22 dataset. Table 4 presents the results of the Stage 3 experimen-
tal investigations of EnsemDeepCADx for ensemble CNNs with multi-class SVM using
four datasets.

Table 4. Performance metrics comparison of ensemble CNNs + multi-class SVM in the Stage 3 experiment.

Datasets Ensemble Fusion
CNNs Precision (%) Recall (%) F1 Score (%) Training

Accuracy (%)
Testing

Accuracy (%)

Original CKHK-22
Datasets

ADaDR-22 85.56 86.44 82.61 87.72 86.44

ADaR-22 86.62 83.04 82.91 84.91 84.04

DaRD-22 86.79 85.55 84.53 88.67 85.55

Datasets Ensemble Fusion
CNNs Precision (%) Recall (%) F1 Score (%) Training

Accuracy (%)
Testing

Accuracy (%)

Greyscale
CKHK-22 Datasets

ADaDR-22 81.32 79.91 78.83 87.84 79.91

ADaR-22 80.29 77.79 76.1 82.32 77.19

DaRD-22 82.32 80.62 79.57 89.69 80.62

Datasets Ensemble Fusion
CNNs Precision (%) Recall (%) F1 Score (%) Training

Accuracy (%)
Testing

Accuracy (%)

LBP CKHK-22
Datasets

ADaDR-22 65.94 64.81 63.32 68.31 64.82

ADaR-22 66.14 64.53 62.21 67.57 65.53

DaRD-22 69.46 68.1 67.51 70.11 68.1

Datasets Ensemble Fusion
CNNs Precision (%) Recall (%) F1 Score (%) Training

Accuracy (%)
Testing

Accuracy (%)

Feature Fusion
CKHK-22 Datasets

ADaDR-22 91.88 89.16 88.95 91.43 89.16

ADaR-22 90.26 88.52 87.14 91.11 88.52

DaRD-22 92.63 91.59 90.48 90.89 91.59

Employing the original CKHK-22 datasets, the Stage 2 experiment compared the
performance of the ensemble fusion CNNs when combined with a multi-class SVM using
the original CKHK-22 datasets. Each model’s precision, recall, and F1 scores are displayed
in the table above. The analysis revealed that the ADaR-22 model had the greatest precision
value of 86.62% whereas the DaRD-22 model had the highest recall and F1 scores of 85.55%
and 84.5%, respectively. The DaRD-22 model had the greatest training accuracy, at 88.67%,
while the ADaDR-22 model had the highest testing accuracy, at 86.44%.

The ensemble fusion CNNs were combined with multi-class SVM and deployed to the
greyscale CKHK-22 datasets in the Stage 2 experiment. The analysis results are presented
in the table. DaRD-22 obtained the highest precision score with a value of 82.32%, followed
by ADaDR-22 with 81.32% and ADaR-22 with 80.29%. DaRD-22 obtained the maximum
recall score with a value of 80.62%, followed by ADaDR-22 with 79.91% and ADaR-22
with 77.79%. DaRD-22 obtained the highest F1 score with a value of 79.57%, followed by
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ADaDR-22 with 78.83% and ADaR-22% with 76.10%. DaRD-22 achieved the maximum
training accuracy with 89.69%, followed by ADaDR-22 with 87.84% and ADaR-22 with
82.30%. DaRD-22 achieved the maximum testing accuracy with a value of 80.62%, followed
by ADaDR-22 with 79.91% and ADaR-22 with 77.1%. Overall, DaRD-22 achieved the
highest scores for most metrics, indicating that it performed the best among the three
models on the greyscale CKHK-22 datasets.

In the Stage 2 experiment with the LBP CKHK-22 dataset, DaRD-22 attained the
highest Precision, Recall, F1 Score, Training Accuracy, and Testing Accuracy among the
three models, as shown in the table. DaRD-22 achieved a Precision of 69.46%, a Recall
of 68.10%, an F1 Score of 67.50%, a Training Accuracy of 70.11%, and a Testing Accuracy
of 68.10%. ADaR-22 achieved the lowest Precision, Recall, and F1 Score values, whereas
ADaDR-22 achieved the lowest Training and Testing Accuracy values.

During the Stage 2 section of the experiment, the feature fusion CKHK-22 dataset was
used to evaluate and contrast the capabilities of ensemble fusion CNNs in conjunction with
multi-class SVM. The percentage of 91.59% was reached by DaRD-22, making it the system
with the greatest recall, while the value of 92.63% was attained by DaRD-22, making it the
system with the best accuracy. Additionally, DaRD-22 earned the highest F1 score, which
was 90.48%. DaRD-22 attained the greatest training accuracy with a value of 90.89%, and it
gained the best testing accuracy with a value of 91.59%. Both results were accomplished
by DaRD-22.

The results indicate that DaRD-22 ensemble fusion CNNs combined with a multi-class
SVM can enhance the performance of the models on the CKHK-22 datasets. Depending on
the performance metric of concern, the best-performing model differs. Figures 17–20 depict
the comprehensive graphical analysis of the results of the third stage. Using ensemble
fusion CNNs with multi-class SVM, the analysis revealed that DaRD-22 provided the
highest level of accuracy in the Stage 3 experiment.
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4.4. Stage 4 Experimentation: Ensemble Fusion CNNs + BiLSTM + Multi-Class SVM

In the final stage of the experiment, BiLSTM and multi-class SVM were merged with
all three ensemble CNNs (ADaDR-22, ADaR-22, and DaRD-22). All four of the CKHK-22
featured datasets (original, greyscale, LBP, and feature fusion) were used in the model’s
training and testing, with metrics including accuracy, precision, F1 score, and recall serving
as measures of performance. The success of the EnsemDeepCADx system in identifying
colorectal cancer utilising ensemble CNNs, BiLSTM, and multi-class SVM was determined
by the outcomes of this stage. The results of this stage provided insight into the optimal
mix of these models for boosting the system’s precision. Table 5 presents the results of the
Stage 4 experimental investigations of EnsemDeepCADx for ensemble CNNs with BiLSTM
and multi-class SVM using four datasets.

In the final phase of the experiment with the original CKHK-22 image datasets,
DaRD-22 ensemble fusion CNNs achieved the highest values for precision, recall, F1 score,
training accuracy, and testing accuracy, with a precision of 95.31%, a recall of 94.9%, an F1
score of 93.4%, a training accuracy of 98.64%, and a testing accuracy of 95.96%. ADaDR-22
ensemble fusion CNNs attained the lowest values, with a precision of 89.92%, a recall of
93.47%, an F1 score of 86.76%, a training accuracy of 97.74%, and a testing accuracy of
93.47%. ADaR-22 ensemble fusion CNNs achieved 92.12% precision, 91.58% recall, an F1
score of 85.61%, a training accuracy of 96.95%, and a testing accuracy of 91.58%.
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Table 5. Performance metrics comparison of ensemble CNNs +BiLSTM + multi-class SVM in the
Stage 4 experiment.

Datasets Ensemble Fusion
CNNs Precision (%) Recall (%) F1 Score (%) Training

Accuracy (%)
Testing

Accuracy (%)

Original CKHK-22
Datasets

ADaDR-22 89.92 93.47 86.76 97.74 93.47

ADaR-22 92.12 91.58 85.61 96.95 91.58

DaRD-22 95.31 94.96 93.47 98.64 95.96

Datasets Ensemble Fusion
CNNs Precision (%) Recall (%) F1 Score (%) Training

Accuracy (%)
Testing

Accuracy (%)

Greyscale
CKHK-22 Datasets

ADaDR-22 89.23 87.89 86.42 92.11 87.89

ADaR-22 84.92 83.09 82.57 85.54 83.09

DaRD-22 90.46 88.79 87.62 95.56 88.79

Datasets Ensemble Fusion
CNNs Precision (%) Recall (%) F1 Score (%) Training

Accuracy (%)
Testing

Accuracy (%)

LBP CKHK-22
Datasets

ADaDR-22 70.67 69.92 67.41 72.56 69.92

ADaR-22 71.11 68.85 67.96 71.87 68.85

DaRD-22 75.11 73.54 72.67 75.89 73.54

Datasets Ensemble Fusion
CNNs Precision (%) Recall (%) F1 Score (%) Training

Accuracy (%)
Testing

Accuracy (%)

Feature Fusion
CKHK-22 Datasets

ADaDR-22 95.69 94.96 93.37 95.67 94.96

ADaR-22 94.98 93.77 92.59 95.08 93.77

DaRD-22 96.98 97.12 95.98 98.72 97.89

The DaRD-22 model achieved the highest precision, recall, and F1 score for the ensem-
ble fusion CNNS + BLSTM + multi-class SVM applied to the greyscale CKHK-22 dataset,
with values of 90.46, 88.79, and 87.62, respectively. On the other hand, the ADaR-22 model
obtained the lowest values for these metrics, with precision, recall, and F1 score values of
84.92%, 83.09%, and 82.57%, respectively. The DaRD-22 model also obtained the highest
training and testing accuracy with values of 95.56% and 88.79%, respectively.

DaRD-22 had the highest ensemble fusion CNNs + BLSTM + multi-class SVM values
for the LBP CKHK-22 datasets, with a precision of 75.11%, recall of 73.5%, F1 score of
72.67%, training accuracy of 75.89%, and testing accuracy of 73.5%. ADaDR-22 had the
lowest values, with a precision of 70.67%, recall of 69.92%, F1 score of 67.41%, training
accuracy of 72.56%, and testing accuracy of 69.92%.

The following is an analysis of the highest and lowest ensemble fusion CNNs + BLSTM
+ multi-class SVM values for the feature fusion CKHK-22 datasets. DaRD-22 obtained the
highest accuracy with a value of 96.98%. This indicates that 96.98% of all predicted positive
cases were in fact positive. DaRD-22 obtained the highest recall with a score of 97.12%.
This indicates that 97.12% of all actual positive cases were accurately identified as positive.
DaRD-22 obtained the greatest F1 score, with a value of 95.98%. This is the harmonic mean
of precision and recall, balancing the two metrics. DaRD-22 obtained the maximum training
accuracy with a value of 98.72%. This indicates that the model correctly categorised 98.72%
of the training dataset. DaRD-22 obtained the greatest testing accuracy with a value of
97.89%. This indicates that the model accurately classified 97.89% of the test dataset. On
the other hand, ADaR-22 obtained the lowest values for all metrics. Nonetheless, even the
lowest values are comparatively high, indicating that the model performs well in general.
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Figures 21–24 depict the comprehensive graphical analysis of the results of the third
stage. Using ensemble fusion CNNs with BiLSTM and multi-class SVM, the analysis
revealed that DaRD-22 provided the highest level of accuracy in the Stage 4 experiment.
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The DaRD-22 classifier, an ensemble fusion CNN model with BiLSTM and multi-class
SVM classifiers, scored the greatest accuracy across all metrics, with a testing accuracy
of 97.89%, according to the findings of experimental investigations conducted on the
feature fusion CKHK-22 dataset. The model also performed well in terms of accuracy
in identifying positive instances and maintaining a low false positive rate (measured by
precision, recall, and F1 score). The excellent 98.72% training accuracy also shows that
the model is appropriate for the training data and can generalise to novel, unknown test
data with ease. The DaRD-22 model outperformed BiLSTM and multi-class SVM classifiers
on the feature fusion CKHK-22 dataset, making it the best model for reliably detecting
colorectal cancer in this EnsemDeepCADx system.

Presented in Table 6 are the performance metrics for ensemble fusion CNN-DarD-22
with BiLSTM and multi-class SVM, utilising the feature fusion CKHK-22 mixed dataset.
Each row in the table corresponds to a specific class of polyps or non-polyp regions in the
colon, and each column provides a different performance metric for that class.

Table 6. Performance metric for ensemble fusion CNN-DarD-22 using the feature fusion CKHK-22
mixed dataset.

Classes Precision Recall F1 Score Support

bbps-0-1 0.99 0.98 0.99 594
bbps-2-3 0.99 0.99 0.99 1035
cecum 0.88 0.99 0.93 1809

dyed-lifted-polyps 0.58 0.92 0.71 1803
dyed-resection-margins 0.86 0.43 0.57 1791

Non-Polyps 0.98 0.96 0.97 771
polyps 0.96 0.82 0.88 2604
pylorus 0.97 1 0.98 1800

retroflex-stomach 0.99 0.99 0.99 690
z-line 1 0.99 0.99 1740

Precision is the proportion of true positive predictions for a given class out of all
positive predictions for that class. In other words, precision measures the proportion of
correctly identified instances of a given class out of all instances predicted as that class.
The classes with precision above 0.9 are bbps-0-1, bbps-2-3, non-polyps, pylorus, retroflex-
stomach, and z-line.

Recall assesses the percentage of true positive predictions for a given class out of
all actual instances of that class in the test dataset. In other words, recall measures the
proportion of correctly identified instances of a given class out of all actual instances of that
class. The classes with recall above 0.9 are bbps-0-1, bbps-2-3, cecum, non-polyps, pylorus,
retroflex-stomach, and z-line.
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The F1 score is the harmonic mean of precision and recall. It is a single metric that
combines precision and recall into one number. The classes with an F1 score above 0.9 are
bbps-0-1, bbps-2-3, non-polyps, pylorus, retroflex-stomach, and z-line.

Support refers to the number of test images that belong to a particular class. The
classes with the highest support in this dataset are polyps and dyed-lifted-polyps with
2604 and 1803 images, respectively. However, the highest-performing classes based on
precision, recall, and F1 score are bbps-0-1, bbps-2-3, non-polyps, pylorus, retroflex-stomach,
and z-line.

Overall, the results suggest that the ensemble fusion CNN-DarD-22 using the feature
fusion CKHK-22 mixed dataset can accurately identify polyps and non-polyp regions in
the colon, with several classes exhibiting high precision, recall, and F1 score. The analysed
performance metrics are shown in Figure 25.
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From the foregoing, we may deduce that this classifier’s confusion matrix will contain
many true positives and true negatives for the classes with high recall values, and many
false negatives for the classes with low recall values. Figure 25 illustrates the confusion
matrix for the DaRD-22 with BiLSTM and multi-class SVM performance of the ensemble
fusion CNN on the CKHK-22 dataset. More insight into the classifier’s performance might
be gained with the use of a thorough confusion matrix, which would show the real number
of true positives, false positives, true negatives, and false negatives for each class. The
performance metric recall indicates how many true positive instances were accurately
labelled as such by the classifier. The following may be inferred from the table of recall
values: it turns out that “bbps-0-1” (0.98), “bbps-2-3” (0.99), “cecum” (0.99), “polyps”
(0.82), “pylorus” (1.00), “retroflex-stomach” (0.99), and “z-line” (0.99) had the greatest
recall values. These are the categories for which a large percentage of true positives were
properly identified by the classifier. Recall values for “dyed-lifted-polyps” (92.2%) and
“dyed-resection-margins” (43.3%) were the lowest. These are the categories where the
classifier produced a larger number of false negatives because it incorrectly classified a
large percentage of true positives.

The ROC curve is a graphical representation of a binary classifier system’s performance
as its discrimination threshold is altered. Figure 26 depicts the confusion matrix and
Figure 27 depicts the ROC curve for DaRD-22 using the CKHK-22 feature fusion dataset.
The True Positive Rate (TPR) is plotted on the y-axis and the False Positive Rate (FPR) is
plotted on the x-axis. AUC (Area Under the Curve) is a metric that assesses the classification
system’s overall performance. In this instance, the AUC value is 0.9882, indicating that
the efficacy of the classifier system is very high. It indicates that the system can effectively
differentiate between positive and negative samples. Since the AUC value is close to 1,
it can be inferred that there is no misclassification in any class and that the accuracy of
all classes is greater than 0.96. The EnsemDeepCADx system is a powerful instrument
for detecting and diagnosing colorectal cancer, as evidenced by its AUC of 0.9882 and
outstanding accuracy values in all 10 classes.
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5. Discussion

Several studies have proposed CADx systems for the diagnosis of colorectal cancer,
each employing a unique set of methodologies and models.
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• On the CVC Clinic DB dataset, Liew et al. (2021) [11] used an ensemble classifier
approach with ResNet50 + Adaboost, AlexNet, GoogLeNet, and VGG-19 models to
achieve an accuracy of 97.91%. Their method’s execution time was 2.5 h;

• Omneya Attallah et al. (2021) [17] obtained an accuracy of 97.3% and 99.7% on the
Kvasir2 and Hyper Kvasir datasets, respectively, using the GastroCADx method with
AlexNet, DarkNet19, ResNet50, DenseNet-201, DWT, DCT, and SVM. The duration of
execution for both datasets was three hours;

• Maryem Souaidi et al. (2022) [21] applied the MP-FSSD technique with VGG16 and
feature Fusion Module to the CVC Clinic DB and WCE datasets. They obtained an
accuracy of 91.56 percent in 2.5 h of execution;

• Pallabi Sharma et al. (2022) [49] utilised an ensemble classifier technique with ResNet101,
GoogleNet, and XceptionNet models on the CVC Clinic DB and Aichi Medical Dataset.
They obtained a 98.3% accuracy rate in 2.45 h of execution;

• Nisha J.S. et al. (2022) [50] applied the DP-CNN technique with the Dual Path CNN
model to the CVC Clinic DB and ETIS-Larib datasets, achieving a 99.6% accuracy.
Their method’s execution time was two hours;

• ColoRectalCADx was developed by Akella S. Narasimha Raju et al. [51] using ResNet-
50V2, DenseNet-201, VGG16, LSTM, and SVM models on Hyper Kvasir Balanced and
Mixed Dataset Balanced. They attained 98.91% and 96.13% accuracy with execution
times of 2.15 and 2.10 h, respectively;

• EnsemDeepCADx, the proposed model (2023), employed Ensemble CNN DaRD-22,
BLSTM, and SVM with feature fusion on the CKHK-22 mixed dataset. The accuracy
was 97.89% and the execution time was 2 h.

In contrast, the EnsemDeepCADx system proposed in this study utilised the DaRD-22
ensemble fusion CNN along with BLSTM and SVM to achieve a 97.89% accuracy on the
CKHK-22 mixed feature fusion dataset. This study demonstrates the potential for deep learn-
ing and transfer learning to improve the performance of CADx systems for the early detec-
tion of colorectal cancer. Table 7 compares the proposed EnsemDeepCADx system for 2023
to colorectal cancer procedures in 2021 and 2022, as well as their respective descriptions.

Table 7. Examining colorectal cancer detection procedures: a 2021–2022 comparative study.

Author Method Model Approach Dataset Time Elapsed Accuracy (%)

Omneya Attallah
et al. (2021) [17] GastroCADx

AlexNet, DarkNet19, ResNet50
and DenseNet-201, DWT and

DCT functions, SVM

Kvasir2, 3 h 97.3

Hyper Kvasir 3 h 99.7

Liew et al. (2021)
[11]

Ensemble
classifier

ResNet50 + Adaboost,
AlexNet, GoogLeNet, and

VGG-19
CVC Clinic DB 2.5 h 97.91

Pallabi Sharma
et al. (2022) [49]

Ensemble
classifier

ResNet101, GoogleNet and
XceptionNet

CVC Clinic DB,
Aichi Medical

Dataset
2.45 h 98.3

Kvasir2, 2.25 h 97

Nisha J.S et al.
(2022) [50] DP-CNN Dual Path CNN CVC Clinic DB,

ETIS-Larib 2 h 99.6

Maryem Souaidi
et al. (2022) [21] MP-FSSD VGG16 with feature Fusion

Module
CVC Clinic DB,
WCE dataset 2.5 h 91.56

Akella S
Narasimha Raju
et al. (2022) [51]

ColoRectalCADx
ResNet-50V2, DenseNet-201,

VGG16, LSTM and SVM

Hyper Kvasir
Balanced 2.15 h 98.91

Mixed Dataset
Balanced 2.10 h 96.13

Proposed Model
(2023) EnsemDeepCADx Ensemble CNN DaRD-22,

BLSTM, SVM with feature fusion
CKHK-22

Mixed Dataset 2 h 97.89
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The comparison and discussion emphasise the diverse methodologies and approaches
used by the various studies to develop CADx systems for the diagnosis of colorectal cancer.
Even though a number of studies have produced exceptional precision, there is still ample
opportunity for growth. This study demonstrates positive outcomes for the proposed CADx
system, and future research could build on this foundation by investigating complementary
models and techniques. The progress made in the area of colorectal cancer detection is
graphically shown in Figure 28.
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An “explainable AI” system is one that can explain its logic behind a prediction or
action in a manner that a human can understand. To diagnose colorectal cancer, EnsemDeep-
CADx employs an ensemble of convolutional neural networks (CNNs; particularly, DaRD-
22), bidirectional long short-term memory (BLSTM), and support vector machines (SVM)
with feature fusion. One of the main advantages of the EnsemDeepCADx system is its
interpretability. CNNs enable the system to learn and extract information relevant for
diagnosing colorectal cancer from colonoscopy pictures. The ensemble approach boosts
the system’s performance even more by combining many models and relying on their
combined expertise. The BiLSTM component is incorporated to improve the system’s inter-
pretability because of its ability to capture temporal linkages and sequential patterns within
image data. This enables the computer to take into consideration the illness’s history and
context, resulting in more exact estimates. Furthermore, the SVM algorithm is employed
as a decisive element in defining the many types of colorectal cancer. This opens the path
for more accurate cancer and other illness diagnosis. Feature fusion in EnsemDeepCADx
combines data from many image representations, including colour, greyscale, and local
binary pattern (LBP) pictures. We can better capture the intricacies of the underlying data
and perform a more exact analysis by integrating these various attributes.

When these variables are integrated, EnsemDeepCADx’s prediction accuracy for
colorectal cancer jumps to an astounding 97.89%. The system’s interpretability instils trust
in the decision-making process among healthcare providers. Clinicians can better interact
with patients and back up their own assessment if they understand what goes into the
system’s predictions.

Finally, the EnsemDeepCADx system combines explainable AI ideas by using in-
terpretable components such as CNNs, BLSTMs, and SVMs, as well as feature fusion
approaches. These design changes were taken in order to increase the system’s utility to
clinicians in the identification of colorectal cancer by making it more open and offering
more relevant reasons for its forecasts.

6. Conclusions and Future Work

Employing a combination of the ADaDR-22, ADaR-22, and DaRD-22 ensemble fusion
CNNs, the EnsemDeepCADx system has been shown to increase diagnostic accuracy in the
identification of colorectal cancer. Information from colonoscopy pictures is extracted using



Bioengineering 2023, 10, 738 33 of 36

deep learning architectures such as AlexNet, DarkNet-19, DenseNet-201, and ResNet-50.
The EnsemDeepCADx system is evaluated using the CKHK-22 mixed dataset, which in-
cludes colour, greyscale, and LBP image datasets to showcase the system’s adaptability. By
using a feature fusion method to combine the collected characteristics, the system performs
a comprehensive analysis of the provided input. The EnsemDeepCADx system has a top
testing accuracy of 97.12% thanks in large part to the DaRD-22 ensemble CNN fusion,
BILSTM, and multi-class SVM. The system’s potential for early and accurate detection of
colorectal cancer is shown by this degree of accuracy. One of the numerous advantages of
the EnsemDeepCADx system is how quickly data can be processed. Colorectal cancer may
now be identified in as little as 2 h thanks to this cutting-edge technology. This expedited
process increases confidence that the system will provide useful results in a reasonable
amount of time. Additional studies into various deep learning approaches and parameter
optimisation are emphasised as a means to further enhance the system’s performance. The
value of utilising ensemble fusion CNNs to boost colorectal cancer detection accuracy and
throughput is also emphasised.

In conclusion, the EnsemDeepCADx system’s utilisation of ensemble fusion CNNs
and integration of BILSTM and SVM shows potential in the domain of colorectal cancer
detection. The system’s ability to include cutting-edge deep learning algorithms and feature
fusion approaches while maintaining an efficient processing time of 2 h increases the likeli-
hood that it will significantly contribute to early detection and improved patient outcomes.

Even though the current EnsemDeepCADx system has demonstrated some success,
it could be improved further. Future research may focus on advanced deep learning
techniques, such as generative adversarial networks (GANs) for data augmentation and
attention mechanisms for enhanced feature extraction. The system may utilise data from
other medical imaging modalities, such as magnetic resonance imaging (MRI) or computed
tomography (CT) examinations, to enhance its diagnostic capabilities. Future research may
also concentrate on augmenting the technology for use in real time during colonoscopies,
thereby facilitating instantaneous feedback and, potentially, a more rapid diagnosis and
treatment. Ongoing research and development of CADx systems for the early diagnosis of
colorectal cancer will likely result in improved patient outcomes in the long term.
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