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Abstract: Osteoarthritis (OA) is the most common arthritis and the leading cause of lower extremity
disability in older adults. Understanding OA progression is important in the development of patient-
specific therapeutic techniques at the early stage of OA rather than at the end stage. Histopathology
scoring systems are usually used to evaluate OA progress and the mechanisms involved in the
development of OA. This study aims to classify the histopathological images of cartilage specimens
automatically, using artificial intelligence algorithms. Hematoxylin and eosin (HE)- and safranin O
and fast green (SafO)-stained images of human cartilage specimens were divided into early, mild,
moderate, and severe OA. Five pre-trained convolutional networks (DarkNet-19, MobileNet, ResNet-
101, NasNet) were utilized to extract the twenty features from the last fully connected layers for both
scenarios of SafO and HE. Principal component analysis (PCA) and ant lion optimization (ALO) were
utilized to obtain the best-weighted features. The support vector machine classifier was trained and
tested based on the selected descriptors to achieve the highest accuracies of 98.04% and 97.03% in HE
and SafO, respectively. Using the ALO algorithm, the F1 scores were 0.97, 0.991, 1, and 1 for the HE
images and 1, 0.991, 0.97, and 1 for the SafO images for the early, mild, moderate, and severe classes,
respectively. This algorithm may be a useful tool for researchers to evaluate the histopathological
images of OA without the need for experts in histopathology scoring systems or the need to train
new experts. Incorporating automated deep features could help to improve the characterization and
understanding of OA progression and development.

Keywords: osteoarthritis; histopathological; hematoxylin eosin; safranin O fast green; DarkNet-19;
MobileNet; NasNet; ResNet-101; ShuffleNet; PCA; ALO

1. Introduction

Osteoarthritis (OA) is the leading cause of pain and disability in working-age adults
and the elderly [1,2]. OA is not a process of mechanical wear and tear as previously thought;
instead, it is a whole-organ disease that is driven by the disruption of the balance of cartilage
homeostasis, inflammatory mediators, genetic factors, and innate immunity [3–5]. Joint
destruction in the knee can be severe in OA patients and can lead to total knee replacement
(TKR). A better understanding of the pattern and initiation of OA in the knee could help in
the understanding of OA progression and influence the selection of therapies.

The histopathology of cartilage is usually used to evaluate the in situ state of the
cartilage tissue. Microscopic histopathological grading of osteochondral tissue is usually
used to evaluate OA development ex vivo. The most common OA grading systems are the
Osteoarthritis Research Society International (OARSI) [6] and Histological-Histochemical
Grading System (HHGS) scoring systems [7]. Although the HHGS score system is the
most often used for the histological scoring of osteoarthritic cartilage, it is usually used to
evaluate the more severe OA specimens [8]. OARSI is the best choice for mild or earlier
phases of OA and for investigating the progression of OA. In general, a sensitive grading
system that is able to detect early OA and its progression could be of great interest for
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drug development and OA research [9]. Moreover, the identification of early OA and the
progression of OA is important in the development of early interferences and therapeutic
techniques that could prevent the progression of OA [10].

Manual histopathological scoring systems can be time-consuming and need pathol-
ogists with years of experience and/or the training of new scorers [11]. Automatic OA
evaluation and assessment based on histopathological image classification are very limited.
Manual scoring systems are widely used for evaluation of the OA histopathological images.
Machine learning and deep learning have aided massive data analyses, pattern identifica-
tion, decision-making, and the production of accurate predictions [12]. Machine learning
and deep learning were used for the histopathological grading of different tissues, using
magnetic resonance imaging (MRI) [13,14], optical microscopy [15], and ultrasound [16].

The prediction and classification of the OA progression of the osteochondral tissue
using machine learning and deep learning have been proposed in the literature; these
methods were based on magnetic resonance imaging (MRI) [17,18] and radiography [19].
A deep convolutional neural network (CNN) was used to automatically diagnose hip
OA using 420 hip X-ray images [20]. The results showed that the CNN model had 95%
sensitivity and 92.8% accuracy as compared to the conventional manual assessment by
physicians. In another study, deep learning was used for the automatic segmentation
and subregional assessment of MRI images of articular cartilage and compared to manual
segmentation [21]. Tiulpin et al. studied the use of deep learning and leveraged an ensemble
of residual networks with 50 layers to predict OARSI and Kellgren–Lawrence (KL) grades
of OA from knee radiographs [22]. The detection of the presence of OA using their model
yielded an average precision of 0.98 and an area under the ROC curve (AUC) of 0.98.

However, few studies have looked at automation in the grading of histopathological
samples. Rytky et al. used regularized linear and logistic regression models for the
histopathological grading of osteochondral specimens imaged with contrast-enhanced
microcomputed tomography (microCT) [23]. The models were trained against the manually
graded histopathological samples to predict the grades of degeneration for the articular
cartilage of the surface, deep, and calcified cartilage zone. They found that the model could
detect the degeneration in the surface zone with an average precision of 0.89 (AUC of
0.92) while the detection of degeneration in the deep zone was the lowest, with an average
precision of 0.46 (AUC of 0.62) [23]. Power et al. used supervised deep learning to automate
the grading system for the histological images of engineering cartilage tissue [24]. Safranin
O and fast green (SafO) was used for staining the engineered tissue; then, two experts
graded the images. Transfer learning using a pre-trained DenseNet model was used to
automate the scoring of the histological images; the scoring resulted in errors comparable
to inter-user errors [24].

In this study, we aim to automate the classification of histopathological grading
into early, mild, moderate, and severe OA using machine learning and deep learning
techniques. The histological images of the osteochondral specimens were obtained from
Venkata et al. [25]. The current methods could be improved with the development of
methods for the analysis and grading of osteochondral histological samples, particularly
as most researchers use manual grading for the histological samples. The developed
methods could be used not only for the OA histological samples harvested after total knee
arthroplasty but also for tissue engineering models of articular cartilage.

2. Materials and Methods

The method proposed in this paper is shown in Figure 1; then, each block is explained
in the following sections.

As is clear in Figure 1, the histopathological images passed through various stages:
from deep learning structures, the extraction of feature maps, and the employing of PCA to
the weighting optimization algorithm. The evaluation criteria are calculated in each stage.
The corresponding sections clarify the novelty of the proposed approach.
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Figure 1. The proposed method for distinguishing the severity levels for both hematoxylin and eosin
(HE) and safranin O and fast green (SafO) histopathological images.

2.1. Database

The osteochondral images were obtained from the database of Venkata et al. [25] (Available:
https://doi.org/10.18735/77ye-yh24 (accessed on 2 February 2023)). Briefly, the samples were
harvested from 90 patients undergoing total knee arthroplasty. Two osteochondral specimens
(4 × 4 × 8 mm) were obtained, one from the medial (CM) and one from the lateral
(CL), from the lateral femoral condyle. The specimens were stained with hematoxylin
and eosin (H&E) or safranin O and fast green (SafO). SafO staining is usually used for
staining glycosaminoglycans [26] and hematoxylin and eosin (H&E) staining is usually
used for staining nuclei and extracellular proteins [27]. The samples were previously
graded according to the OARSI grading system by three scorers 3 times (separated by at
least 3 months) [25]. According to the average grades of the scorers, we divided the images
of HE and SafO into early, mild, moderate, and severe OA, as shown in Figures 2 and 3.
In the OARSI scoring system, the score for early is less than 3.4, for mild it is 2.4–8.6, for
moderate it is 8.6–15.4, and for severe it is 15.4–24 [28].
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2.2. Deep Learning Features

Deep learning features represent the graphical descriptors for each class. They are
inherent to the categories themselves. In this paper, several pre-trained deep learning
models are employed to differentiate various levels of OA in two types of stained histologi-
cal images (HE and SafO). The utilization of pre-trained convolutional neural networks
(CNNs) to discriminate between two kinds of histological images does not provide accurate
results. Therefore, the proposed method combines deep learning, machine learning, and
optimization techniques to achieve high accuracy in predicting OA levels. The proposed
method depends mainly on extracting the most representative features from the last fully
connected model in each CNN. The deep learning structures were trained on the Ima-
geNet database to classify 1000 classes. The transfer learning technique that was utilized
to maintain the established structures is compatible with the desired problem statement,
which focused on anticipating four levels of histological OA images. The transfer learning
was made applicable by augmenting the input size of the image to make it suitable for
the input layer of each one. Moreover, removing the last fully connected layer reduced
it to four levels. The deep descriptors for each model were extracted from the last fully
connected layer. Each one supplied four representative attributes for four levels for both
types of stained images (HE and SafO) [29,30]. The utilized networks were ResNet-101,
MobileNet, ShuffleNet, NasNet, and DarkNet-19. The idea behind using various structures
is based on the ability of each one to extract features in a different manner and to learn in
various ways, either in deep or in multiscale resolution. This leads to the obtaining of more
representative features that can accurately represent the histopathological OA images.

2.2.1. DarkNet-19

The DarkNet-19 is a type of CNN that consists of 19 convolutional layers, followed by
a max-pooling layer and then two fully connected layers. DarkNet architecture is similar to
that of VGGNet but with fewer parameters. It is applied to computer vision tasks such as
object detection, image classification, and segmentation. Moreover, it was introduced as a
part of YOLO (You Only Look Once), which is designed for tracking real-time objects [31].

2.2.2. NasNet

NasNet stands for neural search architecture networks. This CNN is a well-known
predefined convolutional neural network, which is trained over the ImageNet dataset with
over 1000 classes from nature. The NasNet internal structure consists of a multi-series
of cells. There are two types of cells: normal and reduction cells. The normal cells are
responsible for extracting the graphical descriptors and producing the feature maps via
convolutional filters. On the other hand, the reduction cell is in charge of reducing the size
of the feature map’s width and height by a factor of 2. NasNet is ended by a SoftMax layer
that allows obtaining the probability of classification task [31].

2.2.3. ResNet-101

Residual neural networks are convolutional neural networks pre-trained over the
ImageNet database; there are various versions based on the number of convolutional layers
(Res-18,50, and 101). This kind of CNN is distinguished by its residual block property,
which overcomes the vanishing gradient that appears due to deep learning. The skip
connections lead to the bypassing of some of the neural layers and the feeding of the output
of one layer as the input to the next level, which provides a different path for the gradient
in backpropagation. That is the architecture of the residual block. ResNets consist of the
stacking of such blocks. By transfer learning, the input image must be augmented to be
compatible with ResNet input size 224 × 224 × 3, and the last fully connected layer must
be replaced by another one that is suitable for the intended classification task [31,32].
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2.2.4. ShuffleNet

ShuffleNet is one of the most well-known pre-trained CNNs; it is appropriate for
mobile applications. ShuffleNet executes two types of convolution to achieve a high
level of accuracy. They are the point-wise convolution and the channel convolution; they
lead to reduced time computation and make the results more accurate. The ShuffleNet
structure consists of the stacking of shuffle netblocks; each one includes a point-wise
convolutional layer and a depth-wise layer. The resultant output is passed to the ReLU
layer for mapping purposes. The transfer learning is performed by augmenting the input
data to be 224 × 224 × 3 and replacing the last fully connected layer to make it compatible
with the number of intended classes [31].

2.2.5. MobileNet

MobileNet is a pre-trained CNN designed for mobile and embedded devices. It is
organized based on one depth-wise separable convolution that yields a reduction in the
number of required parameters to maintain a good performance. The idea behind the
depth-wise separable convolution is to split the convolution operation into two separate
operations: a depth-wise convolution and a pointwise convolution. In a depth-wise
convolution, each channel of the input is convolved with a separate filter, resulting in a set
of feature maps. Then, a pointwise convolution is devoted to combining the attribute maps
into the output by utilizing a 1 × 1 filter to convolve across all channels.

The MobileNet architecture consists of a series of convolutional layers, followed by
global average pooling and a fully connected layer. The depth-wise separable convolution
is performed in all these layers to obtain an efficient performance. The MobileNet structure
may be adjusted by modifying the number of layers, filter sizes, and other hyperparame-
ters [31,33].

2.3. Features Engineering

The features were extracted from each of the previously mentioned CNNs, four
features for each CNN; the total number of extracted features from each type of stained
image (HE or SafO) was 20 features. The extracted features underwent further processing
techniques: through reduction by choosing the most significant or by weighting them
using one of the most common optimization methods, which is known as the ant lion
optimization technique.

2.3.1. Principal Component Analysis

Principal component analysis (PCA) is well-known in data pre-processing and ma-
chine learning and is considered to be a feature selection algorithm. PCA transforms a
high-dimensional dataset into a lower-dimensional space by identifying the principal com-
ponents which explain the maximum variance in the datasets. PCA reduces the dimension
of that dataset by preserving the most important information and discarding the redundant
data task [29–32].

The principal components define the direction of the maximum variance in the
extracted features. The following steps describe the process required to perform the
PCA algorithm.

1. Standardization: this step is performed by standardizing each column feature that
makes the mean for each feature zero, and the variance is unity.

2. Covariance matrix: this step is performed by constructing the covariance matrix,
which is a square matrix that reflects the variance between each pair of features; its
diagonal represents the variance for each feature and the off-diagonal represents the
covariance between each pair of features.

3. Computation of the principal components: this step is performed by computing the
eigenvector, which explains the direction of maxim variance, and the eigenvalue that
quantifies the amount of maximum variance.
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4. Selection of the principal components: the principal components are selected based
on 95% of the majority variance of the features.

5. Mapping between the selected principal components and the features: this is per-
formed by projecting the standardized features onto the best principal components.

2.3.2. Feature Weighting Using ALO

Feature weighting represents the features that are more important than others when
optimizing the classification problem; it reveals the role of each feature in the classification
pattern by distinguishing by weight. The linear weight is proposed for the feature space
to obtain a specific weight for the features; then, the new feature represents the original
feature multiplied by its weight, as shown in the following equation:

NewFeature = Weight × Old_Feature (1)

Ant lion optimization (ALO) is a metaheuristic optimization algorithm that is used for
tuning the parameters to achieve high accuracy. In this paper, we explored feature weights
and the optimal value of k in the k-nearest neighbors (k-NN) algorithm; simultaneously,
we used the accuracy of k-NN as a fitness function. The difference between PCA and
ALO is that the former reveals the significant features and discards the less influential
features. All the selected attributes have the same weight, which leads to an equal impact
on the classification results. On the other hand, in this paper, the cascading of these
two optimization techniques was the key to improving and obtaining the highest accuracies.
The selected features were passed to the ALO algorithm to achieve an optimized weight
for each one that was significant.

The ALO algorithm can be updated to search for a combination of feature weights and
k values that optimize the performance of the k-NN model. The approach is performed
using the accuracy of k-NN as a fitness function [34].

The steps of ALO are as follows:

1. Initialize the population of ant lions randomly.
2. Evaluate the accuracy of each ant lion in the population based on both weight and

k-value.
3. Define the king ant lion based on the highest accuracy.
4. Move the ant lions towards the king ant lion using a certain formula that simulates

the hunting behavior of the ant lions.
5. Calculate the accuracy for the new position.
6. Repeat steps 3–5 until the stopping criterion is met.
7. The results are the optimized weights.

2.4. Support Vector Machine

Support vector machines (SVMs) are popular supervised machine learning algorithms
used in medical diagnosis. SVM is superior for both linear and non-linear separable data.
SVM is used in the medical diagnosis field for discriminating between various classes, such
as cancer, diabetics heart arrhythmia, cervical cancer, brain tumors, liver cancer, corneal
ulcer, etc.

It is based on finding the optimal margin region for different classes and mapping the
features to higher dimensional space using kernels to make the data separable in higher
dimensional space. The kernel choice function has a significant impact on the performance
of the classifier, in addition to the choosing of the relevant features. SVM is a powerful tool
for medical diagnosis, and it is applied for different applications due to its reliability and
high performance [35,36]. In this paper, we employed deep learning, feature engineering,
and an SVM machine learning classifier to predict OA levels in human osteochondral tissue
using histopathological images. The novel combination between them leads to build a
reasonable system that can infer significant deep features and can weight them to obtain a
reliable scoring diagnosis.
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3. Results

The two types of stained images were passed to five pre-trained CNN models. The
classification procedure was performed in four scenarios. First, deep learning classification
was used to classify the four levels of OA. Second, deep learning features were extracted for
each CNN and a support vector machine classifier was used to distinguish between the four
levels for each type of stained image. Third, feature engineering techniques were applied to
evaluate the most significant features from five CNNs using PCA. The last scenario reveals
the importance of the feature weighting method by applying the ALO algorithm to give
weight to each selected feature. The following subsections are devoted to discussing the
obtained results in each scenario. The evaluation criteria that were used in this paper are
those in [37].

accuracy =
TP + TN

TP + TN + FP + FN
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Speci f icity =
TN

TN + FP
(5)

F1 − score =
2 × Precision × Recall

Precision + Recall
(6)

3.1. Pre-Trained Model Classification

Table 1 represents the accuracy for both the HE and the SafO images using DarkNet-19,
MobileNet, NasNet, ResNet-101, and ShuffleNet. As is clear from Table 1, the accuracy of
utilizing deep learning for HE images does not exceed 70.6% using NasNet. Moreover, the
sensitivity and precision are too low, which leads to the F1 score being too low. Therefore,
the deep convolution networks could not distinguish between various types of severity
levels. For the SafO images, the accuracy ranged between 73.3% and 80% for the different
CNN classifiers, among which DarkNet-19 had the highest accuracy. The obtained results
were not promising; therefore, a hybrid model is recommended to extract the deep features
and then pass them to a machine learning classifier to outperform the classification results.

Table 1. The accuracy using different CNN structures for HE and SafO images.

Images
CNN

DarkNet-19 MobileNet NasNet ResNet-101 ShuffleNet

HE 69.6% 61.8% 70.6% 69.6% 64.7%
SafO 80.2% 77.2% 73.3% 76.2% 74.3%

3.2. Deep Features with SVM

Four features were extracted from the last fully connected layer for each CNN. The
deep features were passed to the SVM classifier. Tables 2 and 3 show the performance of
the classification for the HE images; the performance was enhanced except in the case of
DarkNet-19. The enhancement comes from employing deep learning features and machine
learning classifiers. The reason behind the worst performance of DarkNet-19 was the failure
of DarkNet to extract the representative features for the four classes. The improved accuracy
was 96% for the ShuffleNet features with the 3rd polynomial SVM classifier. The recall was
the highest for the MobileNet features for the early class level. Moreover, the precision
was also the best in MobileNet. The highest precision that was obtained was 100% for the
severe class in MobileNet, NasNet, and ShuffleNet. On top of that, Figure 4 illustrates
the receiver operating curve for each classification procedure. Each figure represents the
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relation between the true positive and the false positive rates. As the area under the curve
(AUC) increases, the classifier has a high performance in distinguishing the particular
classes. All the suggested CNNs had the AUC in all the classes, except DarkNet, which
failed to extract the representative features for each class.

Table 2. The accuracy using different CNN structures with SVM classifier for HE and SafO images.

Images
CNN

DarkNet-19 MobileNet NasNet ResNet-101 ShuffleNet

HE 60.8% 99% 95.1% 94.1% 96.1%
SafO 95% 98% 95% 94.1% 95%

Table 3. The precision and sensitivity using different CNN features with SVM classifier for HE and
SafO images.

HE Images SafO Images

Class Sensitivity Precision Sensitivity Precision

Early

DarkNet-19 11.8% 16.7% 100% 85.7%
MobileNet 100% 100% 94.1% 94.1%

NasNet 89.9% 94.1% 88.2% 88.2%
ResNet-101 82.4% 100% 94.4% 94.4%
ShuffleNet 94.1% 94.1% 94.1% 88.9%

Mild

DarkNet-19 85.7% 69.2% 93.5% 98.3%
MobileNet 98.4% 100% 98.4% 98.4%

NasNet 95.2% 96.8% 96.8% 95.3%
ResNet-101 98.4% 95.4% 98.4% 92.4%
ShuffleNet 100% 95.4% 96.8% 96.8%

Moderate

DarkNet-19 29.4% 55.6% 94.1% 94.1%
MobileNet 100% 94.4% 100% 100%

NasNet 100% 98.5% 100% 100%
ResNet-101 88.2% 88.2% 76.5% 100%
ShuffleNet 83.3% 100% 94.4% 100%

Severe

DarkNet-19 20% 16.7% 100% 100%
MobileNet 100% 100% 100% 100%

NasNet 100% 100% 75% 100%
ResNet-101 100% 83.3% 100% 100%
ShuffleNet 100% 100% 100% 100%

The same procedure was applied for the SafO images; the performances of each
classifier with SVM are shown in Tables 2 and 3. The performance of the DarkNet was
much better than in the HE cases. The accuracy for all the CNN features with SVM ranged
from 94.1% to 98% for ResNet-101 and MobileNet, respectively. The worst sensitivity was
obtained for the ResNet-101 features for the moderate class. Nevertheless, the recall was
almost high in all the classes for each network descriptor. The lowest positive predictive
value for all the classes was greater than 85%. This indicates the ability of the extracted
features to help in differentiating between various levels of severity.

Moreover, for more analysis and clarification, the ROC curve (Figure 5) explains the
impact of applying a hybrid process between deep learning and machine learning. The
improvement of the AUC for each class, early, mild, moderate, and severe, reflects the
ability of the proposed procedure to determine the kind of severity level for osteochondral
tissue using SafO-stained images of human cartilage specimens, which imply cartilage
structure, cell glycosaminoglycan content, and tide-mark integrity for the four types of
severity levels, as we mentioned before: early, mild, moderate, and severe OA. To improve
the performance of the proposed procedure using feature engineering techniques, the
simplest method is to combine all the features from all the CNNs and then pass them to
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the kernel SVM to improve the results. The huge dimensions of using twenty features may
lead to an increase in the computation time cost, which leads to the use of the principal
component analysis (PCA). PCA is one of the most familiar methods for feature reduction
that indicate up to 95% variance of the features. The proposed approach is to mix the
benefits from all the CNNs and then find the significant features. The next section describes
the results for PCA.
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3.3. Principal Component Analysis (PCA)

All the features from the previous CNNs were fused and utilized to classify the
images; then, PCA was devoted to the prediction of the most significant features. The
twenty features from five CNNs were further processed under PCA to find the most
significant subset features. Then, the most significant features passed to the SVM. The best
obtained ten features for the HE images were:

1. Four features from MobileNet.
2. Three features from ShuffleNet.
3. Two features from NasNet.
4. One feature from ResNet-101.

The most significant features did not involve any features from the DarkNet which was
expected since the accuracy was low for the DarkNet. Figures 6 and 7 show the confusion
matrix of the PCA of all the features from all the convolution neural networks and the
corresponding ROC curve for the HE and SafO images, respectively. Figure 6 describes
the resultant confusion matrix and its corresponding ROC curve for the HE images. The
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accuracy was 98% for all the classes. On the other hand, the sensitivity for all the categories
was 100%, except for the moderate level, which was 89%. However, the precision was 100%
for the early and moderate levels, whereas it was 98.4% and 83.3% for the mild and severe
levels, respectively. The AUC was 1 for the early and severe classes. On the other hand, the
AUC was 0.995 for the mild class and 0.981 for the severe class. The obtained features using
MobileNet performed better than those using the ten features. Therefore, after applying
PCA for all the fused features, the most significant were the MobileNet features. They
improved the previous results obtained using MobileNet features only.
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The same procedure was applied to the fused features that were extracted from
the SafO-stained images. The most significant features with 95% variance were ordered
as follows:

1. Three features from MobileNet.
2. Three features from ShuffleNet.
3. Two features from NasNet
4. Two features from DarkNet

The ordering of the significant features satisfied the obtained results that employed
features from each CNN individually. The highest accuracy appeared in MobileNet, then
ShuffleNet. The worst accuracy was obtained using the ResNet-101 features. Therefore,
they were not counted as significant features. Figure 7 describes the obtained results for
the SafO-stained images using the most significant ten features.
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The obtained accuracy was 97%. The highest recall was in the moderate category,
whereas the lowest sensitivity was in the severe class. On top of that, the best precision
was maintained in the moderate and severe classes. The lowest positive predictive value
was in the early class. The area under the curve for all the classes was almost 1.

3.4. Ant Lion Optimization (ALO)

The ant lion optimization method combines the weights for each feature alongside
the objective function, which is the loss of the convergence. The iterative procedure is
performed to achieve the plateau of loss. This leads to the best weights for the features.
The range of weights for each feature is [0–1]. The algorithm was applied to both kinds of
images for all the extracted deep features. Figure 8 shows the convergence loss function
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versus the number of iterations for the HE images. As is clear from the figure, the maximum
iteration is 100, and the convergence is constant after 60 iterations. The corresponding
equation shows the optimized weight for each feature.

y = 0.522642 × F1 + 0.503514 × F2 + 0.093848 × F3 + 0.482934 × F4 + 0.11463 × F5 + 0.167205 × F6
+0.750722 × F7 + 0.770949 × F8 + 0.159337 × F9 + 0.364798 × F10

(7)

where y represents the label of the image, and F1–F10 are the ten most significant features.
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The confusion matrix of the obtained results is described in Figure 8b. The weighting
features enhanced the accuracy to 99%. The sensitivity and precision were almost 100% for
all the classes, except that the recall was 98.8% for the mild level and 94.4% for the early
class. The ROC curve is illustrated in Figure 8c. The area under the curve was 1 for all the
classes. The F1 score values were 0.97, 0.991, 1, and 1 for the early, mild, moderate, and
severe classes, respectively (Table 4). The specificity values were 98.8%, 100%, 100%, and
100% for the early mild, moderate, and severe classes, respectively. As is clear from Table 4
and Figure 8, ALO has a higher performance than PCA in all the classes.

Table 4. The performance of feature engineering on HE-stained images.

Class Feature Engineering Sensitivity Precision Specificity F1 Score

Early PCA 100% 100% 100% 1
ALO 100% 98.4% 98.8% 0.97

Mild
PCA 100% 98.4% 97.5% 0.991
ALO 100% 98.4% 97.5% 0.991

Moderate
PCA 88.9% 100% 100% 0.941
ALO 100% 100% 100% 1

Severe
PCA 100% 83.3% 99% 0.909
ALO 100% 100% 100% 1

The same procedure was applied for the SafO images; Figure 9a shows the number
of iterations for the ALO algorithm versus the loss function. After 80 iterations, the
loss function was constant, and the optimized weighted features were maintained. The
optimized weights were:

y = 0.216401 × F1 + 0.898295 × F2 + 0.92736 × F3 + 0.110877 × F4
+0.416086 × F5 + 0.749176 × F6 + 0.386958 × F7
+0.67024 × F8 + 0.030166 × F9 + 0.584659 × F10

(8)
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The achieved accuracy in the SafO images was the same as in the HE images (99%).
The highest sensitivity was 100% in the early, mild, and severe categories. However, the
highest precision was in the early, moderate, and severe levels. Figure 9c describes the
AUC for the weighted features and the SVM classifier. The AUC was 1 in both the early
and the severe classes, while the AUC was 0.979 in the moderate class and 0.988 in the mild
class. The specificity was computed for all the levels, as follows: 100%, 97.4%, 100%, and
100% for the early, mild, moderate, and severe classes, respectively (Table 5). Furthermore,
the F1 score values were 1, 0.971, 1, and 0.889 for the early, mild, moderate, and severe
categories, respectively, using the PCA classifier, while the F1 score values were 1, 0.991,
0.97, and 1 for the early, mild, moderate, and severe categories, respectively, using the ALO
classifier. As with the HE images, the ALO classifier performed better compared with PCA
for the SafO images.

Table 5. The impact of feature engineering on SafO images.

Class Feature Engineering Sensitivity Precision Specificity F1 Score

Early PCA 94.1% 94.1% 98.8% 1
ALO 100% 100% 100% 1

Mild
PCA 98.4% 96.8% 94.8% 0.971
ALO 100% 98.4% 97.4% 0.991

Moderate
PCA 100% 100% 100% 1
ALO 94.1% 100% 100% 0.97

Severe
PCA 80% 100% 100% 0.889
ALO 100% 100% 100% 1

4. Discussion

In this study, we showed that machine learning and deep learning can be used to auto-
matically classify the osteochondral histopathological images into early, mild, moderate,
and severe OA. The manual histopathological scoring systems are time-consuming and
need a trained scorer to grade the images. This study used five CNN models, including
ResNet-101, MobileNet, ShuffleNet, NasNet, and DarkNet-19, to extract features from HE
and SafO histopathological images of different levels of OA. As deep learning was insuffi-
cient to classify the OA images, we employed the deep features with a machine learning
classifier to enhance the classification results, and we then optimized these features using
various engineering methods, such as PCA and ALO. Although the deep learning method



Bioengineering 2023, 10, 764 14 of 18

was first used in this manuscript to predict the severity of OA, the histopathological OA
images were very complex due to the many changes that happen in both the cartilage and
the subchondral bone during OA progression, such as the network of collagen fibers, the
subchondral bone structure, the proliferation of chondrocytes, the size of cartilage change,
and the proteoglycans loss, which results in surface cracking [38]. All of these make it very
difficult for deep learning procedures alone to classify histopathological OA images. So, in
this study, combinations of multiple algorithms were used with machine learning classifiers
and various engineering methods, such as PCA and ALO. Combinations of different feature
engineering approaches have been utilized in different studies due to the complexity of the
images, the tissue, the type of images, and the sizes [39–42].

The results showed that the F1 score values were 0.97, 0.991, 1, and 1 for the early,
mild, moderate, and severe classes, respectively, for the HE-stained images using the ALO
classifier. For the SafO images, the F1 score values were 1, 0.991, 0.97, and 1 for the early,
mild, moderate, and severe categories, respectively, using the ALO classifier. This study
had a limitation in the dataset in that there was a very small number of images for the
severe class. Only 14 images were available for the HE staining and another 14 images for
the SafO staining for the severe class. So, we focused on reporting the F1 score since the
data were imbalanced [43].

Few studies have utilized artificial intelligence to score or classify osteochondral or
cartilage histopathological images. In another study, a machine learning technique was
used to automatically grade 3D histopathological images of osteochondral samples to
predict the degeneration of surface, deep, and calcified cartilage zones [23]. The samples
were imaged using defect contrast-enhanced microCT. Transfer learning using a pre-trained
ResNet-34 encoder was used. The model was able to predict the degeneration in the surface
zone (AUC of 0.92 and AP of 0.89), followed by the calcified zone (AUC of 0.71 and AP of
0.65) and the deep zone (AUC of 0.62 and AP of 0.46) [23]. In another study, a deep learning
technique was used to automate the grading of the histological images of engineered
cartilage, in which the grading was classified into four categories [24]. Transfer learning
using a pre-trained DenseNet model was used for feature extraction to automatically score
the histological images of engineered cartilage. It was found that the RMSEs for the model
prediction were in a similar range as the inter-user of 0.71 [24]. In our study, using the
ALO algorithm for HE images, the specificity values were 98.8%, 100%, 100%, and 100%
for early mild, moderate, and severe classes, respectively, and the AUC was 1 for all the
classes. Using the ALO algorithm for the SafO images, the specificity values were 100%,
97.4%, 100%, and 100% for the early, mild, moderate, and severe classes, respectively,
and the AUC values were 1, 0.988, 0.979, and 1 for the early, mild, moderate, and severe
classes, respectively.

Machine and deep learning have recently been used to investigate OA development
and progression using MRI or X-ray images [44–47]. Ashinsky et al. used machine learning
to investigate the development of OA using the MRI images of 68 patients. A hierarchy of
algorithms representing morphology (WND-CHRM) was used to classify the development
of OA with 75% accuracy [17]. In another study, the T2 relaxation time of the MRI images of
the 4384 subjects with and without OA was analyzed using DenseNet and random forests
to distinguish OA [45]. The DenseNet training model attained a sensitivity equal to 74.53%
and a specificity equal to 76.13%, which was comparable to the random forest model with
a sensitivity of 67.01% and a specificity of 71.79%. Tolpadi et al. used a DenseNet CNN
to predict the total knee replacement (TKR) from the MRI images and the clinical and
demographic information of patients with OA and patients without OA [48]. Their model
was able to predict the TKR with the AUCs of 0.834 ± 0.036 and 0.943 ± 0.057 for patients
with OA and without OA, respectively.

In OA, the integrity of collagen and glycosaminoglycan, which give the cartilage the
mechanical properties, is compromised [49]. The articular cartilage has a complex structure
without blood vessels or nerves, making it difficult to repair or to treat the cartilage
defect. So, the progression of OA has been investigated by many researchers using a
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manual grading system [25,50,51]. Saarakkala et al. studied the collagen and proteoglycan
changes during OA progression using the OARSI histopathology grading system [52].
Then, a composition-based finite element (FE) model was employed to study the tissue
function. Mantripragada et al. investigated the scoring of polarized light microscopy (PLM)
images as a potential method to understand early OA as compared with the standard
histopathological methods [50]. They found that adding a PLM scoring system helped in
the characterization of early and mild OA. OA progression and development have also
been studied in many animal models of human OA [53–55]. A whole joint microCT image
scoring and histologic scoring systems of a Hartley guinea pig, which is considered a
model of human OA, were investigated to determine the changes in articular cartilage and
bone [55]. The grading was conducted by two experts using the OARSI guidelines. So,
automating the grading system of histopathological methods could help in understanding
OA progression and development.

5. Conclusions

The proposed methods revealed the ability of the integration between deep learning,
machine learning, and feature engineering in scoring the severity levels of OA. The deep
learning models help the researcher in the classification and extraction of the representative
features of each category. The feature engineering method enhanced the performance of the
classification results, which focused on obtaining the most important attribute in addition
to giving them a specific weight. The best results obtained in this study were obtained
by using PCA followed by ALO then SVM classifiers. To the best of our knowledge, this
is the first study that handles the combination between PCA and ALO to obtain the best
classification. Moreover, this is the first study that discusses the employment of artificial
intelligence in OA microscopic histopathological images. In this study, we were able to
build an artificial intelligence model that could distinguish the different stages of the
OA from the osteochondral histopathological images without the need of human experts,
which could be of great interest to the researchers and scientific community. Furthermore,
the model could be modified for the evaluation of tissue engineering cartilage formation
instead of using the manual grading system.
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