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Abstract: The development of information technology has had a significant impact on various areas
of human activity, including medicine. It has led to the emergence of the phenomenon of Industry 4.0,
which, in turn, led to the development of the concept of Medicine 4.0. Medicine 4.0, or smart medicine,
can be considered as a structural association of such areas as AI-based medicine, telemedicine, and
precision medicine. Each of these areas has its own characteristic data, along with the specifics of
their processing and analysis. Nevertheless, at present, all these types of data must be processed
simultaneously, in order to provide the most complete picture of the health of each individual patient.
In this paper, after a brief analysis of the topic of medical data, a new classification method is proposed
that allows the processing of the maximum number of data types. The specificity of this method
is its use of a fuzzy classifier. The effectiveness of this method is confirmed by an analysis of the
results from the classification of various types of data for medical applications and health problems.
In this paper, as an illustration of the proposed method, a fuzzy decision tree has been used as the
fuzzy classifier. The accuracy of the classification in terms of the proposed method, based on a fuzzy
classifier, gives the best performance in comparison with crisp classifiers.

Keywords: fuzzy classification; fuzzy decision tree; data types; smart medicine; Medicine 4.0

1. Introduction

There is a global consensus about the relevance of information technology (IT) for
healthcare, within which it now plays an integral part [1–3]. Therefore, the creation of
concepts or approaches that have a significant impact on IT also has a strong impact on
medical applications. The first IT-based applications in medicine were associated with the
use of decision-support systems and image processing, a document management system
for medical records, and the development of evidence-based medicine [4]. The concepts of
big data, the Internet of Things (IoT), cloud computing, artificial intelligence (AI), and other
inventions have transformed modern technologies under Industry 4.0. The development
of IT in recent times has resulted in such phenomena as “precision medicine”, “smart
medicine” or “Medicine 4.0” [3,5–7]. According to previous studies [3,5], an integral part of
Medicine 4.0 or smart medicine is the use of AI-based applications in medicine (AI-based
medicine), telemedicine, and precision medicine (Figure 1). AI-based medicine includes the
most frequently used applications in healthcare, which allow the analysis of medical images
and clinical and laboratory data. Artificial intelligence, including machine learning (ML) and
big data processing, supports diagnosis and treatment in the healthcare environment [7–9].
Telemedicine using IoT will make seeing a patient or being seen by a clinician easier. Based
on these technologies, such applications in the context of healthcare as electronic health
records (EHR) [10], wearable devices (pulse oximeters or glucose monitoring) [5], and
others have been developed. Precision medicine guides the course of treatment by using
more comprehensive molecular diagnoses, such as genotyping or RNA expression.
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The structure of Medicine 4.0, proposed by the authors of [3,5] (Figure 1), is created by
data types, which are diverse in their nature and are obtained from various sources. These
differences necessitate different types of data analysis, which, in turn, leads to different
methods for processing. For example, the analysis of medical images requires methods to be
in place for image processing and analysis; these methods cannot be those that are applied
to expert data analysis and evaluation in the form of the physicians’ notes drawn from
EHR. The sharing of various IT methods, which are traditionally developed independently,
is typical for medical applications. This problem can be considered partly from the point
of view of the concept of big data. In their studies [2], the authors have shown that the
principal impact on precision medicine has been the paradigm of big data. The role of
big data has increased in healthcare and needs new approaches and methods for medical
data analysis, in an environment where individual patient data, including their genes,
environment, and lifestyle, are taken into account to identify the most suitable treatment.
The methods for such data processing and analysis are mostly drawn from AI and ML.

AI in the context of health is used for a wide range of problems, from retrospective to
prospective analysis. The methods and approaches of AI depend on many factors, such as
the goal of the analysis (for example, data description, diagnostics, prediction, or prescrip-
tion), data types (numeric, discrete, time factors, etc.), uncertainty (crisp or uncertain data,
whether completely or incompletely specified) and other. The taxonomy of these problems,
the methods, and the specifics of the data are illustrated in Figure 2 [11]. Four groups of
applications, sorted according to this taxonomy, can be identified as relevant to healthcare,
and precision medicine in particular, at the present time. The first of these groups can
be identified as the collection of information from repositories, EHR, or biobanks [10].
The second and third groups can be interpreted as data analysis problems; the principal
methods for their decision-making processes are clustering, classification, and regression
(Figure 2), i.e., methods of ML. The initial data for these methods can be collected as data
from biobanks and EHRs [12]. These methods enable the extraction of clinically meaningful
insights from the data. Most medical applications currently deliver services within these
three groups. In other words, these are effective methods and services for data collection,
representation, preliminary analysis, and processing, in order to obtain clinically meaning-
ful information for physicians. The fourth group of applications in healthcare is mostly
present in the educational domain. The different simulators typically act as learning tools
for use in medical universities [13,14].
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As has been shown in several recent reviews [7,12,15,16], methods of classification,
clustering, and regression are commonly used for medical applications (Figure 2). In
some studies [17,18], association rules are considered to be one more alternative as a
mathematical model for data analysis. They allow the identification of patterns, correlations,
and causal patterns in the investigated samples. Among these methods, classification is
the most frequently and successfully used technique. The greatest advances have been
made in medical applications in which classification has been implemented based on
neural networks or deep learning [19–21], decision trees or hierarchical analysis [22], and
linear regression [23]. The most frequently used classification technologies in precision
medicine are decision tree-based and neural network-based. The efficiency and advantages
of the decision tree-based classifier lie in these factors: the classification result has good
visualization and easy interpretation; a classifier can be inducted based on data with a
small number of samples and/or a small number of attributes; there is no requirement
to normalize the initial data. The undoubted advantages of neural networks are very
good classification accuracy and the ability to process data with a very large number of
samples. The only significant drawback of neural networks (deep learning) from the point
of view of precision medicine is its representation in the form of a “black box”, which
does not allow researchers to retain at least some interpretability of the classification result.
In some cases, to eliminate this shortcoming of neural networks, several classifiers are
used simultaneously. There are studies in which an ensemble of classifiers is used. For
example, in one study [24], random forests, an artificial neural network (ANN), and a
support vector machine (SVM) were used for COVID-19 outbreak prediction. Therefore,
despite the obvious advantages offered by neural networks, quite often, developers turn
to such classifiers as decision trees [22,25,26], random forests [27,28], and fuzzy decision
trees [29,30]. These classifiers offer good interpretability of the classification results, which
is very important in precision medicine applications.

However, on the one hand, there are neural networks that offer good efficiency and
applicability to big data, while on the other hand, there are decision tree-based classifiers
that offer good interpretability of the classification result. The development of precision
medicine applications should keep in mind the specifics of initial data for classifier induc-
tion. The data in precision medicine are of different types (heterogeneous). These data
can be incomplete and uncertain, which is considered to be cognitive uncertainty [31].
Typically, this type of uncertainty is investigated using fuzzy logic [32,33]. Therefore, fuzzy
classifiers can be considered an acceptable solution for classification problems in precision
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medicine. Taking into consideration the interpretability of the result, this should be a fuzzy
classifier based on a decision tree. At the same time, a new method for classifier induction
should allow its development for the different types of initial data. In particular, we intend
to consider and systemize classification signals [29,34], large-dimensional data [35,36],
numeric data [37,38] and linguistic data [28,39]. An analysis of these studies shows that
there are differences in the pre-processing steps of the initial data. A fuzzy classifier can
be inducted, based on one method for the different types of initial data, if these data are
transformed into fuzzy data at the pre-processing step.

In this paper, a new method for the classification of heterogeneous, incompletely
specified, and uncertain data is proposed. The incompleteness and uncertainty of data are
taken into account by the use of a fuzzy classifier because a data process based on fuzzy
logic enables the achievement of the best result in the case of cognitive uncertainty. The
heterogeneous initial data in the proposed method are processed by the special preliminary
transformation of the initial data of different types into fuzzy data. This transformation
is similar to data pre-processing for signal classification, based on a fuzzy classifier [29].
In the case of signal classification, the data pre-processing includes the feature extraction
of the signal [40], feature selection [41], fuzzification [42,43], and classification. The large
dimensional data can be transformed by feature selection and fuzzification methods before
they are classified. Numeric or linguistic data need fuzzification via the appropriate
methods [44,45]. Different fuzzy classifiers can be used in this method. However, in this
paper, we consider one of the possible classifiers, namely, the fuzzy decision tree (FDT).
This choice is motivated by the good interpretability and visibility of the results from
FDT. Another advantage of this classifier is the possibility of using it to process data of
both small and large dimensions. In this study, the various FDT applications for some
medical problems are summarized. An analysis of the efficiency of classification based
on fuzzy classifiers shows that these classifiers are effective and yield the best accuracy
in terms of classification, in comparison with crisp classifiers. The proposed method also
allows FDT induction regarding different types of data. The novelty of this method is
the universalization of the classification, which improves the compatibility of the mutual
analysis of classification results from different resources.

This paper is organized as follows. The specific medical data of selected types for use
in the proposed method are discussed in Section 2. The structure and principal steps, along
with the procedures for every step of the proposed method, are presented in Section 3. A
detailed analysis of every introduced procedure is presented in Section 4. In Section 5,
examples of the application of the proposed method with different data type classifications
are discussed. In this section, the classifications of EEG signals (signals), laboratory data
(large dimensional data), clinical data (numeric and categorical data), and expert data (fuzzy
data) are presented. Finally, an analysis of the classification metrics for every problem is
introduced to show the efficiency of the proposed method.

2. Data Processing Specifics
2.1. Medical Data

The data used in precision medicine are big data. The typical characteristics of big data
are volume, variety, and velocity (the “three Vs” of big data), which are then supplemented
with such properties as value, veracity, and variability (the “six Vs” of big data) [46–48].
In big data processing, an emphasis is often placed on their large volume and the speed
of occurrence (velocity). However, in the case of medical data, their heterogeneity is no
less important and should be taken into account first [2,3,46]. The heterogeneity (variety)
of medical data results from the use of a variety of available sources. Precision medicine
uses comprehensive molecular diagnoses, which are based on the analysis of omics data
(genotype, protein expression, RNA expression, etc.) [6]. Progress in IT and the emergence
of the concept of Industry 4.0 have enabled the next step in medicine development, which is
Healthcare 4.0. From the point of view of medical data analysis, the types of data involved
in the processing are increasing [3], and the application of intelligence analysis methods is a
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distinguishing characteristic of Healthcare 4.0. The sources of data in this domain might be
sensors, images, gene arrays, laboratory tests, free text, demographic data, etc. (Figure 2).
This means that different types of data are involved in the work of processing and analyzing
their significance. As a rule, different types of data require different methods for their
processing: the processing of omics data is different from the processing and analysis of
clinical data or signals from sensors, and special methods are used for each of these types. Of
course, there are fundamental approaches that are used for processing most of the different
types of data (such as classification based on a neural network), but there are significant
differences in the pre-processing of each data type, and in the interpretation of the results.
This can be illustrated by the review of precision medicine data processing presented by
the authors of [6]. In this context, a problem with the comparability and compatibility
of the obtained results is revealed [49,50]. Decisions regarding the comparability and
compatibility problem can cause the additional transformation of the result and may
increase the computational complexity of data processing [51] or uncertainty regarding the
eventual decision [52].

However, uncertainty not only arises as a result of the processing of medical data but
is also inherent in the initial medical data. There are many factors that can cause uncer-
tainty [53]. It can result from the poor quality of data measurement or evaluation, where
the values of the initial data should be considered according to likelihood. Uncertainty can
be caused by the incomplete specification of the data, where collected data contain missing
values because some situations (samples) cannot be measured or evaluated. One more
cause of uncertainty can be from data pre-processing, where, for example, a dimensional
reduction can result in the loss of some information [54,55].

According to a previous study [31], uncertainty can be interpreted as being both
statistical and cognitive. This statistical uncertainty is related to the randomness of nature
and can be mathematically represented in terms of probability theory. Cognitive uncer-
tainty is related to the level of uncertainty associated with cognition or the abstraction of
reality [56]. Cognitive uncertainty includes such types of uncertainty as ambiguity and
vagueness. Vagueness is the uncertainty due to “borderline situations”, which is correlated
with the difficulty of making exact decisions in borderline situations. Ambiguity is the
uncertainty due to “alternatives” that exist in cases where the choice between alternatives
is not exactly specified or some alternatives can be explained in a similar way. In many
cases, the ambiguity and vagueness of medical data can be caused by experts’ knowledge,
which is typical in healthcare [53,56]. The incompleteness of such data can be expensive or
even dangerous for patients. One typical approach for taking into account the uncertainty
of different types of data is the representation of information as fuzzy data [57,58].

Therefore, the development of medical applications should take into account heteroge-
neous and uncertain medical data. In this paper, we propose a new method for medical
data classification that allows the processing of different types of data, based on a single
platform that can take into account the uncertainty and incompleteness of medical data.
The specific feature of the proposed method is the use of the fuzzy-based processing of
the data, which takes into consideration the uncertainty of the initial data for the resulting
analysis.

2.2. Fuzzy Logic

Fuzzy logic introduces the notion of a membership degree [59]. A fuzzy set, A, with
respect to a universe, U, is characterized by a membership function, µA: U→ [0, 1], assigning
an A-membership degree, µA(u), to each element of u in U. µA(u) gives us an estimation
of u that belongs to A. For u ∈ U, µA(u) = 1, which means that u is definitely a member of
A, while µA(u) = 0 means that u is definitely not a member of A, and 0 < µA(u) < 1 means
that u is partially a member of A. If either µA(u) = 0 or µA(u) = 1 for all u ∈ U, A is a crisp
set. In the opposite scenario, A is a fuzzy set. The cardinality measure of the fuzzy set A is
defined by M(A) = Σu∈U µA(u), which is a measure of the size of A.
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The degree of membership allows specific elements to be partial members of a fuzzy
set. It presents a contrast with traditional set theory because a classical set is defined by
crisp (exact) boundaries. Therefore, there is no uncertainty about the location of the set
boundaries. A fuzzy set is defined by its ambiguous boundaries. Hence, there exists uncer-
tainty about the location of the fuzzy set boundaries. Partial membership is represented
by a membership degree that can be between 0 and 1, including both 0 and 1. Fuzzy logic
provides very valuable flexibility in terms of reasoning, which makes it possible to take
into account the various inaccuracies and uncertainties.

Fuzzy logic enables the processing of this uncertainty but, at the same time, provides
for the use of special methods and algorithms for data analysis. In addition, the initial data
should be transformed into fuzzy data. These conditions result in the development of new
methods for medical data analysis, based on the use of fuzzy logic. Below is one of the
possible methods for medical data analysis based on the classification methodology.

3. A New Fuzzy-Based Method for the Classification of Medical Data

The methods used for medical data processing in precision medicine or in Medicine
4.0 should allow for the analysis of heterogeneous data (Figure 2). From the point of view
of data analysis, the heterogeneity of the initial or source data is primarily associated with
their processing. This process is most often defined as data pre-processing. Depending
on the data type, the data can be transformed into another type, reduced, and cleared of
noise and non-essential information. Depending on the procedures used in pre-processing,
preliminary data can be interpreted as signals, images, high-dimensional data, numerical
data, and expert data. Each type has its own pre-processing procedures. In this paper, the
analysis of heterogeneous medical data according to classification is considered. A fuzzy
classifier is used for the purposes of data analysis, to reduce the influence of pre-processing
procedures on the classification result. The merging of different types of data is carried out
by converting them to fuzzy data.

The core of the proposed method is a fuzzy classifier (Figure 3). As was shown in
previous studies [29,30,32,33], the use of a fuzzy classifier makes it possible to increase the
accuracy and efficiency of the analysis of incompletely specified and uncertain data [30,32]
or signals [29]. In previous studies [54,55], the authors have shown that the pre-processing
of a signal for its classification leads to the loss of some information. This loss is not
large, but it can have an influence on the classification efficiency. The transformation of
the pre-processing result into the fuzzy domain extends the classification attribute value
borders and decreases the impact of lost information. In other studies [29,37] the efficiency
of fuzzy classifiers for use with large dimensional data has been investigated.

The typical data pre-processing seen in signal classification includes the procedures
of feature extraction and feature selection (dimension reduction). The procedure regard-
ing feature extraction enables the discovery of information that can effectively reflect the
specifics of the analyzed signal and identify its classification. The pre-processing of large
dimensional data only needs to achieve dimension reduction, which can be performed via
a procedure similar to signal classification. A dimension reduction procedure deletes un-
necessary or redundant features by evaluating their usefulness and impact on classification
efficiency. Feature selection and, as a result, the reduction in dimension of classified data,
are required to simplify data visualization and comprehension and to minimize the time
needed for classifier induction by decreasing the training time. The use of fuzzy classifiers
determines that the input data for the classification should be fuzzy. Therefore, other types
of input data (attributes) should be transformed into fuzzy data via fuzzification. The
transformation enables the introduction of fuzzification to the proposed method. This
procedure transforms each numeric attribute value into a fuzzy value with a membership
function and is used for numeric data to achieve the unification of the utilized classifier.
The expert (linguistic) data can be classified without pre-processing.
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medical data.

The structure diagram in Figure 3 shows that the proposed method enables the clas-
sification of data of various types, such as signals, high-dimensional numerical arrays,
numerical data, and expert data. All these types of data are converted to fuzzy data using
sequentially applied pre-processing procedures. The classifier is developed according to
specified machine-learning algorithms for every type of data. The initial data for a classifier
development create a table (dataset) that represents the fuzzy values of the output target
attributes, depending on the fuzzy values of input and independent attributes. This table
does not include all the possible combinations of values for the input attributes. Therefore,
this table is not a decision table and cannot be used for the representation of complete
knowledge about this object or process. The developed classifier permits the creation
of a decision table for the investigated object or process, for analysis, or for use in the
classification of a new sample.

Each of the pre-processing procedures can be implemented, based on various algo-
rithms and methods. It should be noted that the modification of these procedures can
have a significant impact on the classification result. Unfortunately, the choice of the most
efficient implementation method for each procedure is determined experimentally for
each studied dataset [60–62]. There follows a brief overview of the most commonly used
procedures of pre-processing.

4. Principal Steps of the New Method
4.1. Feature Extraction

Feature extraction is the first procedure in the pre-processing of a sensor’s dataset
or signal [40]. The specific features of the signal should be extracted at the first step of
signal pre-processing. The major goal of feature extraction is to obtain information that
can effectively reflect the specifics of the analyzed signal and identify its class. Moreover,
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sensory data or signals are represented in the time spectrum, which is not suitable for
classification without additional transformation. The accuracy of classification is mostly
determined by the extracted features of the signal.

The feature extraction of sensor data or a signal is mostly implemented based on
the methods in three groups: time, frequency, and time-frequency domains [63,64]. Some
researchers consider a further group, namely, nonlinear feature analyses [65]. The methods
of transformation of a signal in the time-frequency domain are the most commonly applied
techniques for signal feature extraction.

Time-domain features are computed based on the signal amplitude according to time.
Therefore, these methods are known as amplitude-based methods for feature extraction.
The advantage of these methods is their low computational complexity. Moreover, this
type of analysis often does not require additional signal transformation. There are many
techniques used in the time domain for signal feature extraction. These methods include
the histogram analysis method [66], higher-order crossing [67], and principal component
analysis (PCA) [68]. Amplitude analysis can also be based on statistical features [69].

Features extraction based on Fourier transform methods [70] (fast Fourier transform
and discrete Fourier transform) is conducted in the frequency domain (Table 1). Fourier-
based and other frequency-based domain analysis methods convert time-domain signals
to frequency-domain signals, in order to extract the frequency-domain features. These
transforms are often used for EEG signal analysis and classification [70–72]. In addition
to Fourier transform, the group of frequency-based feature extraction methods includes
various techniques for the analysis of power spectral density (PSD) [71] and differential
entropy (DE) [72].

Table 1. Comparison of the efficiency of the proposed method based on FDT and other classifiers for
signal classification.

Classification Algorithm Type Accuracy Specificity Sensitivity Precision F1 Score

FDT Fuzzy 0.995 0.993 0.996 0.981 0.989
Decision Tree, C4.5 Non-fuzzy 0.981 0.969 0.992 0.978 0.984

Fuzzy Naive Bayes classifier Fuzzy 0.952 0.917 0.999 0.862 0.924
Naive Bayes Non-fuzzy 0.962 0.928 0.987 0.949 0.968

Fuzzy Multi-Layer Perceptron Fuzzy 0.948 0.889 0.997 0.919 0.956
Multi-Layer Perceptron Non-fuzzy 0.942 0.881 0.991 0.913 0.950

The time- and frequency-based analysis methods used here are effective for linear and
quasi-stationary signals [64]. In healthcare, signals are not linear and are quasi-stationary,
for example, EEG signals. Time-frequency domain analysis methods (spectral methods)
combine information from the time and frequency domains and permit time-frequency
domain-localized analysis. The most effective and widely used methods of analysis in this
group are wavelet transform [73] and Welch’s method [74]. Short-time Fourier transform
(STFT) [75] and the Hilbert Huang transform (HHT) [76] are also essential time-frequency
domain analysis methods.

There are studies in which new methods or combinations of previously known meth-
ods are developed for effective feature extraction of the signal. A new method for feature
extraction for EEG signals, based on a combination of Fourier and Wavelet transforms
using fuzzy entropy, is developed in an earlier study [77]. The authors of [78] propose a
new time-frequency transformation by using joint approximate diagonalization for feature
extraction.

A very brief overview of the feature extraction of sensory data or signal methods is
presented below. Here, it should be noted that the determination and development of the
most effective feature extraction procedure is carried out experimentally for each type of
signal. The feature extraction procedure is very important in terms of data pre-processing.



Bioengineering 2023, 10, 838 9 of 21

However, the data obtained after this procedure have a large dimension, which must be
reduced using the following procedure to ensure efficient classification.

4.2. Dimensionality Reduction

Dimensionality reduction or feature selection represents the next step in data pre-
processing. This procedure can be used after the process of feature extraction or for
processing initial data of larger dimensions. Feature selection is a procedure that is used
to delete unnecessary (or redundant) features by evaluating their usefulness and their
impact on classification efficiency in order to obtain the best results, based on the least
possible amount of processed data [41]. Feature selection and, as a result, a reduction in the
dimension of classified data are required to simplify data visualization and comprehension
and to minimize the time needed for classifier induction by decreasing the training time.

The most frequently applied procedures for feature selection are based on the tech-
niques of linear discriminant analysis (LDA) [79], principal component analysis (PCA) [80],
and independent component analysis (ICA) [81]. These techniques can be used to map a
high-dimensional input vector into a low-dimensional vector. This transformation changes
the physical context and nature of the initial features, which is not appropriate for some
classification problems. However, these techniques are effective for signal classification [54].
PCA represents a more universal method for signal classification [79]. The use of PCA
transforms the initial feature matrix with n features, Y = (Y1, . . . , Ys), into a new matrix,
X = (X1, . . . , Xn), in which the features (columns) are known as “principal components”
and s ≥ n [79]. In order to reduce the dimensions of the matrix, we must select some of the
most important principal components. The importance of the principal components can be
defined using component variance. The variance of the components indicates variability in
the data.

There are techniques for feature selection that do not transform the initial feature
vector [82,83]. Feature selection methods permit the exclusion of secondary features and
choosing those that will have the maximum impact on the classification accuracy. These
methods can be considered as three groups [82,83]: the filter, wrapper, and embedded
methods.

Filter-based methods use ranking to select the relevant features. The relevance is evalu-
ated based on mutual information, the Pearson correlation coefficient, or other criteria [84].
The computational complexity of these methods is lower, and they can be used for any
classifier induction. Each feature is evaluated separately using filter methods; therefore,
some features can be removed according to an individual evaluation but they may become
relevant when combined with others, or features that are considered individually to be
relevant may result in unnecessary redundancies. Wrapper algorithms [85] execute feature
selection in the context of (and in conjunction with) the classification algorithm. These
methods can be interpreted as an optimization algorithm that employs the classification
results as the target function. The computational complexity of wrapper methods is high.
Finally, embedded methods perform attribute selection in the process of classifier induction
and depend on the classifier and algorithm of this induction [82].

4.3. Fuzzification

Fuzzification is the procedure for data pre-processing used in the proposed method,
which transforms linguistic data [42,44] or crisp numeric data [43,45] into fuzzy data (fuzzy
attributes). Fuzzy attributes have values that are defined using the membership function
(see Section 2.2). Every fuzzy attribute, Ai, consists of the defined number mi (mi ≥ 2) in
linguistic terms. The j-th linguistic term of Ai is defined by the fuzzy set Ai,j (j = 1, . . . , mi).
Many methods are used for the fuzzification of both types of data. One of the first methods
used was proposed by Zadeh [59], based on the use of non-fuzzy cardinality. Popular
methods for the fuzzification of linguistic data were first developed by Yager [56,86]. A
new definition for a linguistic quantifier was introduced elsewhere [87], while a two-step
method for fuzzification and fuzzy quantification was introduced by the author of [44]. A



Bioengineering 2023, 10, 838 10 of 21

review and analysis of many methods for the fuzzification of linguistic data are laid out in
Ref. [42].

There are several fuzzification methods for crisp data. In this case, fuzzification
converts crisp numeric attributes (principal components) that have been obtained after
dimensionality reduction into fuzzy attributes Ai (i = 1, . . . , n). The numeric attribute Xi
is defined by a vector of real scalar values (x1, x2, . . . , xk, . . . , xK), where K defines the
number of samples. The definition of this fuzzy set, Ai,j, with respect to Xi is created by a
membership function, µAi,j(x): Xi → {0, 1}, which provides a membership degree µAi,j(x)
for each x (x ∈ Xi). The membership degree µAi,j(x) determines how strongly the element,
x, is a member of the fuzzy set, Ai,j. Formally speaking, fuzzy set Ai,j is defined as an

ordered set of pairs, Ai,j =
{(

x, µAi,j(x)
)

, x ∈ Xi

}
, where:

(a) µAi,j(x) = 0, if, and only if, x is not the member of set Ai,j;
(b) 0 < µAi,j(x) < 1, if, and only if, x is not the full member of set Ai,j;
(c) µAi,j(x) = 1, if, and only if, x is the full member of set Ai,j.

Fuzzification of crisp data can be implemented based on g-fuzzification [88], an eval-
uation of the histogram of variables [89], entropy analysis [90], and clustering [43,91,92].
Well-known clustering-based methods for fuzzification include the K-means algorithm and
the fuzzy C-means method (FCM).

4.4. Fuzzy Classification

There are many different fuzzy classifiers, for example, the fuzzy naïve Bayes classi-
fier [93], fuzzy classification rules according to the algorithm reported in Ref. [94], neural
networks [95], and decision tree-based classifiers [27–29,96]. The choice of one of these
classifiers is implemented by an experimental evaluation of result efficiency (including
accuracy, sensitivity, availability, and other metrics [62,97]). The properties of the classifier
can also have an impact on the choice. For example, neural networks are effective for
large dimensional data and are not suitable for data from small samples. However, Bayes
classifier or tree-based methods are effective for such data. Note that the influence of the
procedures of pre-processing is possible regarding classification efficiency. Therefore, the
evaluation of a specified classifier’s efficiency should be implemented for different proce-
dures of pre-processing. In this paper, we propose a technique using a decision tree-based
classifier, specifically, FDT [29,30]. This classifier has very good interpretability, which is
important for the medical domain.

There are many different methods for FDT induction [96,98]. In this study, FDT
induction is implemented based on cumulative information estimation (CIE), which was
introduced by the authors of [99]. CIE evaluates the degree of influence of the input
attribute on the resulting (output) attribute, in the context of information theory. In contrast
to an informational assessment, which takes into consideration the average values of each
input attribute, the CIE technique allows us to take into consideration the values of all
observations and the measurements of each input attribute. The structure of FDT (the
sequence and correlation of nodes) is determined, based on the CIM. Additionally, when
building a tree, the parameters a and b are used. The values for the pruning parameters α
and β affect the size and efficiency of the inducted FDT [98]. The decrease in parameter
α and the increase in parameter β result in an FDT extension (due to increasing the
numbers of levels and nodes) and a decrease in the classification accuracy because of the
redundant information (noise) involved in FDT. An increase in parameter α and a decrease
in parameter β lead to a reduced FDT size and a decrease in classification accuracy because
essential information can be lost. The calculation of CIM and the process of choosing
pruning parameters α and β is discussed in Ref. [98] in detail.

A decision tree is a flowchart-like structure in which each internal node represents a
check on an input attribute, each branch represents the outcome of this check, and each leaf
node represents a value of the output attribute (class label).
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The fuzzy classification efficiencies are evaluated based on several metrics, which are com-
puted according to the results of the following classifications (classification instance) [62,97]:
true positive (TP), true negative (TN), false positive (FP), or false negative (FN). The metrics of
this classification are calculated, based on the classification instance:

• Accuracy is the ratio of correctly predicted instances to all predicted ones:

Acc =
TP + TN

TP + TN + FP + FN
(1)

• Specificity is the proportion of correctly identified of true negative results:

Spec =
TN

TN + FP
(2)

• Sensitivity is the probability of a correct initial prognosis:

Sens =
TP

TP + FN
(3)

• Precision is the proportion of correct positive predicted instances to the total number
of instances in terms of positive predicted instances:

Prec =
TP

TP + FP
(4)

• The F1 score is the harmonic mean of sensitivity and precision:

Fsc =
2TP

2TP + FP + FN
(5)

5. Examples of Method Application

In this section, illustrative examples of the proposed method are introduced. Sig-
nal classification, based on the proposed method, is shown in the context of EEG signal
classification to detect epilepsy seizures [29]. Laboratory research into tumors, based on
an analysis of blood parameter classification, is considered an example of large dimen-
sional data classification [35]. Numeric data classification is illustrated by the timing of
tracheostomies in COVID-19 patients [37]. Expert data classification is considered for an
analysis of the influence of the human factor in a medical team [30]. In this paper, we do
not induct the FDTs for the classification of the EEG signal, the timing of tracheostomy in
COVID-19 patients, and human factor influence in a medical team. Instead, we show how
these FDTs were inducted in previous studies [29,30,37] to illustrate the application of the
proposed method (Figure 3).

The initial data for the considered classifiers’ induction have been introduced in our
previous studies on signal classification [29], large dimensional data [35], numeric data [37],
and expert data [30]. In these studies, we have discussed the induction of FDTs in detail. In
each of the studies on FDT induction, the calculation of CIM and the pruning parameters α
and β are discussed in detail. The comparison of inducted FDTs with other classifiers is
also considered. In this section, the results of previous investigations and comparisons are
used to illustrate the proposed new method.

The inducted classifiers used in this study are evaluated using Equations (1)–(5) for
the creation of a machine learning model on future (unseen/out-of-sample) data. This
metric calculation is based on the application of the hold-out method. The initial dataset
is divided into 2 samples; then, we build a model with the first (training) sample. The
second (testing) sample is used for verification of the built model. Usually, the proportion
of the dataset division is 70:30. According to the second method in the evaluation of the
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classifiers’ efficiency, random subsampling, the previous hold-out method is applied many
times to achieve different divisions of the initial dataset.

5.1. Signal Classification

The EEG signal has many applications in medicine for diagnosing disease [63,65,67,68,
71,72]. Often, these signals are used for neurology diagnostics in epilepsy patients [29,68,78].
There are some public datasets to study these signal classifications, which include records
(samples) of EEG signals. In a recent study [29], the dataset from [100] has been used for the
FDT induction and classification of epileptic seizures. This dataset includes 500 samples,
comprising 23.6-second signal records. The dataset consists of 5 subsets of 100 samples.
These subsets are collected for different conditions and patient states and are indicated by
the letters A, B, C, D, and E. Subsets A and B were collected to include those persons who
do not suffer from epilepsy, in different conditions. These conditions comprise having the
eyes open or closed because this affects the electrical activity of the brain. The difference
between these subsets is that for subset A, the patients had their eyes open, while for subset
B, their eyes were closed. The subsets C, D, and E were collected from persons who suffered
from epilepsy. The signals in subset E were collected for patients at the time of a seizure.
The subsets C and D were collected during seizure-free intervals. The difference between
subsets C and D is the zones of the EEG signal recording: samples of subsets D and C
were recorded from within the epileptogenic zone and the hippocampal formation of the
opposite hemisphere of the brain, accordingly. The problem of EEG signal classification
can be considered as a classification into two classes, as ((A, B) and (C, D, E)) or ((A, B, C,
D) and E)). In the same study [Rab2022], a second type of classification has been studied:
(A, B, C, D) and E.

The proposed method for this case includes all the procedures of pre-processing
(Figure 3). The procedures of fast Fourier transform (FFT) are used for feature extraction,
those of PCA for dimensional reduction, and those of FCM for fuzzification. The initial
data from EEG signal records in this study are cut and collected in a set of 4000 2.95-second
records. This set of 4000 records of EEG signals are analyzed using FFT. The Fourier
specter transforms to 8 attributes via PCA. The number of principal components has been
obtained, based on an experimental investigation: the decrease in the number of principal
components decreases the efficiency of the classification process, while an increase in the
number of principal components increases the computational complexity of classification.
This experiment is discussed in more detail in an earlier paper [29]. The procedure of FCM
permits the representation of eight principal components by eight fuzzy attributes.

In Table 1, an evaluation of the inducted FDT for EEG signal classification, in compar-
ison with other classifiers, is shown. The comparison of fuzzy and non-fuzzy classifiers
shows that the classification accuracy of the fuzzy classifiers yields the best performance in
comparison with the similar non-fuzzy classifier. An analysis of the metrics for FDT shows
that this classifier offers the best results in terms of accuracy, sensitivity, and F1 score, along
with the second-best results in terms of precision and specificity. According to the same
study [29], the inducted FDT is the best classifier for the identification of epilepsy seizures,
based on the EEG signal.

The classification of the EEG signal is effectively implemented, based on fuzzy classifiers,
which confirms the effective application of the proposed method for signal classification.

5.2. Large Dimensional Data Classification

Data are considered highly dimensional if the number of attributes is larger than the
number of instances. High-dimensional datasets are common in the biological sciences.
Fields of study such as genomics and the medical sciences will often use both tall and wide
datasets that can be difficult to analyze or visualize using standard tools. An example of
high-dimensional data in the biological sciences may include data collected from hospi-
tal patients, recording their symptoms, blood test results, behavior, and general health,
resulting in datasets with large numbers of features.
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Future experimental studies should be implemented for large dimensional data. Sci-
entific laboratory research into the diagnosis of a tumor based on an analysis of blood
parameters can be considered as an example. This laboratory study was performed on rats;
data were created after monitoring Sprague Dawley rats [35]. The animals were adapted to
standard vivarium conditions (temperature, humidity, a regular light and dark regimen).
Data included 78 instances (rats). Monitoring was based on rat blood analysis. Blood from
all the experimental animals was collected at a single point and then analyzed. After blood
analysis, we obtained 186 input attribute values for each rat. These rats were then divided
into two groups: the control and tumor groups. The goal of the prediction was to find out
if the animal was suffering from a tumor.

The analysis of this data, according to the proposed new method, includes pre-
processing and classification based on a fuzzy classifier, which, in this case, is FDT
(Figure 3). Here, the pre-processing consists of the procedures of dimensional reduc-
tion and fuzzification, PCA, and FCM. The initial data are transformed into a new set of
principal components, which consists of 5 input attributes.

We made a comparison of the classification results of the proposed method and
other non-fuzzy classifiers for the same initial data, using the decision tree, naïve Bayes,
neural network, k-nearest neighbor, and support vector machine (SVM) techniques. The
experiments were implemented in MATLAB. For each classifier, we ran a procedure to find
the best combination of input parameters. The procedure was based on multiple runs of
the classifier using different values for the input parameters. The best classification result
identified is shown in Table 2.

Table 2. Comparison of the efficiency of the proposed method, based on FDT and other classifiers for
large dimensional data.

Algorithm Type Accuracy Specificity Sensitivity Precision F1 Score

FDT Fuzzy 0.872 0.892 0.854 0.897 0.875

Decision Tree, C 4.5 Non-fuzzy 0.859 0.892 0.829 0.895 0.861

Naïve Bayes Non-fuzzy 0.833 0.757 0.902 0.804 0.851

Neural Network Non-fuzzy 0.859 0.838 0.878 0.857 0.867

K-nearest Neighbor Non-fuzzy 0.795 0.811 0.780 0.821 0.800

SVM Non-fuzzy 0.846 0.784 0.902 0.822 0.860

The classification of the data from the laboratory research shows the best result,
according to the considered metric for the fuzzy classifier, which is FDT. This study shows
that the proposed method is effective for large dimensional data and the use of a fuzzy
classifier is effective.

5.3. Numeric Data Classification

In an earlier study [37], an analysis of the timing of tracheostomy in COVID-19 patients
was based on the classification of initial data via FDT. The analysis, which was based on
FDT, was developed in an investigation by the authors of [100], and included the table of
supplementary materials (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673767/,
accessed on 17 November 2020). The data were collected from 177 health records from
anonymous COVID-19 patients in the ICU at Guy’s and St Thomas’ National Health Service
(NHS) Foundation Trust. The initial data of the investigated dataset comprise 29 input
attributes for two groups. The attributes of the first group were obtained as the baseline
characteristics, while the attributes of the second group were obtained during 14 days of
hospitalization. The analysis was focused on an evaluation of tracheostomy timing and the
prediction of a patient’s survival.

Baseline dataset characteristics can be interpreted as input attributes that are obtained
immediately after the admission of a patient or by an analysis of the patient’s health

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673767/
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records. The attributes of the first part, which can be obtained immediately, are age,
gender, ethnicity, body mass index (BMI), and the acute physiology and chronic health
evaluation II (APACHE II) score. The baseline characteristics, drawn from the patient’s
health records, may be the confirmation of diabetes mellitus, hypertension, ischemic heart
disease, chronic obstructive pulmonary disease, asthma, and chronic kidney disease. One
more input attribute of the baseline characteristics is thromboembolism (pulmonary, venous,
or multiple). These attributes, which were identified based on the baseline characteristics,
are categorical (except for age and BMI, which are numerical).

The second group of input attributes was collected from the patient’s vital signs,
markers of acute respiratory failure, and serum-based biomarkers for the severity of
the disease. These attributes were measured repeatedly at different time points (after
24 h of clinical care on days 7, 10, and 14). If a patient died or was disconnected from
mechanical ventilation, the last measured values were used. These attributes are identified
as PEEP (positive end-expiratory pressure), FiO2 (fraction of inspired oxygen), PaO2 (partial
pressure of oxygen), the PF ratio, CRP (C-reactive protein), ferritin, D-dimer, temperature,
vasopressors, RRT (renal replacement therapy), and ECMO (extracorporeal membrane
oxygenation). The attributes of the second group are numerical.

The input attributes for the considered problem are both categorical and numerical.
The categorical data regarding patients can contain ambiguity, for example, due to the prob-
lem of the unambiguous interpretability of information in health records. The measured
numerical data can have vagueness, which, for example, can be caused by a measuring
device error. Therefore, fuzzy classification is more acceptable for the considered problem
of facilitating decision-making as to the optimal timing of tracheostomy for prolonged
respiratory weaning in critically ill COVID-19 patients.

The evaluation of different classifiers is shown in Table 3. In this study, for numerical
data, the best decision is obtained with the fuzzy classifier (FDT). Therefore, we can see
that the proposed method is also effective for numeric data analysis.

Table 3. Comparison of the efficiency of the proposed method, based on FDT and other classifiers of
numeric data.

Classification Algorithm Type Accuracy Specificity Sensitivity Precision F1 Score

FDT Fuzzy 0.867 0.563 0.921 0.921 0.921
Decision Tree, C4.5 Non-fuzzy 0.835 0.357 0.91 0.9 0.905

Fuzzy Naive Bayes classifier Fuzzy 0.816 0.143 0.921 0.872 0.896
Naive Bayes Non-fuzzy 0.816 0.143 0.921 0.872 0.896

Fuzzy Multi-Layer
Perceptron Fuzzy 0.857 0.563 0.91 0.92 0.915

Multi-Layer Perceptron Non-fuzzy 0.845 0.357 0.921 0.901 0.911

5.4. Expert Data Classification

The last example provided for the proposed method considered the problem of the
development of a mathematical model for the human reliability analysis of a medical
team. The analyzed team included a doctor and two nurses. The goal of this problem is to
evaluate the impact of human (medical) error on patient safety [30] (see Table 8 in Section
7). The mathematical model for human reliability analysis should classify all possible
performance levels of the team’s members into three classes: a fatal medical error (set at 0),
some imperfection in the patient’s care (set at 1), and patient care without any complications
(set at 2). Therefore, the output attribute B has three values: B0, B1, and B2. The number
of input attributes is defined according to the number of team members, which is 3. Two
attributes, A1 and A2, are interpreted here regarding the nursing performance and have
only two possible states: error (state 0) and error absent (state 1). The doctor’s performance
is considered attribute A3 and has four levels: from a fatal doctor error (set at 0) to the
doctor’s perfect work (set at 3). The impact of the mistakes made by a doctor or nurse on
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patient safety must be indicated and evaluated, based on a method of human reliability
evaluation.

The initial data comprise expert evaluations of all 10 samples [30]. These data are
incompletely specified because the sum of all possible situations is 16. Every value for
the performance of each team member is indicated by a certainty. These data can be
considered fuzzy data; thus, pre-processing is not needed for fuzzy classifier induction in
this case. Therefore, the FDT can be inducted based on the initial data, without the need
for additional transformation. An evaluation and comparison with other classifiers are
presented in Table 4.

Table 4. Comparison of the efficiency of the proposed method, based on FDT and other classifiers,
for expert data.

Classification Algorithm Type Accuracy Specificity Sensitivity Precision F1 Score

FDT Fuzzy 0.934 0.456 0.823 0.893 0.944
Fuzzy Naive Bayes classifiers Fuzzy 0.915 0.372 0.798 0.852 0.902

The definition of the initial data values with certainty permits their interpretation as
fuzzy data. The fuzzy classifier is inducted without the pre-processing of initial data, but
a crisp classifier induction needs the initial data de-fuzzification. This procedure causes
the classification accuracy to decrease. Only fuzzy classifiers should be considered for
the comparison. There are specifics to this data that comprise the small dimension of the
sample and a small number of input attributes. For such data, the use of a neural network
as a classifier is impossible. A neural network cannot be trained on such a small dataset.
Therefore, one classifier was inducted for the comparison with FDT, which is a fuzzy naive
Bayes classifier. A comparison of the metrics of the classification efficiency in Table 4 shows
that the FDT is best suited for the considered problem.

6. Discussion

In this paper, the specifics of the classification of various data are considered and
a new classification method is proposed to classify certain types of medical data. In
particular, the proposed method (Figure 3) permits the classification of signals (sensors
data), large dimensional numerical data, numerical, linguistic, and categorical data, and
fuzzy data. Depending on the data type, the number of successively used pre-processing
procedures changes. Signal pre-processing includes feature extraction, feature selection
or dimensionality reduction, and fuzzification. Accordingly, for large dimensional data,
the procedures for feature selection or dimension reduction and fuzzification are applied.
Pre-processing consists of only one fuzzification procedure for numerical, categorical,
and linguistic data. The procedure of fuzzification is used in pre-processing for all data
types. It is due to the presence of a fuzzy classifier in the proposed method. As shown
in previous studies [29,30,37], fuzzy classifier exploitation can improve the efficiency of
classification. It is caused by the loss of some useful information in the relevant step
of data pre-processing; first of all, in the procedure of dimensional reduction or feature
selection [54,55]. Transformation of the input attributes before the classification from
crisp to fuzzy allows us to “smear” the crisp values and thereby expand their coverage
range, leading to improved classification accuracy. It is necessary to note that the different
procedures of pre-processing impact the classification result. Unfortunately, there is no way
to predict in advance the effectiveness of a particular procedure for data pre-processing [60].
Therefore, for every one of the procedures used in pre-processing, a short review of possible
methods for its implementation is introduced. In this study, the procedures of FFT, PCA, and
FCM are used for feature extraction, dimensional reduction, and fuzzification, respectively.

The classification process for all the considered problems has been implemented,
based on FDT. This classifier can be effective for processing data with numerous input
attributes and data with some input attributes. It can also be used for data comprising very
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small samples (see Section 5.4) without additional transformation, and also offers good
interpretability and visibility. Of course, other classifiers can also be used instead of FDT.
Similar to pre-processing procedures, the performance and efficiency of any classifier for
each particular case cannot be predicted [60]. Using FDT for the considered problems in
this study yields acceptable efficiency.

In this paper, the classification problems of the EEG signal (Section 5.1), scientific
laboratory research on the diagnosis of a tumor, based on an analysis of blood parameters
(Section 5.2), the timing of tracheostomy in COVID-19 patients (Section 5.3), and the expert
data analysis of possible medical errors in a team (Section 5.4) have been considered.
The data in these problems are different: signals, large dimensional data, numeric and
categorical data, and expert (fuzzy) data. The proposed method (Figure 3) has been used in
all these problems. The comparison of classification Equations (1)–(5) for FDT and other
classifiers (first, for crisp classifiers) shows the efficiency of the proposed method.

For example, Table 1 (EEG signal classification), Table 2 (the diagnosis of a tumor
based on an analysis of blood parameters), and Table 3 (timing of tracheostomy in COVID-
19 patients) introduce the metrics of classification efficiency for several classifiers. The
classification efficiencies are evaluated for the different data types: signal data (Table 1),
numeric large dimensional data (Table 2), and numeric data of limited dimensionality
(Table 3). The comparison of FDT and the decision tree inducted using C 4.5 methods
show that these metrics are somewhat better suited for FDT for all data types. In one
study [55], it has been shown that signal preprocessing before classification can cause a loss
of useful information and, according to a more recent study [Rab2022], the transformation
of preprocessing results in a fuzzy domain that permits the leveling out of this loss by
expanding the classified value boundaries. Fuzzy classifiers have similar or better efficien-
cies regarding classification in comparison with crisp classifiers of all types: fuzzy naive
Bayes classifiers for signal classification (Table 1) and numeric data (Table 3) have the best
metrics for classification than crisp versions of the naive Bayes classifiers. A similar result
is achieved in a comparison of the fuzzy multi-layer perceptron and the crisp multi-layer
perceptron.

Among the considered examples, the one that depicts the analysis of medical errors
using a human reliability analysis method should be noted. The initial expert data are
indicated in the form of values with certainty, allowing us to interpret them as fuzzy data.
Therefore, for this data, a fuzzy classifier should be used (Table 4). In this problem, the
sample under study is very small (only 10 samples). Therefore, the choice of classifiers is
very limited. In particular, neural networks for such a small sample cannot be used. FDT
and the fuzzy naive Bayes technique have been inducted for this problem. The considered
metrics indicate that the best efficiency was achieved by FDT (Table 4) and, in addition, it
offers good interpretability of the result. This classifier was used in an earlier study [30] for
the development of a mathematical model for a reliability analysis of the human factor in
medical systems.

Therefore, the considered examples and the previous studies [29,30,37] show that
our proposed method for the classification of different data types in smart and precision
medicine, based on fuzzy classifiers, is efficient.

7. Conclusions

The most frequently considered problem in medical applications and services is result
prediction, which depends on new initial data based on decisions that are already known.
This problem is typical for both AI-based medicine and precision medicine (Figure 1).
In fact, this can be considered a classification problem. The specifics of modern medical
applications and services demand that such a prediction or classification must be performed
for different types of data, and, as a rule, the classification of different types of data is
implemented using different methods and algorithms. Typically, differences in these
methods are found in the pre-processing procedures regarding the initial data (input
attributes).
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In this paper, a new method for the classification of different types of data is proposed;
in particular, the classification of signal, large dimensional, numeric, or expert (linguistic
or fuzzy) data is shown to be possible. One of this method’s advantages is the use of
well-known procedures for data pre-processing: feature extraction, feature selection or
dimensional reduction, and fuzzification. This permits resources for the method develop-
ment to be decreased. The novelty of this method is the fuzzy classifier technique used,
along with the new interpretation and exploitation of known methods and algorithms
to address the new problem of the classification of different data types based on a single
classifier. The unification of the classifier will make it easier to combine and jointly analyze
the results from data of various types. According to the experimental evaluations, fuzzy
classifiers offer better classification efficiency for the considered data types. In this paper,
FDT is applied as a fuzzy classifier because it offers good interpretability of the results
in comparison with other classifiers. However, other fuzzy classifiers can also be used.
In future investigations, the influence of different methods and algorithms regarding the
procedures of data preprocessing will be investigated. The influence of a membership
function on method efficiency will also be considered.

In this paper, the proposed method was used to classify each data type separately. This
suggests that additional procedures will be required to analyze data of different types that
are mixed together. This is a disadvantage to the proposed method. One final restriction of
this method is discrete data processing. Continuous data should be discretized before the
classification proceeds, based on the proposed method. In further studies, the different data
types under consideration will be combined into a single sample, not in order to consider
the processing of each of the presented data types independently, but instead to provide
for their joint processing. In further studies, the proposed method will be supplemented
with other data types that are widely used in medicine. One of the first additional types of
data to be considered will be medical images.
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