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Abstract: Teeth segmentation plays a pivotal role in dentistry by facilitating accurate diagnoses
and aiding the development of effective treatment plans. While traditional methods have primarily
focused on teeth segmentation, they often fail to consider the broader oral tissue context. This paper
proposes a panoptic-segmentation-based method that combines the results of instance segmentation
with semantic segmentation of the background. Particularly, we introduce a novel architecture for
instance teeth segmentation that leverages a dual-path transformer-based network, integrated with
a panoptic quality (PQ) loss function. The model directly predicts masks and their corresponding
classes, with the PQ loss function streamlining the training process. Our proposed architecture
features a dual-path transformer block that facilitates bi-directional communication between the pixel
path CNN and the memory path. It also contains a stacked decoder block that aggregates multi-scale
features across different decoding resolutions. The transformer block integrates pixel-to-memory
feedback attention, pixel-to-pixel self-attention, and memory-to-pixel and memory-to-memory self-
attention mechanisms. The output heads process features to predict mask classes, while the final mask
is obtained by multiplying memory path and pixel path features. When applied to the UFBA-UESC
Dental Image dataset, our model exhibits a substantial improvement in segmentation performance,
surpassing existing state-of-the-art techniques in terms of performance and robustness. Our research
signifies an essential step forward in teeth segmentation and contributes to a deeper understanding
of oral structures.

Keywords: teeth segmentation; panoramic radiographs; mask-transformer-based networks; panoptic
segmentation

1. Introduction

Teeth segmentation is pivotal in the clinical diagnosis of oral diseases, offering essential
precision in surgical planning through the accurate delineation of teeth boundaries [1,2]. In
orthodontics, real-time information regarding teeth movement and root depths is crucial for
immediate assessment of a patient’s dental alignment and for accelerating the orthodontic
treatment cycle [3]. The prerequisite for achieving this is the precise segmentation of
teeth in dental panoramic X-ray images [4], which has additional applications in forensic
identification [5], age estimation, and the analysis of hidden dental structures, including
benign or malignant masses [6]. Dentistry extensively utilizes radiographic images for
diagnosis, given their comprehensive visualization of the internal structure of the mouth [7].
Extra-oral radiographs, encompassing panoramic and cephalometric images, capture the
complete dentition and surrounding areas, providing critical insights into a patient’s
teeth, as demonstrated in Figure 1. However, manual and semi-automated segmentation
approaches for teeth and tissues in these radiographs often prove time consuming, tedious,
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and subjective, with their efficacy heavily reliant on the dentist’s expertise. Additionally,
segmentation in low-quality image settings presents even greater challenges. Given these
circumstances, the development of an automatic, accurate, and efficient teeth segmentation
method is paramount.

Figure 1. Types of X-ray images: (a) periapical X-ray; (b) bitewing X-ray; (c) panoramic X-ray.

Traditionally, teeth segmentation has been approached through semantic and instance
segmentation techniques [8,9]. While semantic segmentation classifies each pixel into
predefined classes without distinguishing between object instances, instance segmentation
offers a more comprehensive understanding by segmenting objects and distinguishing
each tooth object instance. Both category and instance labels are crucial in this context,
which has become a focal point in dental research. However, both proposal-based and
proposal-free instance segmentation approaches have their limitations. They often struggle
with differentiating object instances within the same category, particularly when objects
overlap, and preserving pixel-wise location information, which often results in coarse
mask boundaries.

Numerous attempts have been made to develop a highly accurate automatic teeth
segmentation algorithm [10,11]. However, teeth segmentation remains challenging due to
fuzzy boundaries caused by low contrast and noisy dental panoramic X-ray images. The
diversity of teeth conditions across different patients and the presence of dental instru-
ments, such as metal racks and dental implants, pose significant obstacles to achieving
accurate teeth segmentation. Recognizing these challenges, this research introduces a novel
approach based on panoptic segmentation [12]. Panoptic segmentation unifies the typically
disjoint tasks of semantic segmentation (identifying and classifying objects in an image)
and instance segmentation (segmenting individual instances of each object), offering a more
holistic and precise tooth and oral tissue segmentation strategy [13,14]. Several studies
have shown the effectiveness of panoptic segmentation for optimizing the performance of
deep-learning-based models [15–18].

We propose a panoptic-segmentation-based approach for instance teeth segmenta-
tion and surrounding tissue semantic segmentation. Panoptic segmentation, a unified
framework for semantic and instance segmentation, yields better Dice scores for teeth
segmentation by providing an improved context understanding, better discrimination of
close or touching instances, and consistent pixel-level labeling. This approach reduces false
positives and negatives by correctly segmenting teeth instances and accurately labeling
non-teeth regions, enhancing the overlap between prediction and ground truth, which the
Dice score measures. Our model employs a mask transformer to predict non-overlapping
masks and their corresponding semantic segmentation labels directly. The panoptic quality
(PQ) style loss is utilized to optimize the output masks and classes. More specifically, we
design the similarity metric between consecutive teeth-labeled masks as the product of their
masks and class similarity, inspired by the PQ definition. Moreover, the innovative strate-
gies proposed by groundbreaking works that use attention mechanisms, such as [19,20],
motivated us to incorporate attention modules into our proposed network.

We introduce a novel architecture to effectively train and infer using the mask trans-
former. Unlike traditional architectures [21,22] where the transformer is placed on top
of a convolutional neural network (CNN) [23], we adopt a dual-path framework that
effectively merges CNNs with transformers [24–27]. This allows CNN layers to read and
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write into global memory by incorporating memory-to-pixel attention (M2P), memory path
self-attention (M2M), pixel–path axial self-attention (P2P), and pixel-to-memory attention
(P2M). As a result, the transformer can be inserted at any position in the CNN to enable com-
munication with the global memory at any layer. The proposed architecture also employs
a stacked hourglass-style decoder [28,29] to aggregate multi-scale features and produce a
high-resolution output, which is then multiplied with the global memory feature to predict
the mask. The proposed framework significantly improves segmentation performance
and demonstrates the potential to be employed for teeth numbering. Rigorously evalu-
ated on the publicly available UFBA-UESC dental image dataset, our experimental results
demonstrate that the proposed model significantly outperforms existing state-of-the-art
techniques in terms of segmentation performance and robustness.

This paper is organized as follows: Section 2 provides the background and related
work. Section 3 offers a detailed description of the network and dataset. Section 3.4 is
dedicated to the experimental setup, and then Section 4 presents the results and discussion.
Finally, Section 5 concludes the paper and provides the future directions.

2. Related Work

There have been numerous attempts by researchers to develop teeth segmentation
techniques that can be applied to various types of radiographic images, such as panoramic,
periodical, and bitewing imaging. Silva et al. [30] presented a comparison of various
segmentation techniques applied in dental imaging, categorizing solutions into five groups
and evaluating them based on accuracy, specificity, precision, recall, and F1-score. However,
all these techniques struggled to fully segment the teeth due to the presence of the bone
structure inside the buccal cavity.

Classic image processing techniques have been utilized to address these challenges.
For instance, to counteract the problem of low contrast, Lin et al. [31,32] first enhanced the
image to distinguish between teeth and gums before applying edge extraction methods
for segmentation. In a similar vein, Chandran et al. [33] improved the quality of dental
images by applying CLAHE, followed by the Otsu threshold method for teeth segmentation.
Level set methods have been utilized by studies [34,35] to enhance the root contrast, thus
improving segmentation. Horizontal and vertical integral projection methods have also
been deployed, although their performance was not satisfactory [36,37].

Recently, deep learning (DL)-based techniques have garnered attention across various
industrial applications due to their impressive performance [38–40]. These applications
span object classification [41], segmentation [42–44], counting [45], medical image enhance-
ment [46,47], and object detection [48]. Specifically, in tasks such as object detection and
segmentation, DL-based methods have revolutionized the field [49]. As a result, several DL-
based techniques have been employed to enhance teeth segmentation in dental panoramic
X-ray images. While some studies have focused solely on the semantic segmentation of
teeth, limiting the level of detail for further processing steps in most automatic dental
analyses [30,50,51], others have identified teeth alongside segmentation, providing more in-
formation for automatic analysis. However, these instance segmentation techniques, which
typically consist of two stages, ROI/fuzzy boundary detection and teeth segmentation,
increase the complexity and are more prone to errors due to their cascading nature. The
errors from the first stage can propagate to the second, limiting the performance of these
methods. Additionally, the information obtained from instance segmentation may not be
sufficient for a comprehensive teeth analysis, as apart from intra-teeth segmentation, it is
crucial to accurately segment the teeth from other oral tissues.

For instance, Jader et al. [11] employed the mask-region-based convolutional neural
network (Mask-R-CNN) for instance segmentation. Their method, evaluated on a diverse
set of 1500 images, achieved an accuracy of 98%, an F1-score of 88%, a precision of 94%, a
recall of 84%, and a specificity of 99% over 1224 unseen images, considerably outperform-
ing 10 unsupervised methods. However, the method was limited to teeth detection and
did not account for other issues such as dentures and areas with missing teeth. Similarly,
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Zhang et al. [52] utilized deep-learning-based methods to detect and classify teeth, merging
the Faster R-CNN and region-based fully convolutional networks (R-FCN) to identify com-
mon patient issues such as tooth loss, decay, and fillings. Similarly, Koch et al. [50] employed
the U-Net architecture in conjunction with an FCN for semantic segmentation of dental
panoramic radiographs and explored ways to improve segmentation performance, such
as network ensembling, test-time augmentation, bootstrapping of low-quality annotations,
and data symmetry exploitation. In their study, Lee et al. [53] utilized data augmentation
techniques such as rotation, flipping, Gaussian blur, and shear transformation to generate
1024 training samples from 30 radiographs. They implemented a fully deep learning method
using the Mask R-CNN model through a fine-tuning process to detect and localize tooth
structures, achieving an F1 score of 0.875 and a mean IoU of 0.877. Muresan et al. [54]
proposed a novel approach for automatic teeth detection and dental problem classification
using panoramic X-Ray images. They utilized a CNN model trained on their collected data
and employed image pre-processing techniques to refine segmentation, resulting in an F1
score of 0.93.

Building upon previous efforts, Zhao et al. [55] introduced a dual-stage scheme, TSAS-
Net, to address specific issues like fuzzy tooth boundaries resulting from poor contrast
and intensity distribution in dental panoramic X-rays. The method, tested on a dataset of
1500 radiographs, achieved an impressive accuracy of 96.94%, a Dice score of 92.72%, and
a recall of 93.77%. Kong et al. [56] have made a substantial contribution to the scientific
community by introducing a publicly available dataset that includes 2602 panoramic dental
X-ray images. Each image in the dataset is paired with expertly annotated segmentation
masks, thereby significantly enriching this resource. Harnessing the power of this dataset,
they engineered a proficient encoder–decoder network named EED-Net. This network is
specifically designed for the autonomous segmentation of the maxillofacial region, demon-
strating their innovative application of the dataset. Arora et al. [57] recently introduced
a multimodal encoder-based architecture, designed to extract a variety of features from
panoramic radiographs. These extracted features were subsequently processed through
a deconvolutional block to generate the final segmentation mask. By achieving precision
and recall rates of 95.01% and 94.06%, respectively, this approach outperformed other
leading methods.

In a different approach, Almalki et al. [58] utilized self-supervised learning methods,
such as SimMIM and UM-MAE, to boost model efficiency in comprehending a limited num-
ber of available dental radiographs. Their SimMIM method yielded the highest performance,
achieving 90.4% and 88.9% in detecting teeth and dental restorations and instance segmen-
tation, respectively. This outperformed the random initialization baseline by an average
precision increase of 13.4 and 12.8. However, the method’s requirement for extensive pa-
rameter fine-tuning creates challenges in achieving optimal results. Recently, Hou et al. [59]
proposed the Teeth U-Net model. This model combines a Squeeze-Excitation Module in
both the encoder and decoder, supplemented by a dense skip connection, in an attempt to
bridge the semantic gap. The model also includes a Multi-scale Aggregation attention Block
(MAB) in the bottleneck layer to effectively extract teeth shape features and adaptively fuse
multi-scale features. To incorporate dental feature information from a broader field of view,
they devised a Dilated Hybrid self-Attentive Block (DHAB) at the bottleneck layer. This
block is designed to suppress irrelevant background region information without increasing
the network parameters. Although the study showcased competitive performance on a
private dataset, it has not yet been evaluated on publicly available datasets.

Table 1 summarizes the strides made by the aforementioned studies towards accurately
segmenting teeth in panoramic radiographs.



Bioengineering 2023, 10, 843 5 of 17

Table 1. Summary of previously published methods for teeth segmentation in panoramic radiographs.

Authors, Year Technique Contribution/Advantages Limitations

Jader et al. [11], 2018 Instance segmentation for panoramic X-ray images Introduced a new instance segmentation technique for teeth segmentation
with promising results. Struggles with overlapping and adjacent teeth.

Zhang et al. [52], 2018 Label tree with cascade network structure for teeth
recognition

Improved teeth recognition using a novel label tree and cascade network
structure.

Inefficient with teeth suffering from severe
pathologies.

Koch et al. [50], 2019 U-Nets for dental panoramic radiographs
segmentation

Developed an accurate tooth segmentation technique based on U-Nets.
Demonstrated improved performance.

Difficulty in segmenting teeth with complex
structures or deformities.

Lee et al. [53], 2020 Deep convolutional neural network for tooth
segmentation automation

Employed a deep convolutional neural network for automated tooth
segmentation. Enhanced both efficiency and accuracy.

Limitations when dealing with noisy or
poor-quality images.

Muresan et al. [54], 2020 Deep learning and image processing techniques for
teeth detection and dental problem classification

Introduced a novel approach using deep learning and image processing
techniques for teeth detection and dental problem classification.

Struggles with dental problems underrepresented in
the training data.

Zhao et al. [55], 2020 TSASNet: Two-Stage Attention Segmentation
Network for tooth segmentation

Developed TSASNet, a Two-Stage Attention Segmentation Network for tooth
segmentation, showing enhanced results. Inefficient with teeth of unusual shapes or sizes.

Kong et al. [56], 2020 Efficient encoder–decoder network for automated
maxillofacial segmentation

Proposed an automated segmentation method for maxillofacial regions in
dental X-ray images. Showed improved efficiency and accuracy.

Difficulty with radiographs containing artifacts or
of poor quality.

Shubhangi et al. [60], 2022 CNNs combined with classical image processing
methods

Performed teeth segmentation and numbering using a histogram-based
plurality vote process.

Computationally expensive, posing challenges for
real-time applications.

Arora et al. [57], 2023 Multimodal encoder-based architecture Achieved superior teeth segmentation performance. Limited to semantic segmentation.

Datta et al. [61], 2023 Combination of neutrosophic logic and a fuzzy
c-means algorithm Demonstrated competitive performance. Relies on conventional image processing techniques,

which might lack robustness.

Almalki et al. [58], 2023 Self-supervised learning methods (i.e., SimMIM and
UM-MAE) for dental panoramic radiographs

SimMIM, a masking-based method, outperformed UM-MAE and supervised
and random initialization methods for teeth and dental restoration detection
and instance segmentation.

Parameter fine-tuning, including mask ratio and
pre-training epochs, substantially influence
segmentation performance.

Hou et al. [59], 2023 UNet with dense skip connection and attention
units

Used dense skip connections and attention units to handle the irregular
shape of teeth. Introduced Multi-scale Aggregation Attention Block (MAB)
and Dilated Hybrid self-Attentive Block (DHAB) at the bottleneck layer.

Lacks performance analysis on public datasets,
making a fair comparison challenging.
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3. Materials and Methods
3.1. Datasets

Silva et al. [30] released the UFBA-UESC Dental Images Dataset, which initially con-
tained 1500 panoramic images along with semantic segmentation of teeth. Jader et al. [11]
later introduced instance segmentation, leading to the creation of the UFBA-UESC Dental
Images Deep dataset. This new dataset comprises a total of 276 images designated for
training and validation. Further development by Silva et al. [7] involved the addition of
tooth number information, resulting in a cumulative dataset of 543 images, inclusive of
those from the UFBA-UESC Deep dataset. Named the DNS (Detection, Numbering, and
Segmentation) Panoramic Images, this dataset comes equipped with binary masks and
annotations in the COCO format. Detailed information about the UFBA-UESC Dental
Images Dataset’s characteristics is depicted in Table 2.

Table 2. UFBA-UESC Dental Images Dataset characteristics. Note that Xand – represent the presence
and absence of category, respectively.

Category Restoration Appliance Teeth Numbers Image Numbers

1 X X 32 73
2 X – 32 220
3 – X 32 45
4 – – 32 140
5 – – 18 120
6 – – 37 170
7 X X 27 115
8 X – 29 457
9 – X 28 45

10 – – 28 115
Total – – – 1500

For our study, we adjusted the annotations of the DNS Panoramic Images dataset for
panoptic segmentation. We achieved this by merging the provided semantic and instance
labels and converting them into TFRecords for our experiment. This dataset served for
both training and validation, with 500 images set aside for the training set and 43 images
allocated for validation. Testing images were sourced from the original UFBA-UESC Dental
Images dataset.

Our research utilized the UFBA-UESC Dental Images Deep dataset [7]. This dataset is
accessible through a reasonable request made to the corresponding author (https://github.
com/IvisionLab/dns-panoramic-images-v2 (accessed on 2 May 2023)). Table 3 provides
comprehensive details regarding the dataset, such as the presence of thirty-two teeth,
restorations, and appliances, as well as the total number of images used for numbering,
instance segmentation, and SS. We excluded images from categories 5 and 6 due to the
presence of implants and deciduous teeth.

Table 3. Dataset characteristics used in this work. Note that Xand – represent the presence and
absence of the corresponding category, respectively.

Category 32 Teeth Restoration Appliance Number and Instance Segmentation Segmentation

1 X X X 23 57
2 X X – 174 80
3 X – X 42 11
4 X – – 92 68
7 – X X 36 87
8 – X – 128 355
9 – – X 14 33

10 – – – 34 87
Total – – – 543 778

https://github.com/IvisionLab/dns-panoramic-images-v2
https://github.com/IvisionLab/dns-panoramic-images-v2
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3.2. Network Architecture

The proposed model employs a network architecture comprised of three primary
components: a Transformer block, a stacked decoder, and output heads. This end-to-end
instance segmentation model predicts masks and their corresponding classes directly. In
this study, we utilize Mask Transformer-Based Networks (M-TransNet) integrated with PQ
Loss [62]. These networks function as instance segmentation models inspired by panoptic
segmentation. The M-TransNet directly predicts class-labeled masks for panoptic segmen-
tation, with PQ-style loss employed to train the model. This section also introduces the
dual-path transformer architecture and the auxiliary losses that significantly facilitate the
model’s training. A complete network diagram is displayed in Figure 2.

Figure 2. The structure of the proposed framework. An image and global memory are input into a
dual-path transformer, which directly generates a collection of masks and classes (excluding residual
connections). A dual-path transformer block is designed with all four types of attention (M2P, M2M,
P2M, and P2P) between the two paths. On the right bottom side, the structure of the axial-attention
block is illustrated. The axial attention mechanism decomposes the 2D attention into two 1D attentions;
one applied along the height axis of the image, and the other applied along the width axis. By doing so,
it significantly reduces the complexity from quadratic to linear, which makes it more computationally
efficient.

3.2.1. Architecture Formulation

The overarching goal of panoptic segmentation is to segment every object in an image
I ∈ RH×W×3 and assign a class label to each mask. The ground truth for a panoptic
segmentation model can be expressed as:

{yi}K
i=1 = {(mi, ci)}K

i=1 (1)

where K represents the total number of non-overlapping ground truth masks mi ∈ 0, 1H×W

and ci denotes the class label for each mi. The output from our proposed network should
precisely mirror the ground truth, thereby predicting the mask of each object alongside the
class labels.

{ŷi}N
i=1 = {(m̂i, p̂i(c))}N

i=1 (2)

where N remains constant and is greater than K, with p̂i(c) representing the probability of
mask mi being associated with class c. The network is optimized to assign an empty class
to masks where N exceeds K. The class label for each mask can be predicted by taking the
argmax of class probabilities:
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ĉi = arg max
c

( p̂i(c)) (3)

Similarly, the mask-ID can be assigned to each pixel by applying argmax again:

ẑh, w = arg max
i

(m̂i, h, w) ∀h ∈ 1, 2, . . . , H, ∀w ∈ 1, 2, . . . , W (4)

Each argmax is filtered using a confidence threshold. Masks or pixels with a low
confidence score are removed.

3.2.2. Transformer Block

The dual-path transformer module comprises two paths: a CNN path and a memory
path. The CNN path processes the input image and extracts features, while the memory
path stores information about the objects and their relationships within the scene. The
two paths communicate through a set of attention mechanisms, which allows the model to
selectively attend to different parts of the input and memory.

The CNN path within the dual-path transformer module is a standard convolutional
neural network that processes the input image and extracts features. The features are
passed through a series of convolutional layers, followed by a set of axial-attention blocks
that implement pixel-to-pixel (P2P) self-attention. The output of the CNN path is a feature
map encoding information about the input image.

The memory path in the dual-path transformer module is a memory-augmented
transformer that stores information about the objects and their relationships within the
scene. The memory is initialized with a set of learned object queries, which are used to
attend to the input feature map and extract object features. These object features are then
stored in the memory, along with their corresponding object queries. The memory is updated
at each time step using a set of memory update operations, which enable the model to reason
about the relationships between different objects in the scene.

The two paths in the dual-path transformer module communicate through a set of
attention mechanisms. These mechanisms enable the model to selectively attend to different
parts of the input and memory, allowing the model to reason about the relationships
between different parts of the image and memory.

By using a dual-path transformer module, the architecture effectively combines the
strengths of both CNNs and transformers for panoptic segmentation. The CNN path
extracts rich visual features from the input image, while the memory path reasons about
the relationships between different objects in the scene. The attention mechanisms facilitate
communication between the two paths, allowing the model to selectively attend to the
most relevant information for the task at hand.

3.2.3. Attention Mechanisms

The attention module in the network is a key component of the memory-augmented
transformer. It allows the model to selectively focus on different parts of the input image
and memory, based on their relevance to the task at hand. Specifically, the attention module
computes a set of attention weights for each position in the input feature map or memory,
based on its similarity to other positions. These weights are then used to compute a weighted
sum of the feature map or memory, which is passed through a feedforward network to
produce the final output.

The dual-path transformer block employs four types of attention to facilitate commu-
nication between the CNN path and the memory path:

• Memory-to-pixel (M2P) attention: This type allows the model to attend to the memory
from the pixel path. It computes attention weights for each position in the input
feature map, based on its similarity to the memory.

• Memory-to-memory (M2M) self-attention: This type allows the model to attend to the
memory from the memory path. It computes attention weights for each position in
the memory, based on its similarity to other positions in the memory.
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• Pixel-to-memory (P2M) feedback attention: This type allows the model to attend to
the memory from the pixel path, but also allows the memory to attend back to the
pixel path. It computes attention weights for each position in the memory, based on
its similarity to the input feature map.

• Pixel-to-pixel (P2P) self-attention: This type allows the model to attend to the input
feature map from the pixel path. It computes attention weights for each position in the
input feature map, based on its similarity to other positions in the input feature map.
In the network, P2P self-attention is implemented as axial-attention blocks, which are
more efficient than global 2D attention on high-resolution feature maps.

3.2.4. Decoder Block and Output Heads

The decoder block is stacked L times, iterating through output strides (4, 8, and
16 [63,64]) multiple times at each decoding resolution. It merges features by performing
bilinear resizing, simple summation, and applying either convolutional blocks or trans-
former blocks before moving to the next resolution. While it shares similarities with feature
pyramid networks [65,66] designed for pyramidal anchor predictions [67], the purpose
of our decoder block is solely to aggregate multi-scale features without directly using
intermediate pyramidal features for prediction.

The output heads are designed to make predictions from the processed features.
Following the stacked decoder, two fully connected layers (2FC) and a softmax function
predict mask classes using the memory feature of length N. For mask prediction, the
decoder block is followed by 2FC to obtain a memory path mask feature ( f ). The decoder
output at stride 4 passes through two convolution layers (2Conv) to generate the normalized
pixel path feature (g). The predicted mask is then obtained from the multiplication of f and
g, where f ∈ RN×D and g ∈ RD× H

4 ×
W
4 .

3.2.5. Combining Outputs for Panoptic Segmentation

The network directly predicts class-labeled masks using a mask transformer, which
outputs a set of instance masks and a semantic mask. The instance masks represent the
pixels belonging to each object instance in the scene, while the semantic mask represents
the pixels belonging to each semantic class.

To obtain the final panoptic segmentation, the instance masks and the semantic mask
are combined using a post-processing step. Specifically, the instance masks are first grouped
into object instances using a clustering algorithm, such as mean-shift or DBSCAN. The
resulting object instances are then assigned a unique instance ID, used to distinguish them
from other object instances in the radiographs.

Next, the semantic mask is merged with the instance masks to obtain the final panoptic
segmentation of teeth. This is achieved by assigning each pixel in the semantic mask to the
object instance to which it belongs, based on the instance ID of the corresponding pixel in
the instance masks.

3.3. Loss Function

For training, we used a main loss function and auxiliary losses. Panoptic segmentation
comprises two main tasks: segmentation and recognition. Therefore, an optimal loss
function should check the quality of both. Our main loss function is a product of recognition
quality (RQ) and segmentation quality (SQ). The loss function basically maximises a
similarity metric over matched masks. One-to-one bipartite matching between the predicted
and ground truth masks is performed first, followed by the computation of the similarity
metric that can be given as:

sim
(
yi, ŷj

)
= p̂j(ci)×Dice

(
mi, m̂j

)
(5)

where sim(·, ·) is the mask similarity metric between class-labelled ground truth mask
yi = (mi, ci) and predicted mask ŷj =

(
m̂j, p̂j(c)

)
. The similarity metric ranges between 0
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and 1. The value will be 0 when the class is wrong or the masks do not overlap, while it will
be 1 when both the classes and masks match precisely. For mask matching, each predicted
mask is matched with the ground truth until maximum total similarity is achieved using
one-to-one bipartite matching, which is given as:

σ̂ = arg max
σ∈SN

K

∑
i=1

sim
(

yi, ŷσ(i)

)
(6)

where {ŷi}N
i=1 and {yi}K

i=1 are the prediction and ground truth sets, respectively, and
σ ∈ SN is the permutation of N elements that best assigns the predictions to obtain
maximum similarity. Considering the similarity metric and the mask-matching process,
the loss function can be given as:

Lpos
PQ =

K

∑
i=1

p̂σ̂(i)(ci)︸ ︷︷ ︸
weight

·
[
−Dice

(
mi, m̂σ̂(i)

)]
︸ ︷︷ ︸

Dice loss

+
K

∑
i=1

Dice
(

mi, m̂σ̂(i)

)
︸ ︷︷ ︸

weight

·
[
− log p̂σ̂(i)(ci)

]
︸ ︷︷ ︸
Cross-entropy loss

(7)

Intuitively, we optimize the dice loss weighed by class correctness and the cross-
entropy loss weighted by mask correctness as we want both class and mask to be correct at
the same time. Apart from Lpos

PQ for positive masks, we define a cross-entropy term Lneg
PQ for

negative (unmatched) masks:

Lneg
PQ =

N

∑
i=K+1

[
− log p̂σ̂(i)(∅)

]
(8)

This term trains the model to predict ∅ for negative masks. We balance the two terms
by α as a common practice to weight positive and negative samples:

LPQ = αLpos
PQ + (1− α)Lneg

PQ (9)

where LPQ denotes our final PQ-style loss. In addition to the PQ-style loss, we also use
three other losses: (1) Instance discrimination, used while learning feature maps. This
loss helps cluster decoder features into instances. (2) Mask ID cross entropy, helps classify
each pixel into N masks. (3) Semantic segmentation loss, helps in separating the final
mask features.

3.4. Experimental Setup
3.4.1. Training

All experiments were conducted using the UFBA-UESC dataset. The proposed net-
work was implemented with the Tensorflow framework. Training was performed on an
NVIDIA RTX Titan GPU for 500 epochs.

3.4.2. Evaluation Parameters

The following evaluation metrics were used to compare our results with state-of-the-
art segmentation models, where the F1 score was mainly used as a reference since it can
give a better estimation of overall performance.

Accuracy =
TP + TN

TP + FN + TN + FP
(10)

Speci f icity =
TN

TN + FP
(11)
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Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 Score =
2× Precision× Recall

Precision + Recall
(14)

4. Results

We evaluate the performance of our proposed network on the UFBA-UESC Dental
Images dataset. Our analysis includes both quantitative and qualitative assessments, com-
paring our results to those of other state-of-the-art techniques. This section provides a
comprehensive discussion of our evaluation results. Figure 3 presents a visual comparison
of instance segmentation results produced by various networks (i.e., PANet, HTC, Mask
R-CNN, ResNet, and our approach) alongside the ground truth.

Figure 3. Comparison of teeth instance segmentation results for various networks—PANet, HTC,
Mask R-CNN, ResNet, and our proposed approach—alongside the ground truth.
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4.1. Ablation Study

We also performed an ablation study to understand the contribution of different
components of our network better. This study focused on a subset of the dataset and
examined changes in the F1-score, Precision, and Recall as we removed different components.
We have summarized the results in Table 4.

Table 4. Ablation study results.

Component Removed Accuracy F1-Score Precision Recall

None (Full model) 97.25 93.47 95.13 93.92
Transformer Block 95.68 91.34 92.81 90.53
Stacked Decoder 95.04 90.12 91.57 88.84
Output Heads 94.12 88.90 90.36 87.66
Pixel-to-Memory 95.32 90.77 92.20 89.48
Memory-to-Pixel 95.56 91.22 92.62 89.97

The ablation study provides valuable insights into the performance impact of each net-
work component. For instance, the transformer block greatly enhances the performance by
enabling efficient bi-directional communication between the pixel path CNN and memory
path. Similarly, the stacked decoder, which plays a critical role in aggregating multi-scale
features, helps to improve the accuracy of the segmentation output. The output heads are
responsible for predicting mask classes and have a direct impact on the network’s perfor-
mance. The pixel-to-memory (P2M) feedback attention, a component of the transformer
block, allows for the selective aggregation of information from memory, enabling the model
to capture context-aware features, thus leading to improved teeth segmentation. Both
the memory-to-pixel (M2P) and memory-to-memory (M2M) self-attention mechanisms
demonstrated their significance by capturing long-range dependencies within the memory
path and providing global context information.

4.2. Qualitative Analysis

To further substantiate our comparison, we visualized the results from our proposed
model. Figure 3 displays the instance segmentation results of various networks compared
to the ground truth. Our method demonstrates closer alignment with the ground truth,
indicating better performance in teeth instance segmentation tasks compared to the other
methods. Notably, our proposed network maintains a consistent performance across all
teeth, unlike the other networks. The synergistic benefits of the two tasks, SS and affinity
pyramid, primarily drive the improvement in instance segmentation performance. Figure 4
depicts the results of panoptic segmentation with the background class (semantic segmen-
tation) and tooth classes (instance segmentation). Figure 5 presents the precision–recall
curve, which is the average of precision and recall for all classes. Panoptic segmentation
improves the Dice score by also considering the surrounding tissues of teeth; thus, the loss
also takes into account the background segmentation to yield better results.

4.3. Comparison with State-of-the-Art Models

Next, we compared our model with state-of-the-art approaches in the context of
instance segmentation and SS. Table 5 demonstrates that our proposed framework outper-
forms all previously proposed methods. Mask R-CNN [30] and the TSAS-Net [55] have
both been utilized for teeth segmentation, while PANet [7] has achieved state-of-the-art
results. However, our approach surpasses these existing methods by capturing hidden
patterns more effectively and providing more accurate segmentation of human teeth, even
in challenging scenarios like overlapping teeth masks.
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Figure 4. Showcasing the best panoptic segmentation results that encompass both the semantic
segmentation of the background class and the instance segmentation of the teeth classes.

Figure 5. Precision–recall curve.

Table 5. Comparison with state-of-the-art methods, the best results are indicated in bold.

Method Accuracy Specificity Precision Recall F1-Score mAvP AvP50 AvP75

Mask R-CNN [30] 92.08 96.12 83.73 76.19 79.44 66.4 ± 0.7 96.9 ± 0.2 85.1 ± 1.0
TSAS-Net [55] 96.94 97.81 94.97 93.77 92.72 70.9 ± 0.1 97.7 ± 0.1 89.7 ± 0.5

PANet [7] 96.7 98.7 94.4 89.1 91.6 71.3 ± 0.3 97.5 ± 0.3 88.0 ± 0.2
HTC 96 98.5 93.7 85.9 89.6 63.7 ± 1.4 97.0 ± 0.0 82.2 ± 2.0
UNet 96.04 97.68 89.89 90.18 89.33 67.0 ± 0.5 96.3 ± 0.2 87.7±0.9

Ours 97.25 97.65 95.13 93.92 93.47 71.5 ± 0.2 98.1 ± 0.4 89.2 ± 0.1

We further evaluated the performance of our proposed method in comparison to
previously published studies related to teeth segmentation in panoramic radiographs.
Table 6 summarizes the results, which underscore the remarkable performance of our
proposed scheme. Given the impressive performance of our framework, as substantiated
by our experimental results, we assert that our proposal has established a new state of the
art in teeth segmentation.
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Table 6. Comparison with previously published studies, the best results are indicated in bold.

Method Accuracy Specificity Precision Recall F1-Score

Wirtz et al. [51] – – 79 82.7 80.3
Lee et al. [53] – – 85.8 89.3 87.5

Arora et al. [57] 96.06 99.92 95.01 93.06 91.6
Fatima et al. [68] – – 86 87 84

Karaoglu et al. [69] – – 93.33 93.33 93.16

Proposed Method 97.25 97.65 95.13 93.92 93.47

4.4. Limitations

Our proposed method seeks to achieve instance segmentation of teeth in panoramic
radiographs by leveraging an end-to-end model specifically designed for panoptic seg-
mentation. This innovative approach unifies semantic and instance segmentation tasks,
introducing a dual-path architecture that adds a global memory path to the conventional
CNN path. This unique setup facilitates direct communication across all CNN layers.
The architecture explicitly crafted for panoptic segmentation leverages novel objectives,
providing equal treatment to both semantic regions and instance objects. As a result, the
proposed scheme significantly enhances the instance segmentation performance of teeth
in panoramic radiographs. Despite these notable advancements, the proposed approach
does introduce certain challenges. One key limitation lies in its additional computational
complexity, which may impede real-time clinical applications. Furthermore, our evaluation
of the proposed method relies solely on a single dataset. This limited scope constrains
a comprehensive assessment of the scheme’s generalization capabilities, restricting its
potential for a more universally applicable evaluation.

5. Conclusions and Future Directions

We have applied a panoptic segmentation strategy to conduct instance segmentation of
teeth in panoramic radiographs. Our approach uniquely intertwines the instance segmen-
tation of teeth with the semantic segmentation of the background, enhancing intra-teeth
classification and enabling our architecture to accurately distinguish teeth from oral tissue.
Our method incorporates an end-to-end deep learning model, which leverages a mask
transformer to predict class-labelled masks directly. This is accomplished via a dual-path
architecture that introduces an additional global memory path alongside the CNN path,
thus enabling direct communication with any CNN layer. We trained our model utilizing
a panoptic-quality-inspired loss through bipartite matching. As a result, our proposed
framework attains a significantly improved segmentation performance, which also proves
beneficial for teeth numbering. The proposed method underwent rigorous evaluation
on the publicly accessible UFBA-UESC Dental Image dataset. The experimental results
validate that our proposed model outstrips existing state-of-the-art techniques in terms of
segmentation performance and robustness.

Looking ahead, our future work aims to further enhance the dual-path-based mask
transformer architecture. A key focus will be enabling the numbering of teeth in panoramic
radiographs, a crucial factor for accurate tooth identification that significantly aids in
diagnosis, treatment planning, and effective communication among dental professionals.
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