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Abstract: When combined with patient information provided by advanced imaging techniques,
computational biomechanics can provide detailed patient-specific information about stresses and
strains acting on tissues that can be useful in diagnosing and assessing treatments for diseases and
injuries. This approach is most advanced in cardiovascular applications but can be applied to other
tissues. The challenges for advancing computational biomechanics for real-time patient diagnostics
and treatment include errors and missing information in the patient data, the large computational
requirements for the numerical solutions to multiscale biomechanical equations, and the uncertainty
over boundary conditions and constitutive relations. This review summarizes current efforts to use
deep learning to address these challenges and integrate large data sets and computational methods
to enable real-time clinical information. Examples are drawn from cardiovascular fluid mechanics,
soft-tissue mechanics, and bone biomechanics. The application of deep-learning convolutional neural
networks can reduce the time taken to complete image segmentation, and meshing and solution
of finite element models, as well as improving the accuracy of inlet and outlet conditions. Such
advances are likely to facilitate the adoption of these models to aid in the assessment of the severity
of cardiovascular disease and the development of new surgical treatments.
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1. Introduction

Biomechanics play a central role in normal functions, ranging from the subcellular to
the organism level. Forces acting on cells regulate the normal development of the bones,
muscles, heart, blood vessels, and other tissues. Soft tissues are in a state of mechanical
hemostasis, responding to the normal forces acting on them to establish a narrow range of
mechanical properties and maintain normal functioning [1]. Acute or chronic alterations
in the biomechanical loads on a tissue or organ induce adaptive responses in the tissue
to maintain mechanical homeostasis. Such responses involve gene expression regulating
cell growth, differentiation, or extracellular-matrix production. For example, prolonged
elevations in blood pressure induce adaptive changes to maintain the overall stress on
arteries, causing a decrease in the arterial lumen diameter and an increase in arterial wall
thickness [2], and cardiac hypertrophy can arise from weakness in heart muscle after my-
ocardial infarction. Serious injuries can elicit responses that distort mechanical homeostasis,
leading to conditions such as osteoarthritis [3] or brain injury [4]. Further, alterations
in biomechanical properties due to genetic mutations influence muscular dystrophy [5],
Marfan’s syndrome, and hypertrophic cardiac myopathy [6], among others. Considerable
insights into these pathological changes have been gained from experimental and computa-
tional studies undertaken to characterize normal and pathological biomechanical behavior
in tissues.

Biomechanical analyses enhance the understanding of the influence of forces on tissue
function, as well as disease initiation and progression, and they serve as tools to diagnose or
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treat diseases. Imaging techniques provide detailed information on organ geometry, move-
ment, and composition, as well as fluid flows and, thus, they can aid in the formulation
of problems, the definition of boundaries and boundary conditions, and the evaluation of
results. Several software packages use this patient-specific information on vessel geometry
to compute blood flow and fluid stresses acting on the heart chambers, valves, and arteries
to diagnose the severity of diseases and guide treatment. This patient-specific informa-
tion provides the spatial boundaries of the tissue region under study, the boundary and
initial conditions, and comparative information to apply computational models of tissue
deformation and flow. These models can then accurately calculate quantities describing
key mechanical features, such as the strain, stress, pressure, velocity, and flow distribution.
Such information can be related to clinical measures of the severity of the disease, such as
the fractional flow reserve, which is a measure of the extent to which atherosclerotic disease
reduces blood flow in a coronary artery [7]. Parametric studies to examine the effects of the
geometry and tissue properties provide further insights into the biomechanical responses
of a tissue but are computationally intensive.

To fully understand the ways in which biomechanics influence the disease process,
the tissue microstructure needs to be incorporated into biomechanical models, and the
subsequent growth and tissue remodeling predicted. The computations for these coupled
models are highly time- and resource-intensive, and they are not currently fast enough to
provide patient-specific results in real time.

While analytical and computational techniques have been developed to improve var-
ious steps in the imaging and computation processes, the methods of machine learning
and deep learning can accelerate the overall processes, enabling biomechanics to be an
effective tool to aid clinicians in the diagnosis and treatment of diseases. The integration of
deep-learning techniques with various steps in the process of analyzing patient-specific
biomechanical states in specific organs, a process known as physics-inspired neural net-
works, offers the opportunity to reduce computation time and improve accuracy by con-
straining the neural network [8,9], improving the potential for patient-specific applications.
The ways in which deep learning facilitates the computational speed and accuracy of the
patient-specific simulation of biomechanics and progress in the production of real-time
information for clinical decisions are reviewed.

2. Computational Biomechanics

Non-invasive imaging methods such as magnetic resonance imaging (MRI), computed
tomography, and ultrasound provide critical information about a patient’s health and
disease state, as well as geometric and boundary conditions for biomechanical models.
These models are based upon conservation relations and specific constitutive equations
and fall into three general classes: fluid mechanics, solid mechanics, and gait analysis. To
exemplify the various approaches in which deep learning is used, this review examines
solid and fluid mechanics models related to soft tissues, with a focus on the cardiovascular
system.

For an incompressible fluid, such as blood, the conservation of mass is:

∇·v = 0 (1)

where v is the velocity vector. The conservation of mass places constraints on the velocity
components and the outlet-velocity profile.

While blood is a non-Newtonian fluid, many computational fluid dynamics (CFD)
simulations treat blood as a Newtonian fluid, and this form of the conservation of linear
momentum is known as the Navier–Stokes equation.

∂v
∂t

+ v·∇v = −∇p + ρg + µ∇2v (2)

where p is the pressure, ρ is the fluid density, and µ is the fluid viscosity.
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The derivation of Equations (1) and (2) is covered in many textbooks on fluid mechan-
ics and biomechanics [10,11]. Typical boundary conditions are no slip at the vessel wall
(i.e., the fluid velocity equals the velocity of the endothelial surfaces of blood vessels) and
prescribed pressure and velocity field at the inlet. For patient-specific studies, often, either
the inlet and outlet conditions are unknown or limited information is provided on, for
instance, the average velocity, flow rate, or specific pressure, and the spatial and temporal
variation of the velocity needs to be assumed at these boundaries.

The suitability of treating blood as a Newtonian fluid has been investigated in a
number of studies. When the shear rate (the derivative of velocity with position) exceeds
100 s−1, blood behaves as a Newtonian fluid [12], and deviations from Newtonian behavior
occur in regions of low fluid velocity and velocity gradients. Deviations from Newtonian
behavior affect particle trajectories [13] which may be important in studying monocyte
adhesion to inflamed arteries.

The positions of the vessel wall and cardiac muscle change over time due to the
pressure field and the mechanical properties of the vessels and heart. Related fluid-structure
models range from relations that describe the constitutive relations for the passive behavior
of arteries under large strains (see below) to descriptions of arterial-wall remodeling to
altered flow conditions and pressure. For most flow simulations, the wall motion is
ignored, or a function representing the movement of the vessel wall is imposed, simplifying
the solution.

While conservation and constitutive relations are developed for tissue mechanics,
soft tissues can undergo large deformations, even under normal physiological conditions.
They exhibit nonlinear elastic or viscoelastic behavior, and are best modeled by nonlinear
constitutive equations, which are most easily represented in terms of a scalar strain energy
function, ψ. The strain energy function is related to the second Piola–Kirchhoff stress tensor,
S, in terms of the Cauchy–Green deformation tensor, C [10]:

S = 2
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where p is the hydrostatic pressure. For ψ, a functional form can be assumed based on
the tissue mechanical behavior [14] or a microstructural model developed in which the
strain energy depends on the stress–strain properties of collagen and the distribution
of collagen fibers in the tissue [15]. To solve these problems, one needs the geometry,
material properties, and applied loads, as well as other boundary conditions. Obtaining
an appropriate constitutive relationship is a key challenge because many soft tissues are
anisotropic and the material composition may be heterogeneous, particularly in disease
states. The computational methods used to solve these solid or fluid mechanics equations
and the associated boundary conditions include the finite element method [16] and the
lattice Boltzmann method [17]. The constitutive models are often tested by applying
computational models of in vitro experiments featuring biaxial extension [14], in which
can the boundary conditions can be imposed by experimental designs.

3. Patient-Specific Computational Analysis

The process for modeling patient-specific data is summarized in Figure 1. A variety of
imaging methods provide critical information about a patient’s health and disease state, as
well as the geometry and boundary conditions for biomechanical models. For CFD studies
of blood flow in the heart or blood vessels, advances in dynamic magnetic resonance
imaging (MRI) have produced increased detail about vascular-flow fields that can aid
in diagnoses. The most advanced of these methods use phase contrast to provide the
three-dimensional velocity vector over the entire cardiac cycle (4DFlow) [18]. The velocity
or pressure field can then be used to determine the pressure gradients, fluid streamlines,
kinetic energy, and wall shear stress, which are important in diagnosing a variety of
pathological conditions in the heart and arteries. Errors can be introduced into 4DFlow
by acquisition (e.g., spatial and temporal resolution) and processing (e.g., segmentation),
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as well as the patient (e.g., heart-rate variability, motion) [18]. Such errors can limit the
accuracy of the velocity field near the surface of the tissue.
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For models of soft tissues, the vessel geometry and microstructure are needed. A
variety of atlases contain data on organ structure [19] and cell composition [20]. To ex-
amine the microstructure, the collagen-fiber orientation can be determined from second
harmonic generation, two-photon microscopy, and other imaging techniques [21]. Image
segmentation is a critical process used to obtain the three-dimensional tissue structures
of tissues or tissue regions under normal and pathological conditions. The objective is to
distinguish the tissue structure from the image background. The geometric information
obtained from the segmentation is then used to define the field of analysis through the
numerical method. Open-source packages for image segmentation, such as VMTK for
tubular structures [22], 3D Slicer www.slicer.org (accessed on 6 September 2023) [23], and
Biomedisa [24] can simplify the segmentation process.

The finite-element-model domain is divided into fine regions with a mesh that accounts
for the geometry and the expected gradient of the variables under study. Approximate
forms of differential equations are written over these individual mesh components and
adjacent mesh elements share common values for the variables. With structured meshes, the
element size is fixed, and the geometry makes their application straightforward. However,
when variables change rapidly over a given region, unstructured meshes are preferred,
since they may reduce the overall number of equations to solve, shortening the computation
time, which is beneficial for parallel computing [25]. A particularly useful, but complex,
approach involves isogeometric analysis, which is adapted from computer-aided design
and creates mesh elements that match the geometry of the tissue domain [26].

Specifying patient-specific inlet and outlet conditions can be challenging. In flow
problems, often, only the time-varying flow rate or pressure are known. The inlet flow may
be approximated by the Womersley equation for unsteady pulsatile flow in a rigid straight
cylindrical vessel [11], but this velocity profile does not capture the complexity of the
pulsatile inlet flow field arising from the vessel curvature, short entrance lengths, and the
presence of pulse-wave reflections, producing considerable patient–patient variability. For
the outlet, the downstream conditions can affect the solution. One approach is to approxi-
mate the downstream conditions with a simple one-dimensional model incorporating the
resistance and capacitance of the vasculature, known as a Windkessel model [27]. Since the
specific flow conditions may vary among individuals and limited downstream information
is known, these approximations introduce some errors into the process. Algorithms that
optimize the Windkessel model’s parameters from systemic values of pressure and flow
are superior to the manual adjustment of parameters for outlet conditions, improving
accuracy [28]. An alternative approach is to couple the 3D CFD model with a closed-loop
one-dimensional model [29]. Various constraints are needed to ensure that the model is

www.slicer.org
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stable and well-conditioned [30]. Various fitting approaches have been developed to obtain
the lumped parameter models [31].

Numerical solutions are often tested against known analytical solutions to establish
that a particular computational approach is valid. The grid density is tested by determin-
ing whether a denser grid yields the same solution within a specified tolerance, which is
especially important for fluid–structure interaction models [32]. Once these results are satis-
factory, the simulation outputs that are examined include the flow field, streamlines, shear
stresses, fluid-residence time, pressure drops, and vorticity in fluid-mechanics simulations,
and stresses and strains in solid mechanics models. If microstructural models are included,
then the impact of the microstructure features on the stress and strain are evaluated, often
requiring additional simulations. Table 1 summarizes some of the patient-specific models
and their findings.

Table 1. Selected patient-specific applications of computational biomechanics.

Topic Reference Key Results

Orthopedic Biomechanics

Design of stem for total hip
arthroplasty [33] Identified novel design that produced strains

comparable to those present before surgery.

Oral and maxillofacial surgery [34] Survey of various finite-element models in trauma
and reconstructive surgery and implant design.

Modeling of bone [35] Overview of processes to model deformations, and
implant interactions

Cardiovascular Biomechanics

Mitral valve repair [36,37] Model developed from 3D transesophageal
echocardiography; workflow for steps in Figure 1.

Abdominal aortic aneurysms [38]
Wall shear stress is a critical factor affecting rupture

and can be predicted with four geometric
parameters, which can be measured.

Single functional ventricles [39]
Fluid-structure-interaction model indicates that a

common surgical procedure can be modeled
assuming rigid vessels.

Coronary-artery fractional -flow
reserve [40] Identification of minimal number of patient

variables to estimate fractional flow reserve

While these models can lead to improved diagnostic criteria, a number of limitations
need to be addressed. These include the limitations of the imaging technology in the
provision of sufficient resolution, the need to validate the model with clinical data, detailed
information about loading conditions, and the need for models to incorporate features that
depend on age, sex, and race in order to account for population variability [41]. While de-
veloped to address orthopedic models, many of the critiques are valid for all biomechanical
models. In many tissues, there are numerous unanswered questions about the properties
and heterogeneity of the material properties [42]. To improve the computational speed for
real-time applications, codes are optimized to run efficiently and parallel computation is
used [43]. Key bottlenecks in processing are in mesh generation and computation and in
image segmentation. Machine- and deep-learning tools offer efficient methods that can
reduce computation times.

4. Machine-Learning and Deep-Learning Techniques

Artificial intelligence (AI) is a suite of methods through which computers learn from
and make decisions using large quantities of data. The data can take a range of forms,
including images, text, sound, or computer simulations. In the simplest applications, com-
puter codes are used to analyze data and extract information. More advanced techniques
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of machine learning and deep learning are used to improve or accelerate the analysis of
medical images or the computation of biomechanical responses (stresses, deformation, or
material properties).

Machine learning (ML) programs to recognize patters and involve training programs
to represent features of language or text, enabling computers to adapt without human
intervention. The program learns the rules governing the features of the data by analyzing
large sets of data [44]. In unsupervised learning, the software identifies patterns in data
using machine learning and some rules without additional human intervention. The
data are analyzed by clustering based on similarities, sets of rules relating to variables,
or dimensionality reduction, such as in principal components analysis [44]. Supervised
learning uses labeled data sets to train machine-learning programs using classification
algorithms or regression, which mathematically relate input and output data sets [44]. A
challenge with machine learning is the need for large sets of high-quality data for training
and validation [45]. For patient-specific applications, this may prove challenging. This
limitation can be addressed by using finite-element simulations for the training set, but the
number of training sets that can be used are limited, in turn, by the computational time [46].
Nonetheless, this approach showed that decision-tree machine-learning algorithms can
reduce the computation time of biomechanical models and accurately predict flow in the
left ventricle [46].

Neural networks (NN) are training-method algorithms that learn by identifying the
relationships among the features in data (Figure 2). These networks consist of a minimum
of three layers. The input layer contains information in the data (e.g., information in each
pixel of an image), which is transferred to one or more layers, known as the hidden layers,
in which features of the data are transformed into a probability. Each node in the network
is defined by a weighting factor, bias, and activation function. The activation function
provides a nonlinear relationship between the input to the node and its response. Although
only one hidden layer is shown in Figure 2, many neural-network programs have multiple
layers, each of which has different sets of coefficients, and different transformations in each
layer, corresponding to different features in the data. The parameters in each layer are
adjusted in response to the training data. The results from the hidden layer(s) are then
transferred to the output layer, which transforms the probabilities into the desired outputs.
In fluid-flow problems, the inputs are time, t, and position (x, y, z), and the output variables
are the velocity components (vx, vy, and vz) and the pressure (p).

Deep learning (DL) uses multiple hidden layers in neural networks to relate inputs
and outputs (Figure 2). Instead of using a rules-based approach, the hidden layers in the
deep-learning neural network take advantage of the fact that the data for many types
of inputs, such as images, can be transformed into a multi-level structure. For example,
the adjoining of pixels with similar intensity may define a border or a specific structure.
By training on many images of the same overall structure, the neural network identifies
features in another image. The learning process is facilitated by the stochastic gradient
method, which utilizes the chain rule of differentiation to rapidly compute the weighting
factors and bias [47].

The training set can consist of experimental measurements or computer simulations,
and a loss function is established to minimize the mean-square difference between the data
and the results of the network. The network is then applied to a test set of data to generalize
the learning process [47]. This approach is more accurate and adaptable than machine
learning, but it needs a considerable amount of data for training and is computationally
intensive. Convolutional neural networks are commonly used because they are easier to
train [47], often requiring fewer training sets than machine-learning techniques.

Physics-informed neural networks use the boundary conditions, material property
values, and/or partial differential equations governing the biomechanical problem to place
constraints on neural networks. This addresses two limitations in the use of deep learning
to solve biomechanical models: one, the large quantity of data needed for training and two,
deep learning can identify solutions within the range of the data provided for evaluation
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but cannot extrapolate and predict results for other conditions or geometries not included
in the training set.
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The overall approach to integrate model physics into the deep-learning algorithm is
as follows [9] (Figure 3):

Step 1. Construct a neural network that predicts a solution for a key variable (e.g., velocity,
stress) from the inputs using the parameters of the neural network.

Step 2. Specify the two training sets for the equation and boundary/initial conditions.
These data define the problem under study.

Step 3. Specify a loss function between the neural-network output and both the PDE and
the boundary-condition residuals.

Step 4. Train the neural network to find the best parameters for the network that minimize
the loss function. The stochastic gradient method provides a rapid algorithm to
obtain the neural network’s parameters [48].
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The loss function constrains the parameter space over which the neural network
operates to compute parameters.

An important feature of neural networks is that they can perform differentiation auto-
matically, eliminating the need to perform operations on a finite-element grid, accelerating
computation [8] and facilitating applications for grid optimization.

5. Machine-Learning and Deep-Learning Applications to Computational Biomechanics

Machine- and deep-learning methods have been applied to many of the steps in
Figure 1 to develop and solve patient-specific biomechanical models, including image
segmentation, image analysis to extract specific features, mesh generation, and the solution
of biomechanics equations. Examples from each of these specific topic areas are considered.
A number of datasets are available. For blood vessels, www.vascularmodel.com (accessed
on 6 September 2023) contains images, anatomic models, and finite-element models for
the simulation of over 250 patient-specific geometries. These datasets interface with the
Simvascular modeling platform [49]. The Cardiac Atlas (https://www.cardiacatlas.org/
(accessed on 6 September 2023)) contains cardiac datasets that can be accessed through
data-use agreements, with the institution providing the data [19].

Image Segmentation is one of the most challenging issues in model development.
Errors can arise as a result of incomplete discrimination from the background due to noise,
poor contrast, artifacts due to the presence of other organs, and complex geometry. A
range of computer-vision approaches have been used to perform many of the tasks to im-
prove upon manual operations, including thresholding, pattern recognition, optimization
methods, and combinations of these techniques [50]. While these methods work well on
high-contrast images, their performance is limited with lower-quality images and with
the large data contents in modern imaging methods. A variety of current and emerging
deep-learning approaches to image segmentation were recently reviewed [51]. In addition,
the current state of medical segmentation algorithms, methods to evaluate segmentation
approaches, and applications in the chest, abdomen, and specific organs was reviewed
recently [52].

The 2D and 3D U-net packages [53,54] use very few training images by performing
elastic deformations on the images, enabling convolutional neural networks to learn about
the invariance of deformation. Algorithms have been developed to resolve issues related
to the touching of objects, resulting in more precise segmentation. By using the 2D and
3D forms of U-net and a series of rule-based parameters, nnU-net optimizes choices for
reconstructed images [55].

The use of a loss function that focuses on a region near the vessel wall reduces prob-
lems with segmentation using balanced loss functions [56]. The deep-learning approach
increased the automation of the segmentation process, increasing the overall throughput,
and performed slightly better than U-net. In a subsequent study, a convolutional neural
network was developed to extract a vessel-lumen boundary from 2D CT and MR images.
This approach showed improved accuracy in determining vessel dimensions without other
processing steps.

Iyer et al. [57] developed AngioNet, a two-step convolutional neural network proce-
dure for the automatic segmentation of blood vessels. First, an angiographic processing
network was applied to improve the contrast and the sharpness of the vessel boundaries
without the a priori selection of a particular pre-processing filter. This output was then
used by Deeplabv3+ [58] to create a segmented image. The accuracy was 0.18 ± 0.24 mm,
which was at the level of 1–2 pixels. An advantage of this approach is the overlapping
structures (e.g., bones, catheters), eliminating the need for manual actions to improve the
image. However, the software can overpredict vessel boundaries in severe stenosis.

Image Analysis for Feature Characterization. In addition to providing structural
information, imaging methods can provide details on blood flow, flow in other tissues, and
detailed structural information.

www.vascularmodel.com
https://www.cardiacatlas.org/
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While 4DFlow provides detailed information about these flow fields, the images
can be noisy, with inaccurate velocity values near vessel walls, creating challenges in the
estimation of quantities based on derivatives of the velocity, such as the vorticity and wall
shear stress. A variety of regression and filtering techniques have been used to address
these limitations (e.g., [59]). Using synthetic MRI data generated by CFD simulations
in the thoracic aorta and modified to be consistent with the types of data generated by
MRI, a deep learning model reduced noise and improved spatial resolution, although the
assessment was qualitative [60]. This neural network, which was trained on aortic-flow
images, significantly reduced noise and enabled the calculation of the fluid vorticity in the
right and left ventricles of adults who received surgery to address tetralogy of Fallot [61].
The results indicated that the changes in the right- and left-ventricle shape in these patients
were affected by the vorticity.

Alternatively, computational fluid dynamics can be used to assess the consistency of
4DFlow. To address errors in the method, Rutkowsi et al. [62] used convoluted neural net-
works trained on computational fluid dynamic simulations of vessel geometry to enhance
the MRI velocity images of five cerebral aneurysm vessels. From these five image data sets,
twenty additional models were manually modified, and six sets of unique inflow conditions
were used with each geometry for a total 180 CFD simulations. The simulations provided
the training set for the convolutional neural network (CNN), which was then evaluated
against time-averaged 4DFlow MRI data from 20 patients. The CNN-enhanced velocity
images had lower noise and higher apparent spatial resolution than the raw velocity images
and greater vessel-boundary delineation. This improved resolution led to corrections in
the fluid streamlines (Figure 4). A limitation of this approach is the computing costs for
training sets, since separate training sets are required for each type of vessel.
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By teaching neural networks to learn the relationship between fine and coarse grain
flow fields through the choice of the neural network and a loss function with directional
sensitivity, the super-resolution of the flow field can be achieved from 4DFlow data using
smaller training sets and less computation time [63].

Solution of Conservation and Constitutive Relations. Given the power of deep
learning, some investigators have examined the feasibility and usefulness of solving con-
servation relations and constitutive equations with neural networks using imaging data
to train neural networks. Neural networks can be trained with experimental or simulated
data related to force and deformation to predict property data, as well as to simulate fluid
flow, tissue deformation [64], or force deformation [43], leading to a significant decrease in
computation time. This approach is most beneficial when estimating the material properties
for tissue constitutive relations. The use of finite-element simulations of the governing
conservation and constitutive relations as training data can reduce the amount of patient
data needed. Such simulations need to be validated against previous patient data to ensure
their reliability.

To establish the feasibility of identifying key hemodynamic parameters describing
a disease state, Feiger et al. [65] used a single-patient aortic-coaction geometry and gen-
erated training and test sets from 50 simulations by varying the viscosity and flow rate.
Furthermore, they used a single hidden-layer neural network to predict the pressure drop.
The agreement between he neural-network model and the lattice Boltzmann model was
excellent. The model also predicted the pressure drop for levels of stenosis other than those
present in the single patient sample. The prediction of other hemodynamic parameters was
less accurate.

A five-layer convolutional neural network was used on second-harmonic-generation
images of heart-valve tissue to predict stress–strain curves from equibiaxial testing on 48
test samples [66]. The model predicted the overall shapes of the stress–strain curves, but
with an offset. The overall accuracy was 84%.

The deformation of a porcine tricuspid valve was predicted from digital image corre-
lation (DIC) using implicit Fourier neural operators [67], which incorporates long-range
features by using an integral operator. The DIC was used to analyze the valve displacement
during biaxial testing. The neural-network model exhibited less error than a finite-element
structural model but required at least 10,000 training samples. However, the neural-network
model alone was not particularly accurate with conditions other than those used for the
training set.

Mesh Generation is critical for obtaining accurate solutions from finite-element mod-
els. The packages available for the generation of meshes form solid mechanics and fluid-
mechanics models [68], but their usefulness is limited when the model is multi-scale, due
to either the nature of the mechanics or the incorporation of the tissue microstructure.
In both cases, the fine structure is much smaller than the domain of the computational
model, placing significant constraints on the computational time and cost [69]. Further, the
integration of microstructural models into finite-element models of soft tissues influences
the mesh structure, since the collagen fibers have specific regional orientations [70]. While
deep-learning approaches are appealing, training sets may be limited or non-existent for
microstructures.

To analyze the effect of the microstructure on the fatigue of bioprosthetic heart valves,
Zhang et al. [70] developed a neural-network representation of the first term on the right-
hand side of Equation (3) for the strain-energy function, 2
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C . The training set was then
developed by assuming a functional form for the fiber-orientation distribution and then
computing the strain-energy function. This approach enabled a more rapid development
of the mesh for parametric studies (Figure 5). This model used an isogeometric analysis
(IGA), in which the mesh elements match the exact geometry using non-uniform rational
B-splines [16]. This focused neural-network approach is as fast as deep-learning models,
which replace the entire set of conservation and constitutive relations, and retains the ability
to study parametric sensitivity.



Bioengineering 2023, 10, 1066 11 of 15

Bioengineering 2023, 10, x FOR PEER REVIEW 11 of 16 
 

A five-layer convolutional neural network was used on second-harmonic-generation 
images of heart-valve tissue to predict stress–strain curves from equibiaxial testing on 48 
test samples [66]. The model predicted the overall shapes of the stress–strain curves, but 
with an offset. The overall accuracy was 84%. 

The deformation of a porcine tricuspid valve was predicted from digital image cor-
relation (DIC) using implicit Fourier neural operators [67], which incorporates long-range 
features by using an integral operator. The DIC was used to analyze the valve displace-
ment during biaxial testing. The neural-network model exhibited less error than a finite-
element structural model but required at least 10,000 training samples. However, the neu-
ral-network model alone was not particularly accurate with conditions other than those 
used for the training set. 

Mesh Generation is critical for obtaining accurate solutions from finite-element 
models. The packages available for the generation of meshes form solid mechanics and 
fluid-mechanics models [68], but their usefulness is limited when the model is multi-scale, 
due to either the nature of the mechanics or the incorporation of the tissue microstructure. 
In both cases, the fine structure is much smaller than the domain of the computational 
model, placing significant constraints on the computational time and cost [69]. Further, 
the integration of microstructural models into finite-element models of soft tissues influ-
ences the mesh structure, since the collagen fibers have specific regional orientations [70]. 
While deep-learning approaches are appealing, training sets may be limited or non-exist-
ent for microstructures.  

To analyze the effect of the microstructure on the fatigue of bioprosthetic heart 
valves, Zhang et al. [70] developed a neural-network representation of the first term on 
the right-hand side of Equation 3 for the strain-energy function, 2 𝝏𝝍𝝏𝑪. The training set was 
then developed by assuming a functional form for the fiber-orientation distribution and 
then computing the strain-energy function. This approach enabled a more rapid develop-
ment of the mesh for parametric studies (Figure 5). This model used an isogeometric anal-
ysis (IGA), in which the mesh elements match the exact geometry using non-uniform ra-
tional B-splines [16]. This focused neural-network approach is as fast as deep-learning 
models, which replace the entire set of conservation and constitutive relations, and retains 
the ability to study parametric sensitivity. 

 
Figure 5. Computational process using neural networks to map the fiber structure to mesh for iso-
geometric analysis (IGA) model of bioprosthetic heart valves. E—Green–Lagrange strain tensor; 
σθ—standard deviation of preferred fiber direction; S—second Piola–Kirchhoff stress tensor (Equa-
tion (3)). Reprinted from [70], with permission. 

Physics-Informed Neural Networks (PINN). The limitations of using deep-learning 
neural networks to solve conservation relations are the large amount of training data 
needed and the lack of a guaranteed physically consistent solution. To take advantage of 
the computational speed gained from the neural networks and to produce a reasonable 

Figure 5. Computational process using neural networks to map the fiber structure to mesh for
isogeometric analysis (IGA) model of bioprosthetic heart valves. E—Green–Lagrange strain tensor;
σθ—standard deviation of preferred fiber direction; S—second Piola–Kirchhoff stress tensor (Equation
(3)). Reprinted from [70], with permission.

Physics-Informed Neural Networks (PINN). The limitations of using deep-learning
neural networks to solve conservation relations are the large amount of training data
needed and the lack of a guaranteed physically consistent solution. To take advantage of
the computational speed gained from the neural networks and to produce a reasonable
solution, the loss function incorporates the boundary conditions and conservation relation-
ship (Figure 3). Nondimensionalization scales the variables in a physically consistent way,
making the neural network robust and improving training [71]. Downstream effects can be
optimized by incorporating the general Windkessel model in the loss function, allowing
the neural network to find the best values for peripheral resistance and capacitance [71].
Since these constants are difficult to obtain by other methods, this approach can improve
the overall solution accuracy. This approach was used to compute velocity and velocity gra-
dients near the arterial surface from sparse data sets and incomplete boundary conditions
for several idealized cases, including the blood flow in an aneurysm [72].

The PINN can be used to produce the super-resolution of the flow field from low-
resolution and noisy training sets, even when the inlet boundary condition is not known [73].
4DFlow data can be used directly without further refinement. This approach enables the
exploration of a large parameter space much more rapidly than would occur with CFD
solutions for the various parameter values.

While several microstructural models of arteries have been developed, estimation
of the material properties that are valid over the entire range of the stress–strain curve
has proved challenging. To address this limitation, a hybrid model was developed, in
which a deep neural network was used to extract the material properties from second-
harmonic-generation images [74]. The parameters were then used to determine the Cauchy
stress from the strain-energy function in the microstructural model. The loss function is
the mean-square error between the stresses computed in the experiment using this hybrid
physics-informed model. The model used a smaller training set than that involved in the
direct use of the neural network to predict stress, and it gave superior fits for the stress–
strain data than the direct fitting of the microstructural model. A limitation of this approach
is that the hybrid model gave poor fits for the data outside the range of the training set.

To establish the microstructural parameters affecting the mechanical behavior of the
mouse aorta, Linka et al. [75] used constitutive artificial neural networks, which receive as
inputs strain invariants and information about the microstructures of tissues. Their output
is the strain-energy-density function and the associated stress. The constitutive artificial
neural networks incorporate the general relationships between the stress and the strain
(e.g., Equation 3 and other relationships), but do not specify the forms of the constitutive
relationships. Generally, this approach yielded very good fits, with r2 above 0.9. The model
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was also used to identify the microstructural parameters that most significantly affected
the fits.

Taking advantage of the ability of neural networks to perform automatic differenti-
ation, neural networks were used in a cardiac model to compute the displacement field
from pressure and active contraction inputs [76]. Both a simplified model and a complete
mechanical model were considered for the training. The biomechanical model and the
boundary conditions were incorporated by minimizing the residual of the force vector
between the neural network and the simulation. The simplified model worked as well as
the complete model, but required less data for training and was faster. After training, the
model was able to predict the twisting motion of the cardiac muscle in agreement with
experimental results.

One of the most significant challenges in computational biomechanics is the integration
of multiscale models. A proof-of-principle study showed that PINN can be used for the
multiscale modeling of thrombus formation [77]. The approach incorporated the Navier–
Stokes equation and a model that incorporates the steps in thrombus formation (platelet
transport, activation, and aggregation) and deformation by fluid flow.

6. Conclusions

Rapid advances have occurred in the incorporation of machine and deep learning
into the various aspects of computational biomechanics. These have led to improvements
in the quality of imaging data, enabling the more efficient segmentation of images and
the accurate computation of shear stresses and vorticity. Deep-learning algorithms can
accelerate the mesh-generation process, decreasing computation times. In parametric
sensitivity studies, deep-learning neural networks can replace finite-element solutions,
reducing overall computation times. Novel approaches have been developed to reduce the
number of training sets. These techniques can also aid in identifying key microstructural
parameters and suitable microstructural models.

While these gains are impressive and can be used to analyze patient-specific data,
their full introduction into clinical practice for real-time diagnosis is becoming achievable.
To this end, it is necessary to improve the ability to further reduce computational times,
establish a wider set of test cases, and predict accurate results outside of training regimes.
As microstructural information is incorporated into these models, the uniqueness of the
compositions of various output measures needs to be considered. As has been shown with
numerous artificial intelligence approaches, bias can enter into the learning process, either
explicitly or implicitly. To address this, training sets need to encompass variations due to
age, sex, and race to ensure that the predictions truly reflect what data represent about
specific individuals’ health.
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