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Abstract: Electroencephalography (EEG) is typical time-series data. Designing an automatic detection
model for EEG is of great significance for disease diagnosis. For example, EEG stands as one of the
most potent diagnostic tools for epilepsy detection. A myriad of studies have employed EEG to
detect and classify epilepsy, yet these investigations harbor certain limitations. Firstly, most existing
research concentrates on the labels of sliced EEG signals, neglecting epilepsy labels associated with
each time step in the original EEG signal—what we term fine-grained labels. Secondly, a majority
of these studies utilize static graphs to depict EEG’s spatial characteristics, thereby disregarding
the dynamic interplay among EEG channels. Consequently, the efficient nature of EEG structures
may not be captured. In response to these challenges, we propose a novel seizure detection and
classification framework—the dynamic temporal graph convolutional network (DTGCN). This
method is specifically designed to model the interdependencies in temporal and spatial dimensions
within EEG signals. The proposed DTGCN model includes a unique seizure attention layer conceived
to capture the distribution and diffusion patterns of epilepsy. Additionally, the model incorporates
a graph structure learning layer to represent the dynamically evolving graph structure inherent
in the data. We rigorously evaluated the proposed DTGCN model using a substantial publicly
available dataset, TUSZ, consisting of 5499 EEGs. The subsequent experimental results convincingly
demonstrated that the DTGCN model outperformed the existing state-of-the-art methods in terms of
efficiency and accuracy for both seizure detection and classification tasks.

Keywords: time-series anomaly detection; graph convolutional network; electroencephalography;
seizure detection and classification

1. Introduction

Anomaly detection is a well-established research topic that has attracted a lot of
research attention for decades. Epilepsy, often seen in children and the elderly [1], mani-
fests as temporary losses of consciousness, convulsions, spasms, or abnormal behaviors,
severely disrupting the patient’s routine life. Electroencephalography(EEG), a non-invasive
technique for diagnosing epilepsy, captures brain neural activities by recording electrical
activities on the scalp [2], which is helpful for doctors to diagnose epilepsy, appraise treat-
ment effectiveness, and predict relapses. However, the analysis of EEG signals is a complex
and labor-intensive task that requires interpretation and classification by experienced and
specially trained medical professionals or technicians. This process consumes a significant
amount of time and resources. Accordingly, the development of automatic and computer-
assisted algorithms for EEG-based epilepsy detection and classification can accelerate the
diagnosis process and curtail treatment costs, bearing substantial practical significance.

The epilepsy seizure process can be categorized into four distinct phases [3]: the
interictal, preictal, ictal, and postictal periods. During the interictal period, patients typically
exhibit no symptoms. However, as they transition into the preictal stage, prodromal
symptoms such as headaches and concentration difficulties may emerge. This phase
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potentially progresses to the vital ictal stage, characterized by symptoms, like cramps and
convulsions. Finally, in the postictal stage, patients often experience symptoms, including
fatigue and headaches. As demonstrated in Figure 1 below, the EEG frequencies markedly
differ across these stages.

Figure 1. Changes in EEG signals at different periods of seizure. The EEG signals in the blue box
indicate the preictal period, the EEG signals in the red box indicate the ictal period, the EEG signals
in between the two boxes indicate the postictal period, and the EEG signals elsewhere indicate the
interictal period.

In the process of EEG data collection, traditional methods typically involve segmenting
the EEG signal prior and directly inputting it into the model. The majority of previous stud-
ies have employed a standard time interval of either 60 s or 12 s for slicing the signals [4,5].
Subsequent to this slicing process, the segmented signals are labeled as either ‘seizure’
or ‘non-seizure’, which is a process termed as the generation of coarse-grained labels.
The TUSZ dataset [6,7], on the other hand, provides more detailed labeling by marking
the start and end points of epileptic seizures, thus producing labels for each individual
time step of the EEG signal [6]. This comprehensive labeling technique is referred to as
fine-grained labeling. Nevertheless, the current methodologies primarily focus on the
coarse-grained labels generated from segmented EEG fragments [4,5], thereby neglecting
the rich information contained in the fine-grained labels of the original, unsegmented
EEG signals.

With the advent of deep learning, the current methodologies frequently employ EEG
signals as training data, leveraging advanced models for epilepsy-related research. Rep-
resentative examples include recent studies that utilize convolutional neural networks
(CNNs) [8,9] or recurrent neural networks (RNNs) [10,11] for seizure detection and clas-
sification tasks. However, these techniques have their limitations. The EEG signals are
collected from multiple channels, so the signals are not independent of each other. These
methods primarily model the temporal features but tend to ignore their spatial charac-
teristics, leading to a decrease in detection accuracy. In response to this challenge, graph
neural networks (GNNs) are introduced to capture the spatial information of EEG data.
For instance, Tang et al. [4] proposed two novel EEG graph structures and intended to
capture both electrode geometry and brain connectivity. Raeisi et al. [12] integrate tem-
poral features extracted from individual EEG signals with short- and long-range spatial
interdependencies among EEG channels. These interdependencies are embedded within
a graphical representation of multi-channel EEG data. Meanwhile, Tao et al. [5] incorpo-
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rated dynamic networks to encapsulate the spatiotemporal features associated with the
connectivity between different brain regions. Despite these innovative approaches yielding
promising results, performance is still hindered by the inadequate modeling of dynamic
graph structures and insufficient attention to fine-grained labels.

To overcome the aforementioned challenges, we introduce a novel framework, the
dynamic temporal graph convolutional network (DTGCN), for the detection and classifi-
cation of seizure zones. More specifically, we initially employ a seizure attention module
coupled with fine-grained labels to model both the distribution and diffusion patterns of
epilepsy. Subsequently, we propose a graph structure learning methodology designed to
extract dynamically evolving graph structures inherent in multivariate EEG signals. This
approach is capable of profiling the intrinsic characteristics of dynamic connections within
brain networks. Lastly, we utilize the temporal graph convolution network (TGCN) [13] to
extract spatiotemporal features. In conclusion, the key contributions of our study can be
summarized as follows:

• We propose a dynamic temporal graph convolutional network (DTGCN) model, which
is capable of detecting and classifying epilepsy using fine-grained labels and dynamic
graphs. The effectiveness and superiority of our approach are substantiated through
ablation studies and visualization experiments conducted on the TUSZ dataset.

• We design a seizure attention module that utilizes fine-grained labels to model the
distribution and diffusion patterns of epilepsy and incorporates attention scores into
the final loss function. This innovative approach encourages the model to concentrate
more efficiently on abnormal time steps.

• We devise a strategy for dynamically generating EEG graph structures using prede-
fined graphs, thereby modeling the dynamic connectivity characteristics within brain
networks. Furthermore, the rate of change in the graph structure can be modulated
via parameters, enabling more flexible adaptation to varying scenarios.

The structure of the remaining sections of this paper is as follows: Section 2 provides
an overview of the related work. In Section 3, we introduce the DTGCN framework in
detail. The experimental results and corresponding analyses are presented in Section 4.
Finally, we draw conclusions in Section 5.

2. Related Work

Over the past several decades, a wealth of research has been devoted to the automated
detection and classification of epilepsy. The majority of these studies initially extract
statistical features manually, followed by the application of traditional machine learning
algorithms for seizure detection. For instance, Gotman [14] proposed the extraction of time-
domain features based on the signal amplitude, mean value, and coefficient of variation.
Alka et al. [15] suggested the extraction of frequency-domain features centered around the
peak frequency and main frequency peak bandwidth. Azami et al. [16] introduced the idea
of extracting nonlinear features rooted in multi-scale fuzzy entropy and sample entropy.
These extracted features are subsequently fed into various classifiers for seizure detection
and classification, such as support vector machines [17], Gaussian mixture models [18],
and others. However, manual feature extraction is a labor-intensive process. EEG signals
encompass multiple channels, rendering them multi-dimensional, which complicates their
processing through these methods. Therefore, the accuracy and sensitivity of traditional
machine learning algorithms demonstrate certain limitations when applied to seizure
detection and classification tasks.

In recent years, the advancement of deep learning technology has showcased strong
generalization and adaptive learning capabilities in the realm of epilepsy research, thereby
becoming the leading method in the field of seizure detection and classification. Most
studies typically utilize conventional deep learning models, such as recurrent neural
networks (RNNs) (Tsiouris et al. and Usman et al. [10,11]) and convolutional neural
networks (CNNs) (Saab et al.; Ahmedt-Aristizabal et al. and Dhar et al. [8,9,19]). However,
these methods have certain limitations. For example, RNNs neglect the structural features
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inherent in brain networks. CNNs presuppose that EEG signals adhere to a Euclidean
structure—an assumption that disregards the natural geometry of EEG electrodes and
the connectivity within the brain network. While some researchers have endeavored to
optimize CNNs using strategies like a neural architecture search or pruning methods
(Zhao et al. and Wang et al. [20,21]), guaranteeing model performance remains a significant
challenge. As a result, an increasing number of studies have begun employing graph
neural networks for epilepsy research. In this context, Shan et al. [22] consider both the
adjacency matrix of functional connectivity, derived from multiple EEG channels, and the
corresponding dynamics of EEG channel signals simultaneously. They efficiently leverage
the constrained spatial topology of functional connectivity and harness discriminative
temporal information through 1D convolution.

The aforementioned epilepsy detection methods all presuppose that training and
testing data share the same distribution. However, EEG signals across different individuals
often exhibit considerable variation. To overcome this obstacle, certain studies have inte-
grated the fusion of transfer learning with deep learning. For instance, Zhang et al. [23]
converted the EEG signal into a time–frequency graph and transferred parameters from
three existing CNN networks: VGG16, VGG19, and ResNet50. Zhu et al. [24] incorporated
meta-learning into transfer learning to reduce the model training time via memory en-
hancement modules. Some other studies have adopted pre-training models. Tang et al. [4],
for example, pre-trained the Encoder of their proposed seizure detection model using an
epilepsy sequence prediction task, ultimately achieving superior results in comparison
with the transfer learning method.

3. Methods
3.1. Problem Statement

In this paper, the EEG input data comprise sensor readings from M sensors over N
time steps. We use X to denote our input data:

X = {x1, · · · , xi, · · · , xN}, X ∈ RN×M (1)

where xi ∈ RM represents the signal acquired from M sensors at the i-th time step, forming
an M-dimensional vector. For instance, if a segment of an EEG signal contains a 12 s or 60 s
interval, the corresponding time steps N would be 12× f and 60× f , respectively, where f
is the sampling frequency.

In this study, we formulate the representation of the EEG signal as a graph denoted by

G =
{
V , ε, W

}
, where V corresponds to the set of sensors, ε signifies the set of edges, and

W is the weight matrix. It is important to highlight that the weight matrix W is initially
unestablished and is intended to be inferred through our novel model. Subsequently, we
outline the primary objectives of our investigation as follows:

In the context of seizure detection, our primary objective involves predicting the
presence or absence of a seizure within a given EEG clip. Additionally, our focus extends
to seizure classification, wherein the aim is to categorize the specific type of seizure present
within an EEG clip. Building upon insights from prior research [4], we adopt established
methodologies. In order to comprehensively evaluate the performance of our proposed
model across different temporal scales, we segment the original EEG signal into clips of 12 s
and 60 s duration, corresponding to fast and slow analysis, respectively. This segmentation
strategy enables us to explore the model’s proficiency in both rapid and prolonged detection
as well as classification scenarios.

3.2. Framework of the DTGCN Model

Our DTGCN model aims to learn the distribution patterns of epilepsy and uncover the
intricate connectivity modes within the brain network. As demonstrated in Figure 2, the
proposed DTGCN method contains three key components: the seizure attention module,
graph structure learning module, and temporal graph convolution network. Firstly, we



Bioengineering 2024, 11, 53 5 of 14

establish the seizure attention module to reconstruct EEG signals, with the goal of empha-
sizing the distinguishing features between normal and abnormal signals. Subsequently, we
integrate the spatial–temporal information within the hidden states of the TGCN and the
reconstructions from the seizure attention module to learn the graph structure. Further-
more, the reconstructed signals and the learned weighted matrices serve as input features
for the TGCN. Finally, classifiers are implemented to perform the seizure detection and
classification tasks. The well-structured framework effectively captures both the temporal
dynamics and spatial connectivity patterns within the EEG data.
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Figure 2. Framework of the DTGCN Model. X and X
′

respectively denote the input and recon-
structed output. Vt is a sequence of windows sliced from X

′
. Ht−1 represents the output of TGCN at

the (t− 1)− th time step. Et represents the adjacency matrix of the graph structure generated at the
t− th time step. Gconv represents graph convolution. The upper right and lower right two different
branches represent seizure detection and classification respectively.

3.3. Seizure Attention Module

As shown in Figure 3, in the context of a signal segment featuring epileptic seizures,
the coarse-grained label ‘1’ signifies the presence of epileptic seizures within this segment.
Meanwhile, the fine-grained label [ 0 0 0 . . . 1 1 1 . . . 0 0 0 ] precisely denotes the specific
time points of seizure onset. The previous studies only use the coarse-grained labels in the
training process, i.e., the ground truth label of a EEG segment. However, they ignore the
fine-grained labels, i.e., the ground truth labels of each time step within one segment [4,5].
The fine-grained labels for each time step reflect the distribution and spread patterns of
epilepsy. In order to effectively capture the seizure pattern, we construct a seizure attention
module and propose a constrained reconstruction loss based on the fine-grained labels in
our training objective function.

Figure 3. Fine-grained and coarse-grained labels.



Bioengineering 2024, 11, 53 6 of 14

As shown in Figure 2 (A), the raw EEG signal X ∈ RN×M is input into the multi-head
attention module, and then we can obtain the reconstructions as follows:

{Q, K, V} =
{

WQ, WK, WV
}
∗ X

S = So f tmax
(

QKT
√

dmodel

)
X
′
= SV, X

′ ∈ RN×M

(2)

where Q, K, V ∈ Rdmodel×N represent the query, key, and value in the self-attention mecha-
nism. S is the attention score and X

′
represents the reconstructed signal.

To learn the distinguishing features of EEG signals, we add the reconstruction loss
and constrained loss based on fine-grained labels between raw signals X and reconstructed
signals X′. Specifically, we define time steps with high reconstruction errors as anomaly
instances, drawing inspiration from the previous research on anomaly detection method-
ologies [25–27], which can be formulated as ‖xt − x

′
t‖2 > τ, xt ∈ RM, and τ is the optimal

threshold. To determine the optimal threshold τ, we employ a dynamic search approach.
Within the training dataset, we uniformly sample 50 values spanning from the minimum to
the maximum of the `2 norm ‖xt − x

′
t‖2. From this set of values, we select the threshold τ

that yields the most favorable performance on our validation set. Locate the place with
large reconstruction loss as the time step of epileptic seizure. This process can result in a
set of fine-grained labels.

Then, we add constraints to the loss to minimize the difference between the true
distribution of epilepsy and the model-predicted distribution of epilepsy as follows:

T1 =
{

t | label f ine−grained = 1
}

(3)

T2 =
{

t | ‖xt − x
′
t‖2 > τ

}
(4)

Lre = ‖X− X
′‖2 +

(
crad(T1)− crad(T2)

)
/n (5)

where T1 denotes the aggregation encompassing all the time steps corresponding to the
actual seizures, T2 denotes the ensemble encompassing all the temporal steps attributed to
the projected seizures, label f ine−grained represents fine-grained labels, and crad represents
the number of elements in the collection.

The first term of Lre is the standard reconstruction loss, which preserves the informa-
tive features inherent in the raw EEG signals. The second term is the regularization, which
can highlight the discrepancy between seizure signals and normal signals and thus generate
discriminative features for further modules. The architecture of the seizure attention model
empowers the framework with robust capabilities for discriminating between normal and
abnormal data.

3.4. Graph Structure Learning Module

The intricate connectivity of neurons within the brain is inherently influenced by
diverse spatiotemporal relationships. Therefore, it is natural to describe the connection
network of neurons in the brain from a dynamic perspective. In response, we designed
a network that generates dynamic graphs for constantly updating dynamic adjacency
matrix Et. This dynamic adjacency matrix accounts for the fluctuations in the network’s
connectivity over time. In order to effectuate this, we transform the original time series
X
′

into a sequence of windows Vt . For a window of length K, the input after adding the
window is expressed as:

Vt =
{

x
′
t−K+1, · · · , x

′
t−1, x

′
t

}
(6)

It = Vt || Ht−1 (7)
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where || represents the concatenation operation, Ht−1 represents the hidden-state output
by the gated recurrent unit at the previous time step, and we regard It as a dynamic node
feature input to the graph convolution module:

DFt = θG{It} (8)

where θG represents the graph convolution on a predefined graph G, which can carry out
the message-passing process of the dynamic node features. We choose Dist-Graph [4] as our
predefined graph, and its adjacency matrix is calculated from the distance between nodes.

In practice, we generate the dynamic features of the source node DE1
t and the destina-

tion node DE2
t , respectively, and then calculate the dynamic adjacency matrix Et according

to the similarity between the nodes. While considering that, the change rate of the brain
network should not be too fast. For time step t− 1 and time step t, our graph structure
should not change much. So, we average the dynamic adjacency matrix of N consecutive
time steps to obtain the adjacency matrix Mt of the node graph structure at time t, denoted
as follows:

DE1
t = tanh

(
αDF1

t
)

(9)

DE2
t = tanh

(
αDF2

t
)

(10)

Et = RELU
(

tanh
(
α
(

DE1
t DE2

t − DE2
t DE1

t
)))

(11)

Mt =
(
Et−n + · · ·+ Et−1 + Et

)
/n (12)

where α is a hyper-parameter to control the saturation rate of the activation function to
ensure the sparsity of the graph.

3.5. Temporal Graph Convolution Network

We adopt the TGCN [13] to model the spatiotemporal dependence of EEG signals,
which is a neural network that combines the graph convolution and gated recurrent unit
(GRU), originally developed for traffic prediction in urban road networks. Specifically, the
graph convolution part is used to learn complex topological structures for learning spatial
correlation, and the gated recurrent unit is used to learn dynamic changes in EEG signals
for temporal correlation. In terms of the specific implementation, the convolutional section
of the GRU is modified as the graph convolutional section:

ut = σ
(
Wu
[
θG′
(

It
)
, ht−1

]
+ bu

)
(13)

rt = σ
(
Wr
[
θG′
(

It
)
, ht−1

]
+ br

)
(14)

ct = tanh
(
Wc
[
θG′
(

It
)
, rt ∗ ht−1

]
+ bc

)
(15)

ht = ut ∗ ht−1 +
(
1− ut

)
∗ ct (16)

Among them, ut and rt are the output of the update gate and the reset gate at time t;
w and b represent the weight and bais trainable parameters; ht is the output of the TGCN
module at time t and is sent to the graph generation module and TGCN-cell as the hidden
state at time t + 1. We take the output at the last moment as the final output vector of the
model and send it to the downstream classification. We employ cross-entropy to compute
the loss for the epilepsy detection and classification tasks:

L
(
θ
)
= −log p

(
F
(
X
)
= e|θm

)
+ λLre (17)

where F
(
X
)

represents the classification result of the EEG fragment X output from the
DTGCN model, and e is the real label of X, which represents different meanings in seizure
detection and classification: the seizure detection task represents whether there is epilepsy,
and the seizure classification task represents the type of epilepsy. θm represents the model
parameters that need to be trained, Lre represents the regularized reconstruction loss
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calculated by the seizure attention network, and λ represents the weight factor of this
loss item.

4. Results Analysis
4.1. Experimental Dataset

We used the public Temple University Hospital EEG Seizure Corpus (TUSZ) v1.5.2 [6,7],
which is the largest public EEG seizure database to date with 5612 EEGs, 3050 anno-
tated seizures from clinical recordings, and eight seizure types. Following the settings of
Tang et al. [4] in the TUSZ epilepsy detection experiment: we include 19 EEG channels in
the standard 10–20 system, set the sampling frequency of the EEG signal to 200 Hz. In the
process, we reclassified epilepsy categories within the original dataset into four distinct
classes: CF (comprising focal non-specific (FN), simple partial seizure (SP), and complex
partial seizure (CP)), GN (representing generalized non-specific seizure), AB (indicating
absence seizure), and CT (denoting tonic-clonic seizure with tonic seizure combined into a
single CT seizure class). To evaluate model generalizability to unseen patients, we exclude
five patients from the official TUSZ test set who exist in both the official TUSZ train and test
sets. The dataset statistics are shown in Table 1. Column EEG Files indicates the number
of EEG files, and the percentage of files containing epilepsy in the total files is indicated
in parentheses. Column Patients indicates the number of patients tested, and the brackets
indicate the percentage of patients with epilepsy. The brackets in the total duration column
indicate the proportion of epilepsy duration to the total EEG duration. The brackets in the
CF seizure column indicate the number of patients with CF seizure.

Table 1. Summary of data in train and test sets of TUSZ v1.5.2. used in our study.

EEG Files Patients Total Duration CF Seizures GN Seizures AB Seizures CT Seizures
(% Seizure) (% Seizure) (% Seizure) (% Seizure) (Patients) (Patients) (Patients)

Train Set 4599 (18.9%) 592 (34.1%) 45,174.72 min (6.3%) 1868 (148) 409 (68) 50 (7) 48 (11)
Test Set 900 (25.6%) 45 (77.8%) 9031.58 min (9.8%) 297 (24) 114 (11) 49 (5) 61 (4)

4.2. Experimental Setup

We divided the train set from the official TUSZ dataset randomly into a train set
and a verification set, maintaining a ratio of 9:1. Our experiments were conducted on a
single RTX 3080 graphics card, and we utilized the Adam optimizer within the PyTorch
framework. The learning rate was set at 5 × 10−5, and we trained for 100 epochs. To ensure
graph structure sparsity, we retained only five edges for each node. Should the verification
loss fail to decrease consistently for five consecutive epochs, the model’s training was
terminated prematurely.

According to some recent studies [4,5,28], we used the AUCROC and Weighted F1-
score as the main evaluation metrics for seizure detection and classification, respectively.
In order to comprehensively compare our DTGCN model with general CNN/RNN ap-
proaches and other graph theory-based methods, we chose the following baselines:

(1) LSTM [10]: A variant of an RNN with gating mechanisms.
(2) Dense-CNN [9]: A previous state-of-the-art CNN for seizure detection.
(3) CNN-LSTM [8]: A CNN and RNN framework enhanced by using external memory

modules with trainable neural plasticity.
(4) STS-HGCN-AL [28]: A model that extracts hierarchical graphs via a spectral–temporal

convolutional neural network and variant self-gating mechanism and then through the
hierarchical graph network to capture the spatiotemporal characteristics of the rhythm.

(5) Dist-DCRNN and Corr-DCRNN with pre-training [4]: They are two variants of the
DCRNN [29], which, respectively, adopt two different mapping methods: mapping
based on the real distance between electrodes and the correlation between EEG signals
from different electrodes.
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(6) PLV+GCNN and Spatial+GCNN [12]: They represent models that integrate tem-
poral features extracted from individual EEG signals with short- and long-range
spatial interdependencies among EEG channels. PLV and Spatial are two variants of
graph structures.

4.3. Overall Performance

Table 2 presents overall experimental results. DTGCN outperforms all the baseline
models expect Dist-DCRNN on 12-s seizure classification. Our model achieves a slightly
higher score compared to Dist-DCRNN and Corr-DCRNN, and significantly outperforms
other methods. It’s important to note that while LSTM can capture sequence informa-
tion and CNN can capture certain spatial structures, they do not accurately represent the
complex structure of the human brain. STS-HGCN-AL, Dist-DCRNN, and Corr-DCRNN
encode structural information within a graph framework. However, research has demon-
strated that during a seizure event, the connectivity among a substantial number of brain
neurons undergoes alterations [30]. While GCNN does consider long-range correlation, it
also captures spatial correlation through static graph representations. These models tend to
overlook fine-grained label information and the dynamic nature of brain networks. Even
though our model’s performance on 12-second EEG signals after segmentation doesn’t
match that of Dist-DCRNN, it’s worth noting that Dist-DCRNN benefits from pre-training
via self-supervised tasks. In contrast, our DTGCN is trained from scratch, and its training
time is notably shorter than that of Dist-DCRNN.

Table 2. Seizure detection and seizure classification results.

Model
Seizure Detection AUCROC Seizure Classification Weighted F1-Score

12 s 60 s 12 s 60 s

LSTM 0.629 0.586 0.576 0.601
Dense-CNN 0.786 0.715 0.652 0.679
CNN-LSTM 0.749 0.682 0.641 0.666
STS-HGCN-AL 0.809 0.772 0.707 0.714
Corr-DCRNN 0.856 0.843 0.723 0.741
Dist-DCRNN 0.861 0.875 0.747 0.750
PLV + GCNN 0.867 0.871 0.728 0.734
Spatial + GCNN 0.852 0.850 0.724 0.727

DTGCN(ours) 0.873 0.889 0.742 0.759

As depicted in Figure 4, our evaluation of the effectiveness of each model in classify-
ing uncommon forms of epilepsy involves the presentation of confusion matrices. These
matrices encapsulate the outcomes of both the baseline models and our DTGCN model
within the context of 60 s seizure classification. In an effort to provide an unbiased per-
spective, each row within the confusion matrices has undergone normalization by division
with the total number of examples corresponding to the respective class. In the graphical
representation, the horizontal axis delineates the epilepsy category predicted by the model,
while the vertical axis signifies the authentic epilepsy category label. Notably, our DTGCN
model demonstrates a marked advancement of 4 points in contrast to the finest baseline
in the AB category of rare epilepsy. Similarly, a noteworthy improvement of 5 points is
evident in the CT category of rare epilepsy in comparison with the leading baseline. And
the comprehensive classification performance has also improved.
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Figure 4. Confusion matrices of the baselines and DTGCN for 60 s seizure classification. The intensity
of the color increases with the improvement of prediction accuracy, with darker hues corresponding
to higher levels of accuracy.

4.4. Ablation Study

Since the Seizure Attention module and the Graph Structure Learning module are
important components of our DTGCN, we study the impact of these two parts on the
model performance. Table 3 shows the performance of DTGCN after we remove the Seizure
Attention module and Graph Struct Learning module in DTGCN respectively. DTGCN is
our original model, DTGCN w/o sz-atten removes the Seizure Attention module of the
proposed framework. TGCN w Dist-graph removes the Graph Struct Learning module and
the pre-defined graph is Dist-Graph. The experimental results presented are the averages
of three independent experiments, and we provide the corresponding standard deviations.

Table 3. Comparison of ablation experiments.

Model
Seizure Detection AUC/STD Seizure Classification Weighted F1/STD

12-s 60-s 12-s 60-s

DTGCN 0.873/12.45 0.889/11.41 0.742/15.59 0.759/12.48
DTGCN w/o sz-atten 0.869/10.85 0.883/8.23 0.726/12.17 0.732/9.93
TGCN w Dist-graph 0.861/9.94 0.856/9.20 0.737/9.72 0.729/8.34

Upon the exclusion of the Seizure Attention module, we observed a modest decline in
the performance of the epilepsy detection task. In contrast, the epilepsy classification task
exhibited a notable reduction in performance. This discrepancy can likely be attributed
to the elevated significance of the epilepsy distribution information inherent in the fine-
grained labels, particularly in the context of the classification task. This observation
emphasizes the intrinsic value of our fine-grained labeling approach, as it effectively
encapsulates pertinent details related to epileptiform patterns. Upon the omission of
the Graph Structure Learning module, we opted to directly feed the pre-defined graph
structure, denoted as Dist-Graph, into the TGCN module. This decision led to a pronounced
plummet in the model’s performance. This notable decline serves as an indication that the
dynamic graph, in contrast to the static graph, aligns more coherently with the inherent
structural information present within the EEG signal. In summary, the absence of either
the Seizure Attention module or the Graph Struct Learning module distinctly influences
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the achieved outcomes. This interdependence underscores the efficacy of our proposed
methodology in enhancing the overall performance.

4.5. Effects of Parameters

In this section, we study the effects that different parameters and factors that can have
impact on the performance of DTGCN. These experimental results are the average results
of three experiments.

The first factor we study is how DTGCN responds to different data window sizes K.
The window size has an impact on the types of seizures that can be detected, and directly
affects the speed of epilepsy detection and classification, because larger windows mean
more computation. Figure 5A summarizes the obtained results using five different window
sizes: K ∈ [1, 5, 10, 20, 50]. The results show that DTGCN’s performance is relatively
insensitive to window size and has a constant performance. It may be that our seizure
attention module has already extracted the global latent information of this segment of the
EEG signal, so the additional information captured is limited when faced with different
window sizes. For our experiments, we selected a window size of 10. This is the best
trade-off between the consumption of training resources and model performance.

Figure 5. The impact of parameter changes on model performance: (A) the window size K, (B) the
time step n that needs to be averaged, and (C) the weight factor λ of the KL divergence loss item.

The second aspect we examine pertains to how DTGCN adapts when averaging over
different time steps, denoted as ‘n’. As described in the previous section, considering that
the rate of change of the brain network should not be too fast, we average the elements of
the dynamic adjacency matrix for n consecutive time steps to obtain the adjacency matrix of
the graph structure at time t. Figure 5B presents the obtained results for five different values
of n ∈ [1, 2, 4, 8, 16]. The best result was achieved for n = 4. When n is small, the structure
of the brain network graph changes too quickly, and the structural information cannot be
effectively fused with the temporal information, resulting in poor performance. In another
extreme case, if we take a larger n, the effect is similar to that of a static graph, and the
graph structure does not change much, resulting in a decrease in performance. At the same
time, from the experimental results, the mid-range value of n seems to have little effect on
the performance, showing relatively high and stable AUCROC and Weighted F1-Scores.

Finally, we investigate the effect of the weight factor λ of the reconstruction loss term,
with a larger λ corresponding to greater emphasis on the seizure attention module in the
model. Figure 5C shows the results of the different λ ∈ [0.1, 0.3, 0.5, 0.7, 0.9]. When λ is 0.3,
the model achieves the best results.

4.6. Visualization Results and Interpretability

To investigate the practical significance of the learned graph structure and to com-
pare the effectiveness of our method, we visually analyzed the average adjacency matrix
produced by our DTGCN model alongside the best-performing DCRNN model from the
baseline across the entire test set. This visualization encompasses instances of both correctly
and incorrectly detected instances.

As shown in Figure 6A–C represent average connectivity matrix for no seizure, gener-
alized seizure and focal seizures. Figure 6D represents the difference between focal seizure
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and non-seizure adjacency matrices and Figure 6E represents the difference between gener-
alized seizure and non-seizure adjacency matrices. Comparing (D,E) of DTGCN in Figure 6,
it can be found that the difference between the adjacency matrix of generalized seizure
and no seizure is greater than that of focal seizure and no seizure, which indicates that
generalized seizure can disrupt normal brain connections to a greater extent than focal
epilepsy. This is consistent with the previous description in the literature: brain functional
connectivity is significantly altered in global seizures [31]. Comparing (I,J) of DCRNN in
Figure 6, we find that there is no obvious difference in their graph structures. In summary,
The graph structure learned by our model can reflect epilepsy categories to some extent.

Figure 6. Mean adjacency matrix for EEG in the test set for (A,F) non-seizure EEG clips, (B,G) gener-
alized seizures, (C,H) focal seizures, (D,I) difference between focal seizure and non-seizure adjacency
matrices, and (E,J) difference between generalized seizure and non-seizure adjacency matrices.

5. Conclusions

In this study, we propose a novel learning model DTGCN designed for the detection
and classification of seizures through the fusion of dynamic graphs and gated recurrent
units. Additionally, we present a method that leverages fine-grained label information
to effectively model the distribution and diffusion patterns inherent in epilepsy. Notably,
our model circumvents the need for a pre-training phase, substantially improving the
performance of automated seizure detection and classification. Of particular significance,
our model acquires a coherent graph structure that carries meaningful implications by accu-
rately capturing the distinctions among various seizure categories. This feature contributes
to the overall interpretability of our model. Our method eliminates the pretraining step
and effectively improves the performance of automated seizure detection and classification.
We anticipate extending our model to encompass other multi-channel sequential tasks,
capitalizing on domain-specific knowledge to refine our graph structure learning module.
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