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Abstract: An intensive care unit (ICU) is a special ward in the hospital for patients who require inten‑
sive care. It is equippedwithmany instrumentsmonitoring patients’ vital signs and supported by the
medical staff. However, continuous monitoring demands a massive workload of medical care. To
ease the burden, we aim to develop an automatic detection model to monitor when brain anomalies
occur. In this study, we focus on electroencephalography (EEG), which monitors the brain electroac‑
tivity of patients continuously. It is mainly for the diagnosis of brain malfunction. We propose the
gated‑recurrent‑unit‑based (GRU‑based) model for detecting brain anomalies; it predicts whether
the spike or sharp wave happens within a short time window. Based on the banana montage setting,
the proposedmodel exploits characteristics of multiple channels simultaneously to detect anomalies.
It is trained, validated, and tested on separated EEG data and achieves more than 90% testing per‑
formance on sensitivity, specificity, and balanced accuracy. The proposed anomaly detection model
detects the existence of a spike or sharp wave precisely; it will notify the ICU medical staff, who can
provide immediate follow‑up treatment. Consequently, it can reduce the medical workload in the
ICU significantly.

Keywords: anomaly detection; EEG; GRU; ICU; intensive care unit; spike

1. Introduction
There are many causes of unconscious patients in the intensive care unit (ICU). Figur‑

ing out the reason behind it has always been a tricky process. Whether it is blood testing,
brain computed tomography, or even MRI, they are all tools that are often used for dif‑
ferential diagnosis. Still, these tools can only represent the current situation, the situation
of a point. Continuous electroencephalography (EEG) monitoring is essential for more
in‑depth tracking of constant changes. Early detection and early treatment are very im‑
portant milestones in the medical field. We try to use different methods of framing data to
achieve the purpose of anomaly detection. According to research statistics for the intensive
care unit, 8–37% of patients have had a non‑convulsive seizure [1]. Delayed diagnosis or
treatment of non‑convulsive seizures is associated with a high death rate. Between 10 and
67% of non‑convulsive seizures may go undetected without continuous EEG monitoring,
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and 56% of non‑convulsive seizures will be detected within the first hour with continu‑
ous EEG monitoring. It has been monitored that 88% of non‑convulsive seizures are seen
within 24 h. In particular, continuous EEG monitors can detect non‑convulsive seizures
in patients early, assist physicians in the timely detection of the brain or neurological
changes, and provide patients with immediate treatment to prevent permanent damage,
which is an essential tool for clinicians in diagnosing disease. Interpreting a large number
of EEGs is a very labor‑intensive task. The importance of continuous EEG monitoring lies
in the early diagnosis of epilepsy and can significantly reduce complications andmortality.
About 30% of ICU patients with impaired consciousness have epilepsy, and 90% of them
have non‑convulsive epilepsy, and only EEGs can make a diagnosis. When the burden of
epilepsy is heavier, it means that the damage to the brain will continue to increase over
time, which will lead to aggravating epilepsy changes and form a vicious circle. Therefore,
immediate treatment becomes very important. In the case of a large amount of continuous
EEG data, the clinical side cannot load such a large amount of EEG interpretation. There‑
fore, the aided performance of artificial intelligence and deep learning is a good choice and
development goal.

In this study, we focus on the EEGs characters that are highly related to epilepsy. Us‑
ing the patients’ EEGdata in the past and the doctors’ interpretation andmarking can teach
the machine to quickly identify abnormal EEGs in subsequent continuous EEG monitor‑
ing, thereby improving the efficiency of diagnosis and reducing the burden on the clinical
side. The novelty and contributions of this study can be summarized as follows.

• The automated anomaly detection targets patients who are heavily ill and taken care
of intensively in the intensive care unit of the Taichung Veterans General Hospital
(TCVGH), a national‑level medical center, not patients taking some routine and/or
physical examinations.

• We attempt to detect anomaly brainwaves before their occurrence so that we can con‑
sider possible follow‑up treatments in advance. The developed early detection mod‑
els have promising performance and show great potential in clinical applications.

2. Related Works
EEGs have been used to conduct various kinds of research works [2]. The problem

of sleep stage classification is studied to help the diagnosis of sleep disorders [3,4] and
to measure sleep quality [5]. Some researchers study how to perform automatic emotion
recognition [6,7]. The investigations of EEG motor imagery signals have proliferated due
to the great potential in brain–computer interface applications [8,9]. The evaluation of
mental workload is studied for maintaining working performance and preventing acci‑
dents [10,11]. Some researchers have attempted to solve the problem of automatic detec‑
tion of epileptic seizures, which can be used to improve the patient’s life quality [12], and
some have focused on the task of event‑related potential detection [13,14].

There has been a large amount of spike detection methods published in the litera‑
ture [15,16]. The released methods are mainly divided into the following: mimetic analy‑
sis [17,18], template matching [19], power spectral analysis [18,20], wavelet analysis [21],
and artificial neural networks (ANNs) [22–24]. The features obtained from the abovemeth‑
ods are seen as input of the methods. In some methods mentioned above, they use their
data to fit a classifier. In clinical application, spikes and sharp waves have the same clin‑
ical performance when these events happen. As a result, they may be seen as the same
class in some papers. Due to the quick development in Graphics Processing Units (GPUs)
and Compute Unified Device Architecture (CUDA), a software layer gives direct access to
the GPU’s virtual instruction set and parallel computational elements, for the execution of
compute kernels [25], and most of the current methods are mainly based on deep learning
models [26–29]. Beyond the task of spike detection for EEGs, the framework of deep learn‑
ing and transfer learning is now dominating the domain of healthcare in the diagnosis of
various diseases and for solving many biomedical problems [30,31]. Applications include,
but are not limited to, the automated detection of mycobacterium tuberculosis [32], per‑
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sonalized medicine with electronic health record (EHR) data [33], diagnosis of ophthalmic
diseases [34], drug discovery [35], and gene expression classification [36].

Finally, we compare our work with existing work. Due to the differences in the data
acquisition and experimental setting, such as the sampling rate and the filter band, it is hard
to provide a fair comparison. However, we manage to provide the qualitative comparison
in Table 1. In a nutshell, our work targets patients who are heavily ill and taken care of
intensively in the ICU of the national‑level medical center, TCVGH, not patients taking
some routine and/or physical examinations, and it achieves comparable performance with
the finest time resolution (i.e., the window size). In addition, we develop early detection
models that have promising performance and show great potential in clinical applications,
while cross‑institutional validation should be conducted in the future to further support
and expand the impact.

Table 1. Comparison of existing works.

Objective Method ICU Patients Montage Window Size Performance

transient event
classification [18]

mimetic analysis,
power spectral

analysis
No bipolar 355 ms 87.38% accuracy

spike detection [19] template matching No average reference,
bipolar 5.12 s 92.6% selectivity

IED detection [21] wavelet analysis No average reference 3 s 90.5% accuracy

epileptic activity
classification [23]

artificial neural
network No bipolar 355 ms 84.48% accuracy

spike detection [28] deep learning No average reference 0.5 s 0.947 AUC

spike detection (ours) deep learning Yes bipolar 160 ms 94.66%
balanced accuracy

3. Materials and Methods
3.1. Working Flow

In this study, the experimental subjects are ICU patients. We focus on patients’ EEG
characteristics. Since patients were admitted to ICUs for various reasons, close and inten‑
sive care was performed. Many of them suffered from persistent conscious disturbance
even though some common causes such as hemodynamic instability and electrolyte im‑
balance were ruled out. After consulting neurologists, EEG examinations were performed.
The working process of this study is shown in Figure 1. Taichung Veterans General Hospi‑
tal (TCVGH) collected and provided retrospective EEG data recorded from the ICU pa‑
tients, which are used to train the deep learning models. Medical doctors in TCVGH
marked the patients’ EEGs with their or their family’s permission.
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3.2. ICU Data
Electroencephalography (EEG) is a method used to record an electrogram of the dis‑

charge of electrodes attached to the scalp. It has become widely accepted for recording
activity below the surface of the brain. Because the electrodes are placed along the scalp
according to certain methods, such as the International 10–20 system, it is not invasive typ‑
ically. EEGmeasures voltage fluctuations resulting from ionic currents within the neurons
of the brain. Clinically, EEG refers to the recording of the brain’s spontaneous electrical
activity over a period of time, as recorded frommultiple electrodes placed on the scalp [37].
Clinical applications usually focus on either event‑related potentials or the spectral content
of EEG. The former investigates potential fluctuation changes at the moment of the event,
such as “eyes open” or “stimulus onset”. The latter analyzes the type of neural oscillations,
which is popularly referred to as “brainwaves”, that can be observed in EEG signals in the
frequency domain. EEG is widely used in many clinical applications, including sleep dis‑
orders, depth of anesthesia, coma, encephalopathies, and brain death. But it is most often
used to diagnose epilepsy, which causes abnormalities in EEG readings [38]. Nowadays,
EEG mainly uses disc electrodes in clinical practice, and the electrodes are placed accord‑
ing to the International 10–20 system, including 19 recording electrodes and 3 reference
electrodes, as shown in Figure 2. Among them, 10 and 20 refer to 10% and 20% of the
distance from the nasion to the inion. Fp represents pre‑frontal, F represents frontal, C
represents central, O represents occipital, and T represents temporal. Also, the mastoid
process after ears, A1 and A2, is defined as reference electrodes. The main advantage of
using the International 10–20 system is that it can identify the same relative position on the
scalp regardless of the size of the head.
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EEG data in this study were collected and provided by TCVGH. We use European
Data Format (EDF) as the data format to store the EEG recording of ICU patients. EDF is a
standard file format designed for the exchange and storage of medical time series [40]. Be‑
ing an open and non‑proprietary format, EDF(+) is commonly used to archive, exchange,
and analyze data from commercial devices in a format that is independent of the acqui‑
sition system. In this way, the data can be retrieved and analyzed by independent soft‑
ware. EDF(+) software (browsers, checkers, etc.) and example files are freely available [41].
Neurologists put annotations in EDF(+) files. We use the Python language and the MNE
package to read EDF(+) and retrieve the information, such as when and where anomaly
brainwaves occur. In this study, a total of 8 ICU patients’ records are used to conduct
the experiments.

As a general rule, modern montages allow for easy visualization of comparable scalp
areas, so they may be assessed for symmetry [42]. There are two primary montages: bipo‑
lar montage and monopolar montage. For epilepsy brainwaves, bipolar montage is a bet‑
ter choice to observe its anomaly situation. Medical doctors of TCVGH provided EEG
data with bipolar montages which consist of chains of electrodes, each one connected to
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two neighboring electrodes. The bipolar montage is also called the “banana montage”.
Its transverse montage links adjacent electrodes in a chain like two bananas, as shown in
Figure 3.
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Figure 3. The chains of the bipolar montage. Red circles denote the electrodes and orange lines
represent the neighboring relationship between electrodes in clinical practice.

In this study, the main detection targets are spikes and sharp waves, which are typ‑
ical epilepsy abnormal brainwaves. In the bipolar montage, these two types of abnormal
brainwaves have similar characteristics. Surges occur in adjacent channels. The peaks of
the surges point tip to tip, and thus it can be identified at a glance. The only difference is
that the two occur for different durations. Typically, spikes occur in 20 to 70 milliseconds
and sharp waves occur in 70 to 200 milliseconds, as shown in Figure 4 [43].
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3.3. Preprocessing
The sampling rate of all EDF(+) files provided by TCVGHmedical doctors is not con‑

sistent. Tomake sure that every EDF(+) is at the same sampling rate, we check if the EDF(+)
is at the most common sampling rate, which corresponds to 125 Hz in this study. If not,
the sampling rate of EDF(+) data is downsampled to 125 Hz. The downsampling process
consists of low‑pass finite impulse response filtering followed by a sub‑selecting mecha‑
nism. The difference between two adjacent timesteps is 8 milliseconds. Due to the short
period of spikes and sharp waves, we divide the original EDF(+) data into 20 timesteps per
sample which correspond to 160 milliseconds in a time window.

When a sample contains the annotation provided by the TCVGH medical doctors, it
is treated as an anomaly brainwave. Otherwise, it is marked as a normal brainwave. In
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the left figure of Figure 5, because the medical doctors did not annotate any labels in this
window, we treat the samples gained from this period as normal brainwaves. In contrast,
in the right figure of Figure 5, the medical doctors thought there was a spike in this period,
so they marked the time point with the red box. Now, we get samples with two different
classes. Next, we split all samples into three datasets: the training set, the validation set,
and the testing set.

Bioengineering 2024, 11, x FOR PEER REVIEW 6 of 16 
 

When a sample contains the annotation provided by the TCVGH medical doctors, it 
is treated as an anomaly brainwave. Otherwise, it is marked as a normal brainwave. In the 
left figure of Figure 5, because the medical doctors did not annotate any labels in this 
window, we treat the samples gained from this period as normal brainwaves. In contrast, 
in the right figure of Figure 5, the medical doctors thought there was a spike in this period, 
so they marked the time point with the red box. Now, we get samples with two different 
classes. Next, we split all samples into three datasets: the training set, the validation set, 
and the testing set. 

 
Figure 5. Example brainwaves with and without annotations provided by the TCVGH medical doc-
tors. Black curves are the brainwaves collected from the left brain, whereas blue curves are those 
collected from the right brain. 

Some periods of EEG data may vibrate violently, and data from previous and subse-
quent time periods will not be on the same scale. We deal with this problem by normaliz-
ing every channel data individually to ensure that the values of each channel are on the 
same scale without losing the information about numerical level differences. We re-scale 
linearly the values of all channels to the range between zero and one by shifting the min-
imum and maximum values to zero and one, respectively. Consequently, the values of 
every sample data are on the same scale. 

To maintain the same proportion as the original proportion of the number of different 
classes before dividing the data into training, validation, and testing sets, we divide each 
class into three sets in the same proportion individually and then merge them together, as 
shown in Figure 6. We first divide the original data into pseudo-training and testing sets 
according to the ratio of 8:2. Then, we further divide the pseudo-training set correspond-
ing to 80% of the total data into the training and validation sets according to the ratio of 
8:2. As a result, the training set accounts for 64%, the validation set accounts for 16%, and 
the testing set accounts for 20%. 

Figure 5. Example brainwaves with and without annotations provided by the TCVGHmedical doc‑
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Some periods of EEG data may vibrate violently, and data from previous and subse‑
quent time periodswill not be on the same scale. We dealwith this problemby normalizing
every channel data individually to ensure that the values of each channel are on the same
scalewithout losing the information about numerical level differences. We re‑scale linearly
the values of all channels to the range between zero and one by shifting the minimum and
maximum values to zero and one, respectively. Consequently, the values of every sample
data are on the same scale.

Tomaintain the same proportion as the original proportion of the number of different
classes before dividing the data into training, validation, and testing sets, we divide each
class into three sets in the same proportion individually and then merge them together, as
shown in Figure 6. We first divide the original data into pseudo‑training and testing sets
according to the ratio of 8:2. Then, we further divide the pseudo‑training set corresponding
to 80% of the total data into the training and validation sets according to the ratio of 8:2.
As a result, the training set accounts for 64%, the validation set accounts for 16%, and the
testing set accounts for 20%.
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3.4. Sampling Method
We crop the samples from the EEG recordings. There are 20 timesteps in one window,

which corresponds to 160milliseconds. If we discard some samples, the data cannot reflect
the true situation of patients in ICUs. Thus, we crop and keep all the samples from 0 to the
last second, as shown in Figure 7.
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3.5. GRU‑Based Model Architecture
Because of the time dependency of EEG data, we adopt gated recurrent units (GRUs)

in the proposedmodel to detect anomaly brainwaves in EEG recordings. GRU‑basedmod‑
els are a kind of recurrent neural network and are particularly suited for performing pre‑
dictions for time series data. The proposed model architecture is depicted in Figure 8 and
will be the same for all experiments conducted in this study.

To be more specific, the operations of the proposed GRU‑based model in the infer‑
ence stage are unrolled and shown in Figure 9, where xt is the normalized 16‑channel EEG
recordings of the t‑th timestep in one window. h(k)t−1 corresponds to the hidden states of
the GRU layer k for the input xt that store the sequence information of the EEG recordings
up to the (t − 1)‑th timestep. Each GRU layer consists of 64 GRU units involving the up‑
date and reset gating mechanisms that capture long‑ and short‑term dependencies in EEG
recordings. At the end of the 20th timestep, which corresponds to the last timestep in one
window, the hidden states of the GRU layer 2, h(2)20 , are used as the input of the fully con‑
nected layers with the ReLU activation functions to produce the final output prediction.
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3.6. CNN‑Based Model Architecture
Because of convolutional neural networks’ (CNNs’) powerful ability to extract fea‑

tures from every sample, we also test CNN‑based models by treating the cropped brain‑
wave samples as images. Thus, we construct the CNN‑based model for the classification
task. The architecture of the CNN‑based models is depicted in Figure 10 and will be
the same for all experiments conducted in this study. To be more specific, we treat each
cropped brainwave sample as a 16 × 20 grayscale image fed into the CNN‑based model.
Each CNN layer consists of 64 convolutional filters that perform feature extraction to cap‑
ture the local correlation within small patches and is followed by a batch normalization
layer to provide suitable rescaling. The resulting features of the second CNN layer are
used as the input of the fully connected layers with the ReLU activation functions to pro‑
duce the final output prediction.
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3.7. Class Weight
Adjusting the class weight in the training stage is a critical step in reducing the influ‑

ence of the imbalance of the data. If the data are imbalanced, the models focus on the class
with a larger amount. Models pay less attention to the class with a smaller amount. To
reduce the influence, we adjust the class weight in the training stage. The class weight of
each class is disproportionate to its amount so that models can pay attention to the pattern
of both classes equally,

weighti =
# of total training data

# of training data from class i
,

where weighti is the class weight assigned to class i during the model training.

3.8. Performance Metrics
In the stage of model training, we will use the validation set to choose the best model

by monitoring the prediction performance after every training epoch. Since the detection
of anomaly brainwaves is treated as a binary classification task, we may pick the epoch
with the highest validation accuracy and retrieve the corresponding model as the final
model. Due to the type of task, the accuracy of the model is the most important metric in
our study. In the following section, we will use some metrics to quantify the performance
of the deep learning models we build.

The confusion matrix, as shown in Table 2, can be used to provide the details of pre‑
diction results by the model. (1) defines the accuracy, which is the proportion of samples
that are predicted correctly by the model. In medical applications, it shows the proportion
of patients who are diagnosed with correct health status. (2) defines the sensitivity, which
is the proportion of positive samples that are predicted as positive by the model and is an
indicator to avoid a false negative. In medical applications, it shows the proportion of sick
patients who are diagnosed with the disease. (3) defines the specificity, which is the pro‑
portion of negative samples that are predicted as negative by the model and is an indicator
to avoid a false positive. In medical applications, it shows the proportion of people with‑
out the disease who are not diagnosed with it. (4) defines the balanced accuracy, which is
the arithmetic mean of the sensitivity and specificity. Since the data are highly imbalanced
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between classes in this study, sensitivity, specificity, and balanced accuracy (BA) are more
representative than accuracy for the performance evaluation of models.

Accuracy =
TP+ TN

TP+ FN+ FP+ TN
(1)

Sensitivity =
TP

TP+ FN
(2)

Specificity =
TN

FP+ TN
(3)

Balanced Accuracy (BA) =
Sensitivity+ Specificity

2
(4)

Table 2. Confusion matrix for performance evaluation of models.

Predicted Class

Positive Negative

Tr
ue

C
la
ss Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

4. Experiments and Results
This section illustrates experiments under different situations. We will use two differ‑

ent kinds of models with the same model complexity. After training, we pick the models
corresponding to the highest validation accuracy or the highest validation balanced accu‑
racy of the epoch and perform with the testing set to validate the model performance. We
also attempt to achieve early detection in this study.

For all experiments, we use the same setting. Adam is adopted as the optimizer with
a learning rate of 10−4. The batch size is 512, and the maximum number of epochs is 500.
The cross‑entropy loss with the adjusting class weights is used to guide the mode training.
All experiments are conducted within the TensorFlow framework.

4.1. Experiment 1
There are two EEG recordings containing a few spike annotations with a timeline

error. Thus, we treat all samples from the two with a timeline error as negative in this
experiment. Figures 11 and 12 show the training curves of GRU‑based models without
and with adjusted class weights, respectively. Figures 13 and 14 show the training curves
of CNN‑based models without and with adjusted class weights, respectively. All four
figures show that the respective model learns well. The models are selected at different
epochs indicated by the red points by monitoring the validation accuracy or the validation
balanced accuracy.
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Table 3 illustrates the performance of all models in this experiment. If we choose the
finalmodel bymonitoring the validation accuracy, the sensitivity value is less than 90%. In
addition, bymonitoring validation balanced accuracy (BA), accuracy and specificity reduce
a little, but sensitivity and BA, the metrics of interest in our study, may increase. Also, we
can see that adjusting class weights can improve models’ performances and make them
perform more stably in every metric.
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Table 3. Comparison of the testing performance (%) in Experiment 1.

Model By Accuracy Sensitivity Specificity BA

No Class
Weight

GRU
Acc 98.19 85.24 99.33 92.28

BA 97.32 91.54 97.83 94.68

CNN
Acc 97.93 81.30 99.38 90.34

BA 97.21 87.80 98.04 92.92

With Class
Weight

GRU
Acc 97.83 87.99 98.69 93.34

BA 95.95 93.11 96.19 94.65

CNN
Acc 97.61 81.10 99.05 90.08

BA 97.15 90.16 97.76 93.96

Zero‑rule Baseline 91.95 0.00 100.00 50.00

4.2. Experiment 2
In Experiment 1, we treat all the samples cropped from the two recordings with time‑

line errors as negative. There are still some annotations that are not problematic in these
two recordings, so we correct the samples corresponding to these annotations manually
to the positive class. The sizes of training, validation, and testing set samples may change
slightly. Eleven samples are fixed. The comparison of resulting model performances is
shown in Table 4. We observe a similar result. The GRU‑based model chosen by the val‑
idation BA with adjusted class weight performs the best in terms of the BA (94.66%) and
sensitivity (93.12%) on the testing set.

Table 4. Comparison of the testing performance (%) in Experiment 2.

Model By Accuracy Sensitivity Specificity BA

No Class
Weight

GRU
Acc 98.02 82.12 99.41 90.77

BA 97.58 90.18 98.23 94.20

CNN
Acc 97.80 85.27 98.90 92.08

BA 97.13 88.21 97.92 93.06

With Class
Weight

GRU
Acc 97.93 85.27 99.04 92.15

BA 95.95 93.12 96.19 94.66

CNN
Acc 97.94 83.50 99.21 91.35

BA 97.61 89.98 98.28 94.13

Zero‑rule Baseline 91.94 0.00 100.00 50.00

4.3. Early Detection
Following Experiment 2, in which the annotation errors are corrected, we attempt

to perform early detection. To achieve early detection, we crop data and label them in
different windows. Figure 15 shows the cropping and labeling example for one‑window‑
early detection. We try early detection up to nine windows by monitoring validation BA
to pick the final model. The setting we adopt for training the model uses the GRU‑based
model and adjusts the class weight during the training stage. Table 5 shows the testing
result of early detection. The case with zero window early corresponds to the result of
Experiment 2. We can see that the performance is maintained in one window early. As the
number ofwindows increases, themodel’s performance gradually differs from the original.
Again, our primary concern is still balanced accuracy because of the imbalance of the data.
We can find that as the number of windows increases, the value of this indicator has a
gradual downward trend but is still in good shape (almost always above 90%).
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Table 5. Comparison of the testing performance for early detection.

# of Windows Early

0 1 2 3 4 5 6 7 8 9

Accuracy 95.95 93.38 93.65 94.26 93.15 94.18 94.96 93.65 94.97 96.57

Sensitivity 93.12 93.59 90.82 93.22 92.37 91.56 89.36 92.33 85.54 82.04

Specificity 96.19 93.36 93.83 94.34 93.21 94.35 95.31 93.74 95.61 97.49

Balanced Accuracy 94.66 93.48 92.33 93.78 92.79 92.95 92.34 93.03 90.57 89.76

Zero‑rule Accuracy 91.94 93.82 93.79 93.69 93.77 93.99 94.04 93.80 93.64 94.08

Zero‑rule Baseline Sensitivity: 0.00 Specificity: 100.00 Balanced Accuracy: 50.00

5. Conclusions
Wepropose theGRU‑basedmodelwith adjusted classweights to accomplish anomaly

brainwave detection, which detects the existence of spikes and sharp waves in the EEGs
of ICU patients. Unlike most other research, we adopt the bipolar montage in which med‑
ical doctors can easily find the anomaly events. The proposed GRU‑based model can be
used to monitor the brain activity of ICU patients more efficiently and cost‑effectively. In
clinical applications, the proposed GRU‑based model can lighten the workload of medical
staff in ICUs. Despite the data imbalance, ourmodels’ sensitivity, specificity, and balanced
accuracy are still all above 90%. These three metrics can represent the actual model perfor‑
mance. Although there is room for better sensitivity, our models can ease the burden on
the medical staff in ICUs.

In addition to in‑time detection, we also attempted early detection. In units of onewin‑
dow, we tried from one to nine windows and observed what pattern the models learned.
As the number of windows increases, the balanced accuracy has a gradual downward
trend but is still almost always above 90%. This justifies that the proposed GRU‑based
model with adjusted class weights has great potential in clinical applications.

In this study, we also include the CNN‑based model architecture for comparisons.
The methods of CNN‑based models and GRU‑based models can both be used for offline
detection. Hence, we conduct the performance comparison for these two methods for of‑
fline detection. It turns out that the performance of the GRU‑based model is better than
that of the CNN‑based model for offline detection in this empirical study. Furthermore,
the GRU‑based model can be used for real‑time detection, but the CNN‑based model can‑
not be used for such an application. Hence, the method of the GRU‑based model is the
suitable approach for offline and real‑time detection.

The currentmodels for automated anomaly detection are developed for patients’ data
collected only in a medical center, i.e., TCVGH. Their detection performance in clinical
applications may be degraded when they are applied to different medical centers and/or
regional hospitals. To ensure satisfying detection performance across medical institutions,
we may need to collaborate with them and collect their ICU patients’ data to fine‑tune or
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re‑train the detection models. Another way is to develop federated learning‑based models
so that the detection models can be jointly trained in a decentralized waywhile preventing
the violation of patient privacy [44].
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