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Abstract: Patients whose lungs are compromised due to various respiratory health concerns require
mechanical ventilation for support in breathing. Different mechanical ventilation settings are selected
depending on the patient’s lung condition, and the selection of these parameters depends on the
observed patient response and experience of the clinicians involved. To support this decision-making
process for clinicians, good prediction models are always beneficial in improving the setting accuracy,
reducing treatment error, and quickly weaning patients off the ventilation support. In this study, we
developed a machine learning model for estimation of the mechanical ventilation parameters for
lung health. The model is based on inverse mapping of artificial neural networks with the Graded
Particle Swarm Optimizer. In this new variant, we introduced grouping and hierarchy in the swarm
in addition to the general rules of particle swarm optimization to further improve its prediction
performance of the mechanical ventilation parameters. The machine learning model was trained
and tested using clinical data from canine and feline patients at the University of Georgia College
of Veterinary Medicine. Our model successfully generated a range of parameter values for the
mechanical ventilation applied on test data, with the average prediction values over multiple trials
close to the target values. Overall, the developed machine learning model should be able to predict
the mechanical ventilation settings for various respiratory conditions for patient’s survival once the
relevant data are available.

Keywords: mechanical ventilation; respiratory health; machine learning; artificial neural networks;
particle swarm optimization

1. Introduction

In a healthy person, spontaneous breaths are normally generated when respiratory
muscles contract, pull the pleura, and create a negative intrapleural pressure, allowing
airflow into the lungs (negative pressure ventilation). During this process, oxygen is
exchanged for CO2 in the alveoli. Patients suffering from respiratory failures, such as
from congestive heart failure, COPD (chronic obstructive pulmonary disease), pneumonia,
ARDS, and recently COVID-19 [1–5], or patients with ventilatory failures, such as those
resulting from central or peripheral neurologic or muscular dysfunction, may require
external mechanical ventilatory support.

COVID-19 is a rapidly changing condition, and very little has been researched so
far in 2021 on the practice of deciding ventilation parameters for different patients and
conditions [3]. Additionally, it is also understood to be challenging to determine when to
intubate and mechanically ventilate a hospitalized patient [2,5]. Many discrepancies have
been reported in COVID-19 ICU and ventilator management studies due to regional and
temporal variations [4]. This emphasizes the need for comprehensive research focused
mainly on developing mechanical ventilator parameter tuning methods accommodating
the patient response.

In most cases, a compromise in respiratory process would either lead to hypercap-
nia (hypoventilation), with elevated CO2 in the blood, or hypoxemia, with abnormally
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low blood oxygen level. External support to these patients is provided through positive
mechanical ventilation until their condition improves and they are weaned off the ma-
chines [6]. The most common modes of mechanical ventilation used are pressure and
volume controlled [7]. In volume-controlled ventilation (VCV), tidal volume is set at a
constant value, while inspiratory pressure is a dependent variable. In VCV, inspiratory flow
and waveform parameters are set by the clinicians, and the system responds to reduced
compliance and active inhalation by increasing pressure, which might also increase the risk
for lung injuries.

Similarly, in pressure-controlled ventilation (PCV), the pressure is the set variable,
and tidal volume is a dependent variable. In order to mitigate the risk, running the
ventilator in a PCV mode can limit the maximum airway pressure but can alter the tidal flow
volume and waveform patterns, reducing the effectiveness of ventilation. Campbell et al. [8]
presented a comparison between VCV and PCV modes and recommended using hybrid
dual-control modes. Other ventilation modes include synchronized intermittent mandatory
ventilation (SIMV), where the patient-initiated breath is detected, and a required preset
volume or pressure is delivered. This mode helps patients to wean off the ventilator
by allowing spontaneous breaths in between ventilator-administered mandatory breaths.
Similar to SIMV, pressure support ventilation (PSV) also provides support by delivering a
preset pressure to the patient for every patient-initiated breath that exceeds the inspiratory
trigger value. The PSV pressure can be different from the mandatory breath pressure and
vary with the patient’s needs.

Modern mechanical ventilators allow clinicians to adjust a variety of parameters
along with the mode of operation according to patient’s condition [9]. Respiratory rate
(RR) parameters regulate the mandatory breathing rate per minute (also called SetRR),
and ActRR is the sum of mandatory breaths and additional patient-initiated breaths.
The percentage of inspired oxygen can be set from room air (∼21%) to 100%. The SetP
parameter regulates the air pressure to be delivered to the patient in PCV, and a peak
value can also be set. The total pressure, peak inspiratory pressure (PIP), is the sum of
the airway pressures PEEP and SetP. In addition, a set constant positive end-expiratory
pressure (PEEP) can be provided by the ventilator during exhalation to help prevent
alveolar collapse between breaths.

The patient’s observed heart rate, blood pressure, temperature, blood oxygen level
(SpO2); the concentration of carbon dioxide at the end of the exhaled breath (EtCO2); and
inspiratory tidal volume (Vti) are among the commonly observed response parameters.
In addition to these, the dynamic compliance (Cdyn) parameter measures the distensibility
of lungs [9], which is computed by,

Cdyn =
Vti

PIP − PEEP
(1)

Every patient is different, and treating them will require a different degree of under-
standing and control of the ventilator settings. The proper selection of ventilation modes
and parameters is crucial for optimal treatment, a complex process requiring a high level of
expertise from the clinicians. The challenge is in creating a specific model with a diffuse set
of patients and conditions [3], and evidence-based practice can support accurate parameter
estimations for optimal, errorless, and low-cost treatments. Ervin et al. [10] review these
evidence-based approaches for optimizing invasive mechanical ventilation use (IMV) for
acute respiratory distress syndrome (ARDS).

Recently, the use of AI and machine learning-based decision support approaches
combined with evidence-based practices has grown, leading to better patient management
and treatment [11–13]. Many models applying artificial neural networks (ANNs) have
been proposed in establishing a relationship between the MV parameters and patient
outcomes. Akbulut et al. [14] proposed a model for estimating frequency, tidal volume,
and FiO2 outputs of a ventilator and a classification model capable of deciding the pressure
and volume control modes using artificial neural networks (ANN). A disease detection
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Bayesian forecast model was applied to the data to detect disease type before applying
ANN in the second-stage system. Their proposed ANN model uses the diagnosed disease
type from stage one (Bayesian forecast), core body temperature, heart rate, blood pressure,
PEEP, SpO2, pH, EtCO2, and bicarbonate data as input features. Frequency, Vti, FiO2, and
the pressure/volume support value are the predictions. The proposed model showed
accuracies of 95% in predicting FiO2 values in real-time.

A previous study in this area by Nelson et al. focuses on a fuzzy-based control
method Nelson et al. [15] uses the patient and heuristics data obtained from clinician’s
experience. These data are combined with control principles to adjust the respiratory
rates. The designed fuzzy logic controllers performed well on simulated-patient scenarios
emulating the decisions of an experienced clinician. Tehrani et al. [16] presented a novel
model for tuning the parameters for optimal blood gas regulation, minimizing the breathing
work rate, and increasing the weaning rate of the ventilators.

Further, Kwong et al. [17] reviewed various computational intelligence and machine
learning techniques applied on predicting and guiding the weaning process in patients.
They argued that model-based systems are prone to sub-optimal outcomes due to their
dependence on assumptions and, hence, prescribed machine learning-based models for
ventilator control. The study further investigated the performance of nine different models
proposed in the literature and ranked them based on a set of appraisal points. Their
study included Giraldo et al.’s [18] work on Support Vector Machines (SVM) and ANN
classification [19] approaches for weaning trials in patients. Along the same lines, we
introduce an inverse mapping technique on ANNs for parameter estimation with the
Graded Particle Swarm Optimizer (GPSO) in the feedback loop.

The remainder of this paper is organized as follows: In Section 2, we present our
machine learning model based on inverse mapping of neural networks and introduce
the GPSO algorithm followed by an outline of our prediction model. In Section 3, we
introduce the data utilized for our analysis, followed by pruning and ANN training
methods. Section 4, presents the analysis results, followed by conclusions in Section 6.

2. Machine Learning Model
2.1. Inverse Mapping of Artificial Neural Networks

Artificial Neural Networks are statistical models for establishing non-linear relations
between input and output data [20,21]. Hence, for a given set of observations with Y inputs
and X outputs, an ANN can be trained to map a relationship between Y and X. Inverse
mapping of neural networks (IANN) is a procedure conducted to obtain the correct input
parameter values for a pre-trained ANN and a set of known outputs. An optimizer is
applied to correct the input for the network iteratively until the output converges with the
targets with minimal errors. This is widely used in many engineering applications, espe-
cially in manipulator inverse kinematics [22–24], sensor measurements [25], and structural
integrity analysis [26]. Our current work used a population-based optimization algorithm
in the feedback loop, which corrects and estimates the setting values given as inputs to the
ANNs for the desired output (true observations). We applied a novel variant of particle
swarm optimization (PSO) [27], the Graded Particle Swarm Optimizer (GPSO) proposed by
Sanjay et al. [28]. An outline schematic of the inverse mapping model used in our current
informatics model is presented in Figure 1.
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Figure 1. An outline of IANN for tuning mechanical ventilator parameters based on true observations. The mechanical
ventilator inputs are, in the true sense, the outputs of the IANN. The GPSO in the loop compares the true observations with
the predictions obtained from the ANN and makes adjustments to the inputs accordingly.

Our current goal is to predict a range of possible values for mechanical ventilator
settings for a given patient condition. Initially, a neural network is trained in the for-
ward direction, i.e., the mechanical ventilator parameters as inputs and patient condi-
tion/observations as predictions or outputs. After deriving a well-trained network, it is
used as a model for the system in the test phase. During this phase, the optimizer starts
with a random value combination of ventilator settings as inputs to the ANN. The ANN
generates a prediction for a patient condition that is compared against the true observa-
tions, and an error value is computed for the optimizer. The optimizer adjusts the inputs
iteratively and terminates when the error converges or after meeting a certain criterion.
As the modeled function (ANN) here is a highly non-linear and multi-dimensional function,
a heuristic-based optimizer is preferred [29]. However, it must be noted that heuristic
or search-based optimizer (like PSO [27]) may not generate the same value combination
every time the process is initiated for the same patient condition. Hence, during the test
phase, we provide the patient condition as input and expect the model to generate multiple
possible combinations of ventilator parameter settings.

This is similar to an inverse kinematics problem, in which for reaching a certain
position in space by the end effector, there can be multiple solutions for joint parameters [30].
Providing a range of values for a parameter can help support decision-making by the
clinicians, instead of a single value generated by an ANN trained directly, i.e., with the
patient condition as input and ventilator settings as output.

2.2. Graded Particle Swarm Optimizer (GPSO)

Ever since the introduction of Particle Swarm Optimization (PSO) by Kennedy and
Eberhart [27], it has found many applications in the areas of control systems [31], signal
processing [32,33], and machine learning [34–36], as well as where ever a complex, non-
linear optimization is involved. PSO works on a real number space, and is quicker and
easy to implement when compared with other swarm and computational intelligence (CI)
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techniques. However, the convergence at global optima is not guaranteed for all complex
fitness functions, which also is true for the other CI techniques.

The general position and velocity update equations for each particle are as per
Equations (2) and (3). Moreover, a widely used variant of PSO with an additional momen-
tum factor ω is included in the equations.

vt+1(i) = ω · vt(i) + r1 · c1 · (pt
best(i)− xt(i)) + r2 · c2 · (gt

best − xt(i)) (2)

xt+1(i) = xt(i) + vt+1(i) (3)

where vi(t) and xi(t) are the velocity and position values of the i-th particle during the
t-th iteration, respectively. r1, r2 are random numbers, and c1, c2 are constants governing
the personal and global influence on a particle. In every iteration, gbest is computed for
the position of the leader selected on the basis of the fitness value generated by a fitness
function (best value), and pbest is the best known position the particle visited until then.
A higher c2 value than c1 has a greater influence of the leader on the particle than on its
personal best.

PSO is known to get stuck at local optima applied on complex functions [37,38].
In order to improve the performance further, many variants were proposed over the past
decade, which also focus on achieving quicker and higher probability of convergence
in addition to achieving the optima [39,40]. Recent variants include a sub-population
swarm strategy proposed by Wei Der Chang et al. [41], which involves individual groups
searching for local optimum in a divided search space. Yen et al. [42] proposed particle
exchange between sub-groups after a fixed number of iterations. Another recent variant,
the club-based PSO [43], maintains a dynamic membership strategy by grouping and
regrouping of particles based on their relative performance. We use a similar variant, the
Gradient Particle Swarm Optimizer (GPSO) [28], in our current work.

The Graded Particle Swarm Optimizer (GPSO), in contrast to regular PSO, equally
divides the swarm into ‘N-groups’, and a hierarchical group (N + 1) is generated with all
the group leaders combined. The best in the group is called a universal leader. The GPSO
is a modified form of PSO, where the hierarchical leader group’s effect is defined by the
additional universal leader term in the velocity update, as shown in Equation (4).

vt+1(i) = ω · vt(i) + r1 · c1 · (pt
best(i)− xt(i)) + r2 · c2 · (gt

best(j)− xt(i)) + r3 · c3 · (ut
best − xt(i)) (4)

where gt
best(j) is the group best or group leader for group j; ut

best is the universal best; r3 is
a random number; and c3 is a universal influence constant.

For a swarm with all the members in a single group, the group leader and universal
leader turn out to be the same, merging the third and fourth terms in Equation (4). Similarly,
for a swarm with n-groups and with a single member in each group, the third term turns
into zero, with the group’s best being itself. In both these cases, Equation (4) reduces to the
regular PSO condition in Equation (2).

The GPSO algorithm was tested on standard benchmark functions [28], and it showed
a higher probability of convergence, demonstrating its ability to avoid local optima. This
is due to other groups’ influence through the universal leader in avoiding local optima
when some individuals search for the nearest optimum. This is analogous to three forces
acting on the particle, i.e., towards its personal experience, the group’s, best and the
universal best. In short, when a group or a particle is trapped at a local optimum, the other
better performing groups support its escape and hence avoid premature convergence.
An illustration of groups and individuals with vectors acting in 2D on the individual
particle is shown in Figure 2.
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Figure 2. Organization of swarm in Graded Swarm Particle Swarm Optimizer. The swarm is divided
into groups, and each group has a group leader. All the group leaders form a hierarchical group
with a universal leader. All the particles/members in the group are influenced by the personal best,
the group best, and the universal best vectors.

3. Data and Experiments

The experimental data of mechanical ventilation settings from 24 patients (canines—
20 and felines—4) in the Small Animal Veterinary Teaching Hospital at the University
of Georgia College of Veterinary Medicine were used to develop the current machine
learning model.

Patients were classified as either having healthy or unhealthy lungs, and the data
from ventilators along with their physical readings were collected over time. Six patients
were classified as having healthy lungs and were ventilated to treat hypoventilation arising
from disorders such as lower motor neuron disease, cervical spinal myelopathy, and drug
toxicity; 18 of the patients were classified as having unhealthy lungs and were ventilated
to treat hypoxemia caused by disorders such as congestive heart failure, pneumonia,
and contusions. All the animal patients were anesthetized, most often with infusions of
propofol and fentanyl, orotracheally intubated and mechanically ventilated using pressure-
controlled ventilation in SIMV mode. All ventilation was conducted using the Respironics
Esprit ventilator, and monitoring data were obtained using the NICO monitor (Novametrix
Medical Systems Inc., Wallingford, CT, USA) [44–46].

The mixing of MV data from cats and dogs did not significantly alter the model perfor-
mance. Aside from the body size (and subsequently smaller tidal volumes), physiologically,
cats and dogs behave similarly on mechanical ventilators [7]. Moreover, some smaller dogs
were also observed to have similar tidal volumes to those of cats. Further, the MV settings
and desired outcome parameters are the same for both species.

3.1. Data Pruning and Segregation

Our current study’s data contained both physical observations and the data logged
from the ventilator, which had definite time stamps. However, many missing data fields
were identified in the patient observations as they were sporadically recorded. Hence, we
used an ANN-based prediction for these missing data points. Multiple ANNs were trained
using observations with complete data fields as inputs and the missing fields as output
for the data. For example, an observation with a missing data point for Vti was predicted
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using an ANN trained with Vti as output and the remaining parameters other than Vti
as inputs. The predicted missing data points were truncated to the nearest maximum or
minimum values computed from the initial data sets. Furthermore, these pruned data were
segregated into two sets for our inverse mapping model: the first set included the data for
training, validating, and testing ANNs for the forward prediction; the second set was used
for testing the inverse mapping process. The selection of data was completely random.
A summary of data segregation is presented in Table 1.

Table 1. Data segregation summary.

Process Data Set Number of Observations

Pruning Original (complete) 117
Pruned (Final) 685

ANN Modelling Training 473
Validation 101

Testing 101

Inverse Mapping Testing 10

3.2. Neural Network Modeling

In order to capture the dynamics of mechanical ventilation settings for different condi-
tions/patients, we trained 200 artificial neural networks, and the top-ten best performers
with the least total errors (training + validation + testing) ranging between 3.62 × 103 and
4.0 × 103 were selected for inverse mapping. Set pressure (SetP), peak input pressure (PIP),
positive end expiratory pressure (PEEP), pressure support ventilation (PSV), respiratory
rate (RR), and fraction of inspired oxygen (FiO2) were considered as inputs, while tidal
volume (Vti), dynamic compliance (Cdyn), end tidal CO2 (EtCO2), blood oxygen saturation
(SpO2), heart rate (HR), blood pressure (BP), and temperature were chosen as output
parameters for the model. Each of these NNs was trained with the same data set (ANN
generation), as presented in Table 1. However, the training, validation, and testing data
sets were randomized for each neural network.

NNs with four internal layers with a combination of 8, 16, 14, and 7 nodes in each
layer were used in our current study. This configuration was arrived at after performance
evaluation of different combinations of networks by comparing their total errors. The final
schematic of NNs used for training is presented in Figure 3a. In addition, the top-ten
best-performing NNs were selected based on low total errors. The total error data of all the
trained networks are presented in the bar graph shown in Figure 3b.

Fitness computations are based on the outputs an ANN generates for a given input.
The outputs normalized between their limits are compared with the targets, and an MSE as
shown in Equation (5) is computed. IANN can be analyzed as a minimization problem
where MSE in (5) is minimized by finding the right combinations of inputs for NNs.
A summary of the process flow is presented in Figure 4, starting from data acquisition to
the pruning, NN training, selection, and inverse mapping processes.

MSEn =
1
2 ∑(OutputNi − TargetNi)

2 (5)

where i represents the feature to be predicted.
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(a) (b)
Figure 3. (a) Artificial neural network schema mapping ventilator parameter and patient outcomes. (b) Performance of
different neural networks over 200 trials. Red represents the best performers that showed the lowest combined training,
validation, and testing errors.

Figure 4. Block diagram shows a summary of data flow and operations carried out on the data at different stages.

3.3. Inverse Mapping Computations

An overview of the inverse mapping model is presented in Figure 4. This inverse
mapping computation aims to estimate the inputs for a set of outputs with a pre-trained
ANN. For more details, see Pidaparti et al. [26]. We carried out 1000 iterations for parameter
estimation using the GPSO on each of the 100 trials, and the top performers in the swarm
were selected in each trial. Test trials were performed for varying momentum, cognitive,
group, and universal influence factors in the GPSO algorithm. After a preliminary analysis,
we selected the parameters as shown in Table 2 for the current inverse mapping problem
of identifying mechanical ventilation settings. Moreover, the trials were repeated on each
of the top-ten best-performing neural networks, as shown in Figure 3b. The convergence
criterion was the limit over the number of iterations or an MSE of less than 0.0001. While
carrying out these iterations, two of the inputs—age and weight—were fixed, as these
were known beforehand. This reduces the search dimensions of the swarm significantly
and predicted the NN outputs more precisely. Moreover, the remaining parameters were
kept within the known bounds in the data, i.e., the known minimum and maximum limits
to be realistic. Any value out of these bounds was fixed to the nearest minimum or the
maximum value of the parameter in every iteration.
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Table 2. Parameters used in optimization.

Parameter Value

Dimensions 8
Population 2000

Groups 50
Momentum (ω) 0.8

Personal/Cognitive Influence (c1) 1.2
Group Leader’s Influence (c2) 1.2

Universal Leader’s Influence (c3) 1.2
Trials 100

Test ANNs 10

Termination MSE < 0.01
Iterations = 100

We used the Deep Learning Toolbox in MATLAB 2021a (The MathWorks Inc., Natick,
MA, USA) [47] in combination with programs developed for the GPSO. These simulations
were run on a PC with Xeon 16 Cores and 128 GB RAM with 16 agents working in parallel.

4. Results and Discussion

The typical fitness of the best trials over 1000 iterations for test data sets 1, 2, and 3 is
presented in Figure 5. The graphs are for the best performers out of the 100 trials across the
best NNs applied on 3 test data sets. Figure 5b best describes the way the GPSO algorithm
works towards searching for the optimum from the sudden drop in fitness after a few
iterations. This is because of the presence of multiple groups guiding each other, ensuring
that the groups are not stuck local optima and thereby avoiding premature convergence.
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Figure 5. Performance graphs for (a) test 1, (b) test 2, (c), and test 3.

Furthermore, on each of the ten data sets, we computed the maximum, minimum,
average, and standard deviation for all the 100 trials, along with the best parameter
combinations and their related MSEs. A summary of the results obtained for three test
cases is presented in Figure 6.

The average parameter values computed across 100 trials and 10 networks are closer
to the target values or the values set by the clinician for that patient. This shows that
the inverse mapper approach presented in the paper converges to a set of inputs closely
resembling the targets. The proposed GPSO also found other combinations of parameters,
and, hence, we considered the average of input data across all the trials as possible values
of the parameters.
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Figure 6. Statistics of results obtained on 10 test cases for 4 different ventilator settings.

In every trial, the model starts with random predictions within a range and keeps
adjusting them until the output converges with the target outputs, leading to a different
possible combination every time after termination. Hence, the range of values predicted
may not be the desired parameter values. This is because the inverse mapper reduces the
error between the NN outputs rather than the ventilator inputs, thus directly correlating
to the trained NN’s efficiency. Hence, we chose multiple networks as candidates for the
forward prediction/fitness evaluation to remove this possible bias.

5. Limitations of the Study

A limitation in the current study was the availability of a good amount of complete
data for training the forward models. All the data in the present study were manually
recorded, and these readings were taken at random time intervals (not continuous). Further-
more, the readings were specific to a patient’s condition, and the focus was mostly limited
to particular parameters, leading to missing data fields. In our current study, the missing
data were predicted by different NN models for completeness. This enhanced our data
points to a significant number that was sufficient for our current studies. The current model
can be applied to human data, and it is expected to demonstrate good confidence values
when trained on larger amounts of data.

6. Conclusions

A machine learning model to estimate the mechanical ventilator parameters based on
ANN and optimization was developed. After training the ANN with input/output data,
the trained networks were used to estimate mechanical ventilation parameters through
the inverse mapping technique. A novel GPSO algorithm based on our previous work [28]
was adopted as an optimizer in inverse mapping computations. Extensive simulations
were carried out to estimate the behavior of the GPSO applied in the feedback loop and
for enhancing the model’s performance. The machine learning model was trained and
tested using data from canine and feline patients at the University of Georgia College of
Veterinary Medicine. Our model successfully generated a range of parameter values for
the mechanical ventilation applied on test data, with the average prediction values over
multiple trials close to the target values, even though the data sets’ availability was limited.
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We observed that increasing the number of data points with high percentages of
healthy patients can further stabilize the ANNs, as the data utilized for building our model
were primarily from unhealthy patients because healthy patients are not usually observed
on mechanical ventilators.

Overall, the developed machine learning model should be able to predict the mechan-
ical ventilation parameters for various respiratory conditions once the relevant data are
available. With the recent COVID-19 pandemic, the machine learning models proposed in
this study should be of interest in predicting mechanical ventilation settings for patient
survival given their respiratory health conditions.
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