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Abstract: The study’s aim was to develop a dermal equivalent scaffold that can mimic the architecture
and biological performance of the human dermis. Poly ε-caprolactone (PCL) electrospun nanofiber
material (ENF) was assembled with polyethylene glycol diacrylate (PEGDA), sodium alginate (SA)
and type I collagen (CG1) to develop three groups of dermal equivalent scaffolds. These scaffolds
were named PEGDA-PCL, SA-PCL and CG1-PCL. Scanning electron microscopy (SEM) images of
cell-free scaffolds’ top and cross-sectional surface were collected and analyzed to examine internal
morphology, specifically the adhesiveness of PCL fibers with the different scaffolds. Human dermal
fibroblasts were cultured on each of the scaffolds. Cell viability studies including cell adhesion,
cell differentiation and stress fiber production were conducted on each scaffold. Furthermore,
the architectural integrity of each scaffold was verified by degradation analysis for 2 weeks by
soaking each scaffold in phosphate-buffered saline (PBS) solution. Finally, we conducted rheological
characteristics of each scaffold. Based on our results from the above analysis, the study concluded
that CG1-PCL is best suitable for the dermal equivalent model and has potential to be used as a graft
for skin repair.

Keywords: hydrogel; polycaprolactone; dermal equivalent model; electrospun; nanofiber

1. Introduction
1.1. Dermal Equivalent Scaffold

The skin is the largest organ in the body. It is one of the most important organs of the
body due to its numerous functions. It regulates homeostasis, performs sensory functions,
and protects the body from physical damages due to assault. Damaged skin results in loss of
function, leading to various complications such as loss of fluid or infections [1]. Non-healing
wounds present a significant and increasing problem in the health care system [2]. While
much is known about biological processes involved in wound repair and maintenance of
skin structure and integrity, we lack understanding of how novel bioengineered materials
can facilitate these processes. In vitro cell-based studies can help provide fast and simple
material evaluation prior to animal studies. In this research, three different dermal scaffolds
were created and their characteristics examined to evaluate their potential to be used for
wound-healing skin equivalent scaffolds.

1.2. PEGDA, Alginate and Collagen as Dermal Equivalent Scaffold Materials

Hydrogel scaffolds can be tuned to resemble dermal tissues’ mechanical and biological
properties [3]. Polyethylene glycol diacrylate (PEGDA) is a photosensitive hydrogel. It is
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possible to make any shape of skin graft using PEGDA. In our previous research, PEGDA
hydrogel scaffolds were developed for the reconstruction of intervertebral disc and cartilage
repair [4]. Although the in vivo performance of PEGDA hydrogel scaffolds has not yet
been reported, our pilot study using a rat-tail model showed the suitability of using the
PEGDA for soft tissue repair [5]. Collagen (especially type I) is a fibrous protein formed
from a triple-helix of polypeptides that provides strength to connective tissues [6]. Alginate
has numerous applications in biomedical science and engineering due to its excellent
biocompatibility and ease of gelation [7]. Alginate hydrogels have been used in soft tissue
engineering applications, including wound healing and drug delivery [8–10]. Alginate
gels retain structural similarity to the extracellular matrices in soft tissues and can be
manipulated and grafted to reconstruct skin [11]. Sodium alginate (SA) hydrogel, one of the
class of alginates, has been used as an engineering scaffold for soft tissue grafting [12]. SA
hydrogels can effectively be made from sodium alginate and a calcium chloride solution [11]
that, when combined, becomes a soft clear gel over time. The adequate porosity of the SA
hydrogel allows for three-dimensional cell growth [9]. For example, cell-rich hydrogels can
be introduced into the body to replace cartilage and help the body heal [13]. Collagen I
(CG11) is an integral part of the extracellular matrix (ECM). It is synthesized and secreted
by fibroblasts to stimulate faster wound healing [14]. It is the most abundant natural
protein produced not only in the skin tissue but overall in the human body [15]. CG1 is
predominantly a part of the ECM of skin, tendon, ligament, and bone. Therefore, PEGDA,
SA and CG1 are suitable materials for dermal equivalent scaffolds.

1.3. Polycaprolactone (PCL) Electrospun Nanofiber Mesh (NFM) for Tissue Engineering

Polycaprolactone (PCL) is a non-toxic, biodegradable polymer with good biocompati-
bility. PCL is one of the ideal materials for preparing nanofibers using an electrospinning
process that provides it with high biocompatibility [16]. Electrospinning is a process by
which fibers (micro to nanometer diameter) can be obtained from an electrostatically driven
jet of polymer solution through a charged needle [17]. The high surface area-to-volume
ratio of the fiber matrix provides an advantage in industrial applications such as barrier
fabrics, wipes, and other medical/pharmaceutical uses [18–21]. In our previous research,
we functionalized PCL with CG1 to increase its biological functionality [22]. We have devel-
oped a process [23] to create a membrane where multiple layers of aligned polycaprolactone
(PCL) electrospun nanofibers (ENF) are harvested and applied to any substrate [23]. Two
parallel wires were used to collect a single layer of aligned PCL fibers by electrospinning
a PCL solution (Figure 1). The fibers were harvested at different angles and stacked in
layers on a substrate to produce a PCL nanofiber membrane (NFM). According to our
developed method, hydrogel membranes can be coated on all sides using PCL NFM to
produce a PCL-coated hydrogel scaffold. The unique nature of the nanofiber-hydrogel
scaffold is that any custom size and shape of tissue engineering graft (such as ear, nose,
lips, or skin) can be produced from this method. Designing and developing pro-angiogenic
electrospun PCL nanofibers and evaluating their usefulness in various tissue engineering
and regenerative medicine settings is an active field of research [24]. Bazzolo et al. [25]
conducted breast cancer cell cultures on electrospun PCL as a potential tool for preclinical
studies on anticancer treatments. Various electrospun nanofibers made of natural and
synthetic polymers are often used to incorporate biomolecules and peptides to improve
the physico-chemical/mechanical and biological properties of PCL fibers. Abebayehu, D.
et al. [26] reported improvement of angiogenic responses by adding vascular endothelial
growth factor (VEGF), basic fibroblast growth factor (bFGF) with PCL. The study by Dettin
M et al. [27] investigates the influence of increasing concentrations self-assembling peptides
(SAP) with PCL on the physico-chemical, mechanical and biological properties of PCL fibers.
The study found that, as compared with bare PCL, SAP enrichment increased the number
of metabolic active h-osteoblast cells, fostered the expression of specific osteoblast-related
mRNA transcripts, and guided calcium deposition, revealing the potential application of
PCL-SAP scaffolds for the maintenance of osteoblast phenotype [25].
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Figure 1. Schematic representation to produce a nanofiber-coated hydrogel scaffold.

1.4. The Current Problem of Hydrogel Alone as a Dermal Equivalent and Its Solution

The fiber material, fiber diameter, fiber alignment in the membrane and thickness of the
membrane control the biological functions of the membrane [28]. The fiber diameter in the
ENF membrane is usually less than 500 nanometers. For a membrane with multiple layers
of fibers, the thickness of the membrane can be larger than micrometers. When membrane
layer thickness is in the micrometer range, the biological functions of the membrane
decrease significantly due to the loss of porosity; porosity loss is negatively correlated to
membrane thickness. Conversely, hydrogel scaffolds have limited mechanical properties
such as stiffness and elasticity [29]. The biological efficiency of a hydrogel depends upon its
thickness. It is possible to improve the properties of thick hydrogels by creating membranes
composed of multiple and alternating layers of nanofiber and hydrogel. A nanofiber matrix-
incorporated hydrogel is a composite polymer in a network form. The composite scaffold
that is constructed by layers of hydrogel and PCL can overcome the individual limitations
of PCL, ENF, and hydrogel scaffold. The combination of favorable properties of each
hydrogel (PEGDA, SA and CG1), with PCL, results in a new hybrid system (PEGDA-PCL,
SA-PCL and CG1-PCL) with properties that can significantly improve or substantially differ
from those of the individual polymers or from each other. Therefore, we compared the
physical, bio-adhesive, and degradative properties of PEGDA-PCL, SA-PCL and CG1-PCL
in this study to evaluate their relative qualification for a dermal equivalent model.

2. Materials and Methods
2.1. Materials

To prepare PEGDA hydrogels, we used polyethylene glycol diacrylate (PEGDA), (Mn
700 mol, Sigma), Dulbecco’s phosphate buffered saline (DPBS), alpha-alpha-dimethoxy-
alpha-phenylacetophenone (MW = 256.35 g/mol), and 1-vinyl-2-pyrrolidone (MW =
111.14 g/mol). These chemicals were purchased from Sigma-Aldrich, St. Louis, MO,
USA. To prepare alginate hydrogels, we used sodium alginate (Protanal® LFR 5/60, FMC
BioPolymer (Philadelphia, PA, USA)), Dulbecco’s Modified Eagle Medium (Thermo Fisher)
and calcium chloride. To prepare CG1 hydrogels, we used Type I bovine collagen (Gibco,
Waltham, MA, USA), phosphate buffered saline solution (PBS). Calcium chloride and
NaOH were collected from a chemistry laboratory at the University of Central Oklahoma.
To produce PCL fibers, we used PCL beads (pellet size ~3 mm, average Mn 80,000) and
acetone (laboratory reagent ≥ 99.5%). Both PCL pellets and acetone were purchased from
Sigma Aldrich, St. Louis, MO, USA).

2.2. Sample Preparation
2.2.1. Electrospun Nanofiber Mat

During this study, three groups of dermal equivalents were prepared. They were
PEGDA PCL, SA-PCL and CG1-PCL. To make PCL fiber mats for all dermal equivalents,
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PCL solution was made by ultrasonic mixing of 7.69 wt% of PCL pellets of size approxi-
mately 3 mm and average molecular number 80,000 using the protocol published in our
earlier work [22]. In short, the PCL and acetone solution was sonicated for 45 min and then
poured into a plastic syringe in an infusion pump (Harvard apparatus). The PCL fibers
were then ejected from the syringe through a 1-inch discharge metallic needle (aluminum
23G blunt needle, Model # BX 25). The needle was charged with a 9-kilovolt power supply
(Gamma High Voltage, model # ES 30). Aligned fibers were collected using a wooden
block with two parallel electrodes attached to it. Twenty-four layers of fibers were collected
manually on an acrylic mold through repetition of forward and backward motions; each
layer of fiber was collected at a right angle to the next layer (Figure 2a).
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Figure 2. (a) Schematic representation of production of parallel nanofibers and collection of PCL fiber
membrane on a round shape collector. Inset picture shows the PCL fiber on the collector. A plastic
ring was used as an anchor for mechanical tension development. (b) Front view and (c) side view.

2.2.2. PEGDA-PCL Scaffold

PEGDA-PCL dermal equivalents (Figure 3a) were made as follows. The activated
photo initiator mixture was made by mixing 0.3 g of photo initiator (alpha-alpha-dimethoxy-
alpha-phenylacetophenone) per each milliliter of vinyl-2-pyrolidinone. Two mL of PEGDA
were mixed with eight mL of 1× PBS to make a 20% PEGDA mixture. 4 microliters of
activated photo initiator mixture was combined with two mL of 20% PEGDA which was
cured for 3 min in room temperature to form the semi-solid PEGDA. Each PEGDA gel
(approximately 0.5 mm thickness, 10 mm diameter) was sandwiched between 24 layers of
PCL fiber membranes. Cells were then plated and cultured as described below.
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2.2.3. SA-PCL Scaffold

To make SA-PCL dermal equivalents (Figure 3b), sodium alginate powder was
weighed to 220 g and added to 10 mL of deionized water using a 50 mL beaker; this
was stirred by hand for 3 min; a sonicating machine was used to thoroughly mix for 5 min
with 2-min hand mixing intervals; this was mixed until powder was fully dissolved in
water. Calcium chloride (110 g) was added to 5 mL of water in a 50 mL beaker; this was
stirred by hand for 3 min; the sonicating machine was used to thoroughly mix for 5 min
with 2 min hand mixing intervals, this was mixed until the powder was totally dissolved
in water. Both solutions were then mixed together using the sonicating machine. Sodium
alginate gel was produced by pipetting 80 µL of solution into silicon molds; these silicon
molds were incubated at −20 degrees for 2 h and then thawed for 1 h. Each SA gel (ap-
proximately 0.5 mm thickness, 10 mm diameter) was sandwiched between 24 layers of PCL
fiber membranes. Cells were then plated and cultured as described below.

2.2.4. CG1-PCL Scaffold

To make CG1-PCL dermal equivalents, bovine collagen (GIBCO, Thermo Fisher) was
mixed with ultrapure water and a premix concentrate of media salts, sodium bicarbonate,
and fetal bovine serum as previously published [30,31]. First, PCL fibers were ejected from
a glass syringe through a discharge needle. Aligned fibers were collected using two parallel
electrodes similar to the above procedure. A total of 24 layers of fibers were collected
manually on an acrylic mold through repetitive back and forth motions (Figure 3a). Each
layer of fiber was collected at a right angle to the next layer. PCL fibers were placed on
a plastic tension ring (Figure 3b). Collagen mixture was prepared, and pH equilibrated
with 1N NaOH as needed, then human fibroblasts resuspended in growth media were
mixed with the collagen, yielding a final concentration of 1 mg/mL collagen and 200,000
fibroblasts/mL. A plastic ring used to maintain tissue tension was produced as follows: a
stiff plastic canvas sheet, 14-mesh was purchased from an art supply or hobby store (for
example, Darice stiff mesh; Jo-Ann Fabric). The mesh was punched with a #7 cork borer
(Fisher Scientific) to produce the outer edge of each ring, while the inner opening was
punched with a #4 borer. Sharp edges were smoothed with a file or sandpaper. Each ring
was rinsed with deionized water and sterilized with 70% ethanol and stored in sterile HBSS
until use. The plastic tension ring was inserted into the bottom of a well of a 24-well plate,
and PCL fibers added atop the ring, and warmed on a slide warmer to 37 ◦C. One milliliter
of collagen–cell mixture was pipetted into the well atop the PCL fibers and left on the slide
warmer until the collagen began to polymerize (about 10–15 min). The CG1-PCL dermal
equivalents (Figure 3c) were placed in a CO2 cell culture incubator for 72 h in the presence
of 1 mL growth media per equivalent.

2.3. Experiments and Analysis
2.3.1. SEM Examination

This study used a Hitachi™ (Chiyoda, Tokyo, Japan) 3000 scanning electron micro-
scope (SEM) to observe the quality of fiber embedding and internal morphology in each
group of hydrogel. SEM images were captured on the top fiber layer surface to observe fiber
integration with the hydrogel, whereas cross-section images of paraffin-embedded scaffold
samples were examined to observe internal void or porosity. For SEM histology sections,
each scaffold was made without cells and inserted into optimal cutting temperature fluid
(OCT) using tweezers. The procedure was performed carefully to prevent any air bubbles
from forming in the fluid. Tissues embedded in OCT were chilled to −20 ◦C to harden
samples for frozen sectioning using a cryostat (Leica CM1800). Thin sections of tissues
were collected onto room temperature microscope slides and stored at −20 ◦C. SEM images
were captured from all sections.
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2.3.2. Cell Culture and Assays

This study used human dermal fibroblasts (LifeLine Technology, Frederick, MD, USA)
HDF 01035). Cells were cultured on tissue culture dishes in standard culture conditions
(37 ◦C in a 5% CO2 incubator). The cell medium consisted of DMEM/high glucose, 5% FBS
and 1% penicillin/streptomycin/amphotericin (Sigma-Aldrich, St. Louis, MO, USA) was
used for all studies. Cells were extracted from the dish using 1× trypsin/EDTA solution
(Sigma Chemical) for 5 min at room temperature. Cell extraction was followed by serum
inactivation. Cells were embedded within the collagen in CG1-PCL tissues; CG1-PCL
dermal equivalents were cultured submerged for 7 days to allow cells to remodel the
collagen to provide sufficient tension and stiffness for proliferation and differentiation [32].
In PEGDA-PCL and SA-PCL, fibroblasts were plated on the upper surface using an 8 mm
borosilicate glass cloning cylinder; for each sample, 60,000 fibroblasts were resuspended in
75 microliters of media and added to the cloning cylinder sitting atop the tissue. The tissues
and cylinders were returned to the incubator for 2–4 h to allow fibroblasts to settle and
attach to the upper surface of the tissues, after which time the cylinders were removed and
tissues were submerged in growth media for 7 days. Cell adhesion, proliferation, differenti-
ation and focal adhesion tests on each of the dermal equivalents was conducted according
to the method established in our previous research [32,33]. Click-iT EdU Alexa Fluor 488
Imaging Kit from Thermo Fisher Scientific (Waltham, MA, USA) was used to evaluate
proliferation for each sample [32,33]. The assay required addition of a tagged nucleotide to
the culture media during the last 1–24 h of culture; proliferating cells incorporated EdU
into the replicated DNA during this time [32]. For histology, after a total of 7 days, dermal
equivalents were fixed with paraformaldehyde, permeabilized with MeOH and stained to
identify proliferation and differentiation in a single combined stain, similar to [32]. Each
group of samples was stained for 1 h with mouse anti-human vimentin (Labvision; Thermo
Fisher) for one hour, followed by a secondary vimentin with goat anti-mouse rhodamine
(Thermo Fisher Molecular Probes), followed using click chemistry (as per manufacturer’s
instructions) and DAPI counterstain. To identify focal adhesion structures, each group of
samples was cultured in the same conditions as for the proliferation and differentiation
stains; however, upon harvest the samples were fixed using 3% paraformaldehyde and 0.2%
Triton-X-100 prior to staining [34]. Samples were stained using mouse anti-human vinculin
(Clone VIN-1; Millipore Sigma) and goat anti-mouse Alexa 488, followed by rhodamine
phalloidin (Thermo Fisher) staining to label actin stress fibers. Stained whole-mount sam-
ples were inverted onto large coverslips for visualization using 100× oil immersion on
an Olympus IX-71 microscope. Images were captured using an Olympus DP72 camera
equipped with CelSens software. Subsequent quantification was performed using Image J
software using a published protocol [35] with modifications.

2.3.3. Degradation Analysis

Each scaffold weight was measured immediately upon fabrication using a precision
balance, then soaked in PBS for 24 h, 7 days and 14 days. After each period of soaking, the
weight of the scaffold was measured. The value of the rate of degradation was measured
using the formula: (Wt − W0) × 100%/W0. In this equation, W0 is the weight of the
scaffold after 24 h of soaking in PBS and Wt is the weight of the scaffold after each time
period of soaking in PBS.

2.3.4. Rheological Evaluation

Dynamic compression tests were carried out following the procedures described in
our earlier research [36]. Frequency sweep tests (0.1–10 Hz) at 25 ◦C at constant strain rate
were performed on each sample group using the Netzsch Instruments KINEXUS Rotational
Rheometer. Elastic, viscous and phase shift angle at 1 Hz was compared among the sample
group.
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2.3.5. Statistical Analysis

This study used Microsoft Excel statistical tools to test statistical differences in mean
values of cell adhesion, proliferation, differentiation, and degradation among the sample
groups. The study conducted independent sample t tests, assuming unequal variances to
find an appropriate statistical significance level.

3. Results
3.1. Scanning Electron Microscopy

Figure 4a shows the 24 layers of fiber mesh that were collected from a single layer of
fiber mesh. The direction of the 24 layers of PCL deposition on the collector was mainly
random as seen from the SEM images of the membrane (Figure 4b). The fiber diameter in
the mesh was in the range of 300 to 500 nm. The alignment of single layer-deposited fibers
between two wires was unidirectional (Figure 4b). This study used 24 unidirectional layers
of PCL fibers to coat PEGDA, SA and CG1 hydrogels.
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Figure 4. (a) Fabrication of random 24 layers of PCL fibers for coating the gels using the electrospin-
ning process. Inset picture shows the collected single layer of aligned fibers between two-wires in the
electrospun machine which was used to fabricated 24 layers of PCL fiber mesh. (b) SEM image of
24 layers of PCL fiber mesh.

A clearly visible difference in surface (Figure 5) was observed from SEM images among
different groups of dermal equivalent samples. This result suggested a significant change
of the surface texture due to the gel architecture and PCL NFM treatment. The overlapping
24 fiber layers were fully embedded in each gel.
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It is clear from comparing the cross-sectional SEM images between PEGDA-PCL and
SA-PCL that there is a visible difference in porosity among the samples (Figure 6). There is
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a large size of void created in PEGDA-PCL (Figure 6a), whereas the void size is small in
SA-PCL samples (Figure 6b). PCL fibers were easily visible in PEGDA-PCL, while the fiber
could not be distinguished in the SA-PCL samples. Cross-sectional image of the CG1-PCL
sample was not possible due to the structure of CG1 hydrogel. Since CG1 solution contains
acetic acid, the CG1 solution evaporates and loses integrations with PCL fiber quickly
before freezing for microtome sectioning.
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Figure 6. Cross-sectional images of the (a) PEGDA-PCL and (b) SA-PCL hydrogels. The red line
shows the boundary between embedding media and scaffold. The histology section thickness for
both samples was 5 microns. Each image was captured 30× magnification. The arrows show the
presence of voids.

3.2. Cytocompatibility Properties

Immunostained whole-mount images of PEGDA-PCL, SA-PCL, and CG1-PCL spec-
imens indicated cell presence, differentiation, and proliferation on each of the different
kinds of hydrogel. The images indicated the success of cell attachment, proliferation and
differentiation in PEGDA-PCL, SA-PCL, and CG1-PCL. Cells were better able to proliferate
and differentiate in the CG1-PCL scaffold compared to PEGDA-PCL and SA-PCL (Figure 7).
Although this study did not find any significant difference of cell nuclei adherence and
proliferation density among different groups of samples (p > 0.05), the mean number of
cells proliferated after adherence was higher for the CG1-PCL samples compared to the
other samples. A large value of standard of error was found for each assay. There was no
significant difference in the mean amount of adherence as measured by presence of cell
nuclei (total blue stained area × 100%/area of image field) among sample groups (p > 0.05)
(Figure 7).

There was a significant difference in the mean amount of cell differentiation (total
vimentin stained area × 100%/area of image field) between the PEGDA-PCL and SA-PCL
sample groups (p value = 0.05) as well as the PEGDA-PCL and CG1-PCL sample groups
(p value = 0.07) (Figure 8). There was no significant difference in the mean amount of cell
differentiation in SA-PCL and CG1-PCL sample groups. The result suggested that the
inclusion of PCL in SA and CG1 has a higher effect on cell differentiation compared to the
inclusion of PCL in PEGDA.
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Figure 7. Mean cell adhesion density (±standard error) and mean cell proliferation density
(±standard error) for the PEGDA-PCL, SA-PCL, and CG1-PCL groups. Data are presented with n = 8
for all samples. Note: * p < 0.05 (compared to PEGDA-PCL).
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Figure 8. Mean cell differentiation value (±standard error) for the PEGDA-PCL, SA-PCL, and
CG1-PCL groups. Data are presented with n = 8 for both samples. Note: * p < 0.1 (compared to
PEGDA-PCL).

Stress fibers successfully occurred on the surface of all types of dermal equivalents as
shown in Figure 9. All samples demonstrated well-spread cells based on the stress fiber and
focal adhesion stains. The results confirm that cells in the dermal equivalent produced with
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hydrogel and PCL fibers have normal mechanotransduction characteristics (the mechanism
by which cells convert attachment and stiffness into mechanical tension).
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Figure 9. A representative fluorescent stained images (left) showing the existence of stress fibers and
elongated cells (right) in (a) PEGDA-PCL, (b) SA-PCL and (c) CG1-PCL dermal equivalent models.
All images were captured at 100×magnification. Scale bar in each image is 200 µm.

3.3. Degradation Analysis

The CG1-PCL scaffold demonstrated a consistent degradation from the first week,
whereas there was an increase of weight due to absorption of water for the SA-PCL scaffold
during the two-week study period (Figure 10). The study observed degradation of PEGDA-
PCL scaffold during the second week. Unlike PEGDA-PCL and SA-PCL, CG1-PCL did
not absorb fluid during the period of degradation analyses. However, degradation data
indicate a decrease of architectural integrity with time. All samples showed degradation
from the 1st week to the 2nd week, with the highest values for PEGDA-PCL samples,
then SA-PCL. There is a negligible amount of degradation observed for CG1-PCL samples
during the 2-week soaking period.
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Figure 10. Percentage of weight change plots of the PEGDA-PCL, SA-PCL, and CG1-PCL specimens
with respect to 7 and 14 days swelling in PBS. The values of the weights were normalized with respect
to weights of the samples after swelling the samples for 24 h. Data are presented with n = 3 for all
samples.

3.4. Rheological Characterization

There is a significant difference among the rheological properties (G′, G′ ′ and δ)
observed among the samples group (Table 1). Figure 11 shows the elastic (G′), viscous
(G′ ′) and phase shift angle (δ) values for a constant strain rate frequency sweep test on a
SA-PCL sample. The values of G′, G′ ′ and δ of CG1-PCL was significantly lower compared
to PEGDA-PCL and SA-PCL samples at 1 Hz frequency. Our rheological test data show
that SA-PCL scaffold had the highest values of G′, G′ ′ and δ compared to others.

Table 1. Difference between viscoelastic properties between PEGDA-PCL, SA-PCL and CG1-PCL
(n = 3).

Experimental Parameters PEGDA-PCL SA-PCL CG1-PCL

Viscous modulus G′ ′ (kPa) 0.53 ± 0.18 6.58 ± 3.41 0.002 ± 0.001
Elastic modulus, G′ (kPa) 5.34 ± 0.23 14.82± 1.92 0.12 ± 0.01

Phase shift angle, δ (degree) 5.68 ± 0.22 16.85± 6.29 1.14 ± 0.11
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4. Discussion

In this study, each hydrogel-PCL was stained for cell attachment, differentiation, pro-
liferation, and stress fiber detection analysis. This was performed to determine whether the
fabricated graft maintained certain conditions necessary for wound healing. For example,
cell differentiation showed that fibroblasts were present in the tissues, and more specifically
the presence of stress fibers and elongate shape of cells demonstrated that cells were under
mechanical tension. Presence of DAPI-stained nuclei confirmed the presence of cells in each
type of hydrogel. Cell proliferation in the hydrogels demonstrated that the environment
was permissive to soluble signaling by the growth factors present in the serum. All these
properties indicate that each scaffold could function as an in vivo dermal graft allowing
host cells to populate the tissues and specialize into dermal fibroblasts with wound-healing
capabilities.

This study found that PEDGA PCL nanofibers have good qualities regarding attach-
ment of HDF cells. Cell culture assays found proliferation of cells and cell differentiation
was also present. The amount of cells proliferating and differentiating was not as high as
expected due to the lack of sufficient porosity on the scaffold. Physical characterization of
the PEGDA PCL NFM dermal equivalent showed good absorption and degradation prop-
erties, therefore warranting further research to improve porosity in the PEGDA hydrogel.
Our future goal is to micro-machine 3D PEGDA architecture and then coat PEGDA with
PCL NFM to produce a PEGDA-PCL scaffold.

In this study, SA hydrogels were able to integrate with PCL NFM to improve the
biological performance of the SA hydrogel. The successful integration between hydrogel
and nanofiber matrix was enhanced by fibroblast cell culturing on the coupled polycapro-
lactone (PCL) and hydrogel constructs. Cell adhesion on PCL is important because it allows
for cell spreading, migration, viability, and growth [37]. PCL is made using a precision
deposition system that allows for the scaffold to have precise pore sizes and porosity, which
promotes an increase in cell adhesion [38,39]. The authors’ previous studies found that that
SA hydrogels without PCL fibers disintegrated and become more porous after two weeks
of cell culture [40]. The increased porosity of SA with PCL after 2 weeks of cell culture
led to a cell number increase for the SA hydrogel with PCL NFM. This explanation is in
agreement with O’Brien et al. [41]. The authors found a strong correlation between the
scaffold-specific surface area and cell attachment indices. The cell attachment and viability
were primarily influenced by the scaffold-specific surface area of pore sizes for MC3T3
cells.

Based on the cell proliferation and differentiation assays, we conclude that CG1-PCL
scaffold is the best choice among all the other test models used for this study. There are
several reasons to use CG1 with PCL over others. First, the skin itself contains collagen I
which is the main structural protein found in the extracellular matrix of the skin. Second,
anchored collagen with and without the addition of PCL fibers permits fibroblasts to
generate tension. This indicates that the dermal equivalent produced with collagen and
PCL fibers could also restore senses such as touch to the affected wound area. Third, CG1-
PCL has lower wettability and degradability compared to PEGDA-PCL and SA-PCL that
makes it suitable for a dermal equivalent. Fourth, PCL nanofibers can provide adequate
mechanical stability to CG1 for qualifying the resultant CG1-PCL as a skin graft. Finally, it
is not possible to suture CG1 scaffold with skin. However, CG1-PCL graft can be sutured
onto native skin during skin repair surgery. An in vivo evaluation of electrospun PCL graft
for anterior cruciate ligament found that PCL graft can be sutured with native ACL and it
can reconstruct the rat ACL [42]. Additionally, the study shows that PCL graft can facilitate
induction of cells and collagen deposition in the graft.

When comparing the rheological properties of PEGDA-PCL, SA-PCL and CG1-PCL
to similar properties of hyaluronic acid dermal fillers [43], most commonly used as the
dermal equivalent model, the elastic modulus value (G′) of CG1-PCL (~120 Pa) is close
to Restylane (294 Pa), Perlane (338 Pa), Juvéderm Ultra (111 Pa), Juvéderm Ultra Plus
(159 Pa) and Juvéderm Voluma (220 Pa). Our rheological results revealed that the firmness
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of PEGDA-PCL (~5.34 Pa) and SA-PCL (~14.38 Pa) hydrogel were much higher than the
dermal filler gels.

According to the author’s knowledge, this is the first study to compare the effect of
combining PCL with PEGDA, SA and CG1 on their physical and biological properties. The
main purpose of applying PCL NFM on each of the hydrogels was that PCL membranes
could serve as a reservoir for the supplies of nutrient in each of the scaffolds for fibroblast
cell growth. It is possible to attach extracellular matrix proteins with PCL nanofibers that
can enhance the cell growth in a PCL NFM incorporated scaffold [40,44]. The combined
application of growth factor-immobilized nanofibers blended on a hydrogel can further
enhance the biocompatibility of hydrogel, which is a potential area of new research. Another
future research is to evaluate the reinforcement of hydrogel by nanofiber mesh with a goal
to suture the hydrogel to native skin for skin repair.

The values of the biological properties of the PCL fiber-coated PEGDA in this study
were different from our previous studies [36], likely because we used a different architecture
of PCL NFM and a different cell line in this study. Kotturi et al. [36] used 12 layers of PCL
NFM to produce PEGDA-PCL samples, whereas this study used 24 layers of PCL NFM.
This study used a higher number of fiber layers because our previous studies observed a
correlated higher amount of cellular attachment and proliferation for PCL membrane with
a higher number of fiber layers [45]. Kotturi et al. [36] studied how human hepatocellular
carcinoma cells (GS5 cells) adhered, proliferated, and migrated higher in the PEGDA-
PCL scaffold than in PEGDA alone. This study (using human fibroblasts) also found that
fibroblasts adhered, proliferated, and differentiated in the PEGDA-PCL scaffold. The results
of the PCL fiber-coated SA in this study supplements the authors’ previous studies [40],
where the authors examined osteoblast (MT3T3E1) cell viability in a sodium alginate (SA)
hydrogel and measured the adhesion strength between polycaprolactone (PCL) and SA
hydrogel scaffolds after two weeks of culture. A commercial PCL scaffold (3D Insert™-
PCL scaffolds, 3D Biotek Inc., Hillsborough, NJ, USA) was used in the previous study,
whereas this study used electrospun PCL nanofibers. Although the cell lines were different,
both studies found excellent biocompatibility on the scaffolds and cell migration from SA
hydrogel to PCL layers. The values of the biological properties of the PCL fiber-coated
CG1 in this study were different from other author studies [44,46], likely because this study
used a unique PCL NFM architecture and CG1 composition for making CG1-PCL scaffold.
Furthermore, the CG1-PCL fabrication process was different from other studies. In this
study, the PCL-NFM was attached on a plastic ring and then cell-seeded CG1 solution was
cured on the hole of the plastic ring along with the PCL NFM.

The study was limited to investigating influence of coating PEGDA, SA, and CG-1 with
PCL on the key physical, mechanical, and biological properties of composite scaffold for
skin tissue engineering application. This study was unable to compare the effect of addition
of PCL on PEGDA, SA and CG1 on the thermal properties. Our research group have
recently conducted thermal analysis on PCL during the study of using PCL nanofiber mesh
in a face mask application [47]. We have found that PCL is stable in extreme conditions
and no plasticizing effect occurs due to the presence of a solvent. In future, the viscoelastic
properties at different temperature of both SA and CG1 due to addition of PCL NFM
will be analyzed to evaluate integrity of the scaffold at 25 and 37 ◦C. We have recently
conducted in vivo biocompatibility study of CG1-PCL scaffold using a rat model. Our study
results concluded that CG1-PCL is biocompatible. The results will be published in another
literature in near future. Human fibroblast-seeded collagen scaffolds without and with
PCL fibers showed existence of stress fibers and elongate cell structure, suggesting tension
in the gel. However, the difference of tension generation values between fibroblast-seeded
CG1 and CG1-PCL scaffolds is still unknown and warrants further investigation.

5. Conclusions

The objectives included determining the in vitro biological efficacy of PEGDA-PCL,
SA-PCL, and CG1-PCL using human dermal fibroblasts. The study conducted cell adhesion,
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proliferation, and differentiation using standard cell culture and staining assays. In addition,
morphological and degradation properties of each scaffold were compared. This study
found the following:

1. PEDGA-PCL scaffold had good qualities regarding attachment of HDF cell to nanofibers.
Physical characterization of PEGDA-PCL showed good absorption and degradation
properties.

2. SA-PCL had measurable physical and biological characteristics. Cell viability was
exceptional where HDF cells satisfactorily differentiated inside the SA hydrogel.

3. CG1-PCL had better biological and mechanical characteristics as a skin graft compared
to PEGDA-PCL and SA-PCL.

The translation of this study will be in vivo studies of CG1-PCL graft to verify whether
CG1-PCL graft is suitable for skin repair.
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