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Abstract: This paper presents specific noise minimization strategies to be adopted in silicon–cell
interfaces. For this objective, a complete and general model for the analog processing of the signal
coming from cell–silicon junctions is presented. This model will then be described at the level of
the single stages and of the fundamental parameters that characterize them (bandwidth, gain and
noise). Thanks to a few design equations, it will therefore be possible to simulate the behavior of a
time-division multiplexed acquisition channel, including the most relevant parameters for signal
processing, such as amplification (or power of the analog signal) and noise. This model has the
undoubted advantage of being particularly simple to simulate and implement, while maintaining
high accuracy in estimating the signal quality (i.e., the signal-to-noise ratio, SNR). Thanks to the
simulation results of the model, it will be possible to set an optimal operating point for the front-end to
minimize the artifacts introduced by the time-division multiplexing (TDM) scheme and to maximize
the SNR at the a-to-d converter input. The proposed results provide an SNR of 12 dB at 10 µVRMS

of noise power and 50 µVRMS of signal power (both evaluated at input of the analog front-end,
AFE). This is particularly relevant for cell–silicon junctions because it demonstrates that it is possible
to detect weak extracellular events (of the order of few µVRMS) without necessarily increasing the
total amplification of the front-end (and, therefore, as a first approximation, the dissipated electrical
power), while adopting a specific gain distribution through the acquisition chain.

Keywords: biological neural networks; biosensors; neural engineering; analog integrated circuits;
low-noise amplifier

1. Introduction

The most recent and relevant advances in neuroscience and, more specifically, in the
analysis of the functioning of biological neural networks are directly proportional to the
ability to observe by minimally invasive probing the weak extracellular neuro-potential
signals generated by the electrical activity of specific nerve cell populations.

Today, planar micro-electrode arrays (MEAs) represent one of the most interesting devices
for observing such cellular electrical events without penetrating the cell membrane [1–3].

They can be integrated on standard CMOS silicon dies and, therefore, be locally
equipped with analog signal acquisition and processing circuits, the requirements of which
are low power dissipation, high signal-to-noise ratio (SNR) and low area occupation [4].

To meet these requirements, most modern and efficient MEAs use signal acquisition
schemes based on time-division multiplexing (TDM) algorithms [5–7].

This approach allows for implementation of a single acquisition channel for a certain
set (array) of recording sites (electrodes/pixels), leveraging the low bandwidth of the
neuro-potential signal (up to few kHz, and thus potentially easy to use in oversampling
digitalization systems) and the processing speed of the CMOS circuits, while reducing
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the area and electrical power (i.e., the key aspects for efficiency and portability of next-
generation MEAs).

Figure 1 shows a simplified block scheme of a neural recording MEA with the highlight
on the single channel scheme. They are typically arranged in a matrix of pixels, where each
recording site (distributed in a single row) feeds a low-noise amplifier (LNA (A1), whose dc
gain is G1) [8] by CBIO,i (with i = 0−Npixel − 1) coupling capacitances. Each LNA drives the
signal coming from a specific recording site. The outputs of these LNAs are then connected
to a TDM scheme (by the analog multiplexer) that samples the signal coming from Npixel
(=8, in this case). Thus, the second (single) amplifier stage (A2, whose dc gain is G2) and
the a-to-d converter can be simultaneously used for analog processing and digitalization of
Npixel = 8 recording sites, reducing the power and area of the whole biosensor.
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Adopting a TDM architecture, thus integrating multiple parallel channels in a small
silicon area, might lead to crosstalk: a signal originating from a specific pixel, which
induces interference in the nearby channels due to the presence of parasitics. The wire
width and their positions (i.e., horizontal adjacent wires in the same metal layer, or vertical
adjacent ones in consecutive metal layers) determine the crosstalk coefficient [9]; therefore,
a proper layout is necessary to limit this effect which, in this way, can be lowered below the
intrinsic electronic noise. In addition to that, each LNA (corresponding to each electrode)
has a different voltage offset at the output node (the node connected to the input of the
TDM stage) due to an electrical properties mismatch involving integrated circuits MOS
transistors (MOSTs) [10]. Such offsets mainly depend on MOST threshold voltage variation
and cannot be rejected by classical ac-coupling capacitors because the TDM sampling stage
converts such static voltage offset into dynamic (time-domain variant) artifacts [11–13],
whose signal power is proportional to the LNA offset voltage standard deviation.

This leads to two important drawbacks as follows: If this effect has larger or compara-
ble power than the neuro-potential signals at the input of the second amplifier stage, then
it can saturate the input dynamic range of the a-to-d converter. If, on the other hand, it
has lower power, it should decrease the output SNR and must be rejected using digitally
assisted techniques that, in turn, require an extra power budget to be allocated to the digital
signal processing (DSP) stages driven from the a-to-d converter.

This paper proposes an alternative design approach that, in principle, does not require
an additional power budget for DSP and, at the same time, avoids any dynamic range
issues for the a-to-d converter operation. The first step is to build an easy to use model
based on simplified equations that fully include all electronic noise sources (thermal and
flicker localized on electrode–LNA interface) and TDM artifacts. By simulating the model
behavior vs. G1 (G2) gain at constant 60 dB gain for the whole chain (G1 + G2, where
both gains are taken in dB), it is possible to find a threshold value of G1 at which the
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TDM artifacts become much smaller, and thus negligible, than the electronic noise power,
maximizing in this way the a-to-d converter input SNR.

The proposed paper is organized as follows: Section 2 presents the model, the signal
processing block scheme, and main equations, respectively. Section 3 introduces the
analytical expressions modelling the relevant noise sources in TDM MEAs schemes. In
Section 4, the time-domain simulation results of the neural recording TDM channel are
presented, setting the optimum operating point that maximizes the input dynamic range of
the a-to-d converter and minimizes the total noise power, enhancing the channel SNR. At
the end of the paper, conclusions will be drawn.

2. Time-Division Multiplexing Neural Recording Analog Front-End (Neural AFE)

The block scheme of the TDM neural recording analog front-end (neural AFE) under
consideration is illustrated in Figure 1.

Each electrode is connected to a proper LNA, which has a gain G1 and a dominant
pole, whose pulsation (frequency) isω1 = 2·π·7.5 kHz, since most of the neural activity is in
the (0.1 Hz, 5 kHz) bandwidth [14,15]. The main objectives of the first LNA are to amplify
the weak extracellular signal coming from the planar electrode and to limit the acquisition
bandwidth, avoiding any signal corruption due to the aliasing of the out-of-band electronic
noise power spectral density (PSD) introduced by the TDM sampling operation. The LNA
transfer function G1(s) is:

G1(s) =
G1

1 + s/ω1
(1)

where G1 is the dc gain. The Npixel = 8 signals coming from the electrode LNAs are
then combined into a single transmission channel in different fixed-length time slots,
adopting the TDM scheme. TDM operates at a frequency of fTDM = 256 kHz, given by the
following equation:

fTDM= 2·f0,neuro·Npixel·OVR (2)

where f0,neuro is the maximum frequency (1 kHz in this work) of the neuro-potential signal,
Npixel = 8 is the TDM pixel count and OVR (=16) is the oversampling ratio. OVR = 16
is required to effectively sample the neural spike for the DSP stage following the a-to-d
converter and Npixel = 8 is a tradeoff between the bandwidth and the number of second
amplification stages in order to reduce power consumption [5,11–13,16]. Table 1 reports
the model design parameters concerning the single channel/row analog signal processing.

Table 1. Neural AFE System-Level Model Design Parameters.

Parameter Symbol Value

1st Amplification Stage Low Frequency Gain G1 0 dB–60 dB

1st Amplification Stage Dominant Pole Frequency f1 7.5 kHz

2nd Amplification Stage Low Frequency Gain G2 0 dB–60 dB

2nd Amplification Stage Dominant Pole Frequency f2 1 MHz

TDM Sampling Frequency fTDM 256 kHz

Max. Neuro-Potential Signal Frequency f0,neuro 1 kHz

Over-Sampling Ratio OVR 16

MEA Channel Pixel Count Npixel 8

The second amplification stage has a higher passband frequency range since the TDM
operation modulates the signal into a larger bandwidth (128 kHz). The dc gain is G2 and
the pulsation of the dominant pole is ω2 = 2π · 1 MHz, which has been set higher than the
input signal bandwidth in order to meet the settling time requirements of the signal in the
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7.8125 µs (=1/128 kHz) multiplexing time width or period. The transfer function of the
second amplifier is:

G2(s) =
G2

1 + s/ω2
(3)

Choosing G1 (B) + G2 (dB) = 60 dB to amplify an extracellular neural signal of the
order of tens of µVRMS [17], and effectively digitalizing it, it is possible to consider different
combinations of the individual gains to optimize the channel SNR.

When the single electrode signal is sampled, the channel has the following Laplace
domain transfer function:

G12(s) = G1(s)·G2(s) =
G1

1 + s/ω1
· G2

1 + s/ω2
(4)

Figure 2 shows the magnitude frequency response of both the first and second stage
amplifiers (A1 and A2) when G1 = 30 dB and G2 = 30 dB, compared with the chain
magnitude (A12).
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Finally, the a-to-d converter stage digitalizes the analog signal, which is later processed
by the DSP (implementing communication and filtering of the input coming from the MEA
channel and recovering the signals of the individual electrodes).

Adopting the TDM scheme simplifies circuital architecture and reduces both the
power and area of the channel. The count of amplifiers (after TDM) and a-to-d converters
is decreased by a factor Npixel − 1, where Npixel is the count of multiplexed electrodes.
However, the TDM modulates the voltage offset at the output LNAs, converting a static
deviation (voltage offset) into a time-variant artifact, whose contribution to the whole
channel SNR must be adequately considered.

3. Neural AFE Electronic Noise and TDM Artifact Sources

With reference to the single row of neural recording MEAs, the single channel has two
main noise sources, electronic noise (vne, whose PSD is <v2

ne>/∆f) and a-to-d quantization
noise (vnADC), and TDM-modulated artifacts (vnTDM, whose PSD is <v2

nTDM>/∆f).
The acquisition channel model in Figure 3, including all relevant noise sources, intro-

duces the electronic noise (vne) at the beginning of the chain (where silicon circuits interface
with the cells) and the TDM artifact source, which models the offset-sampling effect after
the first amplification stage. Values are summarized in Table 2.
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Table 2. Neural AFE Noise Model and TDM Artifact Design Parameters.

Parameter Symbol Value

Electronic Noise Source vne -

Electronic Noise at Cell–Silicon Interface Power
(1 Hz–5 kHz bandwidth) vne,RMS 10 µVRMS

Electronic Noise at Cell–Silicon Interface
Power Spectral Density

(1 Hz–5 kHz bandwidth)
<v2

ne>/∆f (141 nV/
√

Hz)2

TDM Artifact Source vnTDM -

TDM Artifact Signal Power
(1 Hz–5 kHz bandwidth) vnTDM,RMS 300 µVRMS

A-to-D Converter Number of Bits Nb 10

A-to-D Converter Full Scale FS 1 V

A-to-D Converter Quantization Noise Power vnADC,RMS 281 µVRMS

Assuming the electronic noise of the two amplification stages is of the same order,
contributions from A2 are minor when input-referred. Similarly, the electronic noise of
the a-to-d converter is neglected due to being divided by the acquisition channel gain
when compared with the other noise sources at the interface. The input stage MOST in
the first amplification stage (A1) is responsible for the main electronic noise PSD, and its
contribution has two main components, flicker and thermal ones:

< v2
N,MOS >

∆f
=

kF

f
+

2
3
·4·kB·T·

1
gms

(5)

where kF is the flicker constant depending on the specific CMOS process technology and
input MOST area, kB is the Boltzmann constant (=13.8 10−24 J K−1), and T (=300 K) is the
environment temperature.

The first term in Equation (5) models flicker noise PSD, dominating at low frequencies.
For this reason, it is important to reduce its influence by increasing the MOST area (reducing
kF value), although the requirement of large spatial resolution in planar MEA sets an upper
limit for the same MOST area (for instance, approximately equal to 48 µm2 for this model
where the MEA has 256 electrode/mm2).

The second term in Equation (5) models thermal noise contribution, inversely pro-
portional to MOST transconductance (gms) and with a constant PSD. gms increases with
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MOST drain-source current at a limited power budget for portable implantable devices.
State-of-the-art operates by lower than 10 µA [18–21] current consumption for the first
amplification stage, resulting in approximately 50–100 µA/V.

Starting from these considerations, the obtained input-referred noise power over
1 Hz–5 kHz neuro-potential bandwidth is vne,RMS = 10 µVRMS, which also includes the
minor contributions from all the other electronic components of the channel.

Figure 4 illustrates the quantization noise of a Nyquist a-to-d converter vs. number of
bits. The quantization noise power is given by the well-known Equation:

vnADC,RMS =
FS

2Nb ·
1√
12

(6)

where FS (=1 V, in this model) is the analog input full-scale and Nb is the a-to-d converter
number of bits. With Nb > 5, the quantization noise becomes lower than electronic one and
then negligible for higher Nb values.
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electronic noise after 60 dB (A1·A2) amplification).

Each acquisition channel shows a different offset at the output node of the first ampli-
fication stage. Using Npixel = 8 electrodes per channel, the dc value of the first amplification
stage is then sampled by fTDM, resulting in undesired, high-frequency artifacts whose
power is, in the first approximation, equal to such dc offset standard deviation (=300 µVRMS
in this model, corresponding to a threshold voltage standard deviation of 100 µm2 area
MOST; for instance, a W/L aspect ratio of 100 µm/1 µm).

4. Neural AFE Model Simulation Results

The presented model has been built starting from Equations (1) and (6) and is based
on the block scheme in Figures 1 and 3. It allows for an easily obtained (with very short
simulation run times) realistic evaluation of the impact of the electronic noise and offset-
sampling effect contributions of the chain on the channel SNR. More specifically, this paper
adopts a MATLAB implementation of the neural AFE model.

The first amplification stage introduces an electronic noise at the interface of the order
of 10 µVRMS, assuming a current consumption of few µA (about 1.5 µA), in line with
many implementations of MEA biosensors present in the literature [6,21,22]. On the other
hand, it is more complicated to set the TDM artifact signal to the same values because
it would involve using MOSTs with very large areas to minimize the A1 output voltage
offset, induced by MOST threshold voltage standard deviation [10]. For instance, <10 µV
threshold voltage standard deviation requires >0.09 mm2, MOST area (W·L), which, in turn,
would imply MOST width (W) values equal to about 9 mm at MOST lengths (L) of 100 nm.
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Basically, the electronic noise signal has a very small power, but it is amplified by
two amplification stages (A1 and A2), while instead the TDM artifacts are amplified only by
a factor G2 and have a power of more than an order of magnitude higher than the power of
vne. Therefore, for low G1 gain values, the offset-sampling effect will be dominant, whereas
its contribution almost disappears (replaced by the electronic noise) at higher G1 values.

It is then of fundamental importance to evaluate how G1 and G2 gain values influence
the channel SNR. The neural AFE channel has been simulated in the time domain (by
sweeping G1 from 0 dB to 60 dB with 1 dB/step and maintaining G12 (dB) = G1 (dB) + G2
(dB) = 60 dB vinculum). Electronic noise (vne) and TDM artifact (vnTDM) signals experience
G12 (see Equation (4)) and G2 (see Equation (3)) amplification, respectively.

Figure 5 shows the time-domain evolution of a classic action potential (AP) signal
(0.2 ms time duration) processed by the neural AFE channel (AP, box (d)) by decomposing
the contributions of the individual components as follows (Figure 5b–d). All the signals in
Figure 5 are referred to the input node of the neural AFE model for a total chain gain of
60 dB, with 12 dB on the first stage gain (G1).
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Figure 5. Action potential vs. time with noise and TDM artifact contributions. (a) noise-free AP;
(b) TDM artifacts; (c) electronic noise; (d) neural AFE channel (AP, box).

These simulations were obtained by assuming an AP signal at the neural AFE input of
100 µVRMS.

In these conditions, the TDM artifacts are evidently dominant and involve a significant
loss of SNR compared to the ideal case of considering the only electronic noise. Two partic-
ularly critical effects are generated: an increase in the input dynamic range of the a-to-d
converter (with a consequent increase in the dynamic power consumption) and a reduction
of the SNR compared to the mere presence of electronic noise.

A more detailed noise analysis of the noise signals vs. G1 gain is reported in Figure 6.
Starting at 18 dB (Figure 6a), as the first stage gain increases, the contribution of the TDM
decreases, leaving room for the electronic noise signal. Specifically, Figure 6 shows vnTDM,
vne and total noise (vntot, the quadratic sum of TDM artifact signal power and electronic
noise) for G1 = 18 dB up to G1 = 42 dB with 6 dB/step.



Bioengineering 2022, 9, 42 8 of 12Bioengineering 2022, 9, x FOR PEER REVIEW 8 of 12 
 

  
(a) (b) 

  

(c) (d) 

 
(e) 

Figure 6. Neural AFE electronic noise (vne) and TDM artifacts (vnTDM) time-domain simulations vs. 

G1. (a) G1 = 18 dB and G2 = 42 dB; (b) G1 = 24 dB and G2 = 36 dB; (c) G1 = 30 dB and G2 = 30 dB; (d) 

G1 = 36 dB and G2 = 24 dB; and (e) G1 = 42 dB and G2 = 18 dB. 

As the first stage amplification value gradually increases, electronic noise becomes 

dominant and the TDM artifacts tend to be negligible (as in Figure 6e) where electronic 

noise practically overlaps the TDM contribution. 

This trend would seem to suggest maximizing the gain of the first amplifying stage 

as much as possible compared to the second amplifier stage. Unfortunately, this solution 

would involve an excessive increase in both power and area requirements for the first 

stage, which is located exactly at the interface with the extracellular environment, signif-

icantly reducing the advantages of using the TDM technique. 

Figure 7 reports the extracted values of the total output noise power in the neural 

AFE vs. G1. There is a specific operating point threshold (G1 = 30 dB and G2 = 30 dB) in 

which the TDM artifact signal power becomes equal to the electronic counterpart. 

Figure 6. Neural AFE electronic noise (vne) and TDM artifacts (vnTDM) time-domain simulations vs.
G1. (a) G1 = 18 dB and G2 = 42 dB; (b) G1 = 24 dB and G2 = 36 dB; (c) G1 = 30 dB and G2 = 30 dB;
(d) G1 = 36 dB and G2 = 24 dB; and (e) G1 = 42 dB and G2 = 18 dB.

As the first stage amplification value gradually increases, electronic noise becomes
dominant and the TDM artifacts tend to be negligible (as in Figure 6e) where electronic
noise practically overlaps the TDM contribution.

This trend would seem to suggest maximizing the gain of the first amplifying stage
as much as possible compared to the second amplifier stage. Unfortunately, this solution
would involve an excessive increase in both power and area requirements for the first stage,
which is located exactly at the interface with the extracellular environment, significantly
reducing the advantages of using the TDM technique.

Figure 7 reports the extracted values of the total output noise power in the neural AFE
vs. G1. There is a specific operating point threshold (G1 = 30 dB and G2 = 30 dB) in which
the TDM artifact signal power becomes equal to the electronic counterpart.
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Figure 7. Components of the output noise power at the end of the second amplification stage vs. G1.
Points (a)–(e) correspond to the same gain distributions of the time-domain simulations of Figure 6.
The operating point (c) (G1 = 30 dB, G2 = 30 dB) occurs when the TDM artifact signal power becomes
equal to the electronic noise contribution.

In Figure 8, the channel SNR is plotted vs. G1, assuming a neuro-potential signal
power at the beginning of the chain equal to the electronic noise power (i.e., 10 µVRMS).
The SNR is negative for small values of G1 and approaches 0 dB for G1 >> 30 dB.
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Figure 8. Signal-to-noise ratio at the input node of the a-to-d converter vs. gain G1, considering a
signal of the same power of the electronic noise at the interface.

Defining the noise factor F as the ratio between input SNR (SNRin, due to the only
electronic noise) and the output SNR (SNRout, due to both electronic and TDM offset-
sampling effect):

F =
SNRin

SNRout
=

(
vneuro,RMS

vne,RMS

)2

(vneuro,RMS·G1·G2)
2

(vne,RMS·G1·G2)
2+(vnTDM,RMS·G2)

2

= 1 +
(

1
G1
·vnTDM,RMS

vne,RMS

)2
(7)

then the channel noise figure (NF) is:

NF = 10· log10(F) (8)

NF vs. G1 is plotted in Figure 9, demonstrating that the SNR degradation reduces
with G1 increasing. NF = 3 dB occurs at G1 = 30 dB; that is, when electronic noise and TDM
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artifact signal have the same power. Table 3 shows noise power, SNR and NF at different
G1 (G2) values with a signal of the same power of the electronic noise at the interface.
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Figure 9. Noise figure of the acquisition channel and gain G1 of the first amplification stage consider-
ing a signal of the same power of the electronic noise at the interface.

Table 3. Neural AFE simulation results. SNRout is calculated considering a signal of the same power
of the electronic noise at the interface.

G1
[dB]

G2
[dB]

Vn,RMS,out
[mVRMS]

VnTDM,RMS,out
[mVRMS]

SNRout
[dB]

NF
[dB]

18 42 45.7 44.7 −13.2 13.2

24 36 22.6 20.3 −7.1 7.1

30 30 13.8 9.8 −3.0 3.0

36 24 11.0 5 −0.8 0.8

42 18 9.9 2.3 −0.06 0.06

Figure 10 shows the electronic noise and TDM offset-sampling contribution time-domain
simulation results (set at the optimum operating point threshold of G1 = 30 dB and G2 = 30 dB),
comparing different AP signals having different SNR values (from 12 dB to 24 dB with
3 dB/step). This demonstrates that by efficiently calibrating the gain values of the amplification
stages, it is possible to detect, by simple threshold crossing approach [23,24], weak extracellular
neural events in the order of 50 µVRMS with an SNRout = 12 dB.
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5. Conclusions

This paper presents a complete model of a time-division multiplexed acquisition chan-
nel for silicon–cell interfaces, which allow the minimization of the multiplexing artifacts
introduced by the sampling operation and the maximization of the SNR at the a-to-d con-
verter input. More specifically, with an electronic noise power of 10 µVRMS at the interface
and a TDM artifact signal power of 300 µVRMS, the front-end optimal operating point,
G1 = 30 dB and G2 = 30 dB, as shown in Figure 10, exhibits an SNR of 12 dB for weak
extracellular neural signals in the order of 50 µVRMS.
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