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Abstract: Trauma and hemorrhage are leading causes of death and disability worldwide in both
civilian and military contexts. The delivery of life-saving goal-directed fluid resuscitation can
be difficult to provide in resource-constrained settings, such as in forward military positions or
mass-casualty scenarios. Automated solutions for fluid resuscitation could bridge resource gaps
in these austere settings. While multiple physiological closed-loop controllers for the management
of hypotension have been proposed, to date there is no consensus on controller design. Here, we
compare the performance of four controller types—decision table, single-input fuzzy logic, dual-input
fuzzy logic, and proportional–integral–derivative using a previously developed hardware-in-loop test
platform where a range of hemorrhage scenarios can be programmed. Controllers were compared
using traditional controller performance metrics, but conclusions were difficult to draw due to
inconsistencies across the metrics. Instead, we propose three aggregate metrics that reflect the target
intensity, stability, and resource efficiency of a controller, with the goal of selecting controllers for
further development. These aggregate metrics identify a dual-input, fuzzy-logic-based controller as
the preferred combination of intensity, stability, and resource efficiency within this use case. Based on
these results, the aggressively tuned dual-input fuzzy logic controller should be considered a priority
for further development.

Keywords: control systems; hemorrhage shock; fluid resuscitation; closed loop; infusion; controllers;
fluid management; hypotension; fuzzy logic; decision table

1. Introduction

Traumatic injury is an important problem in both civilian and military contexts: it
is a leading cause of death and disability worldwide, accounting for an estimated 8%
of all deaths and approximately 10% of all disability adjusted life years in 2019 [1]. In
particular, hemorrhage is estimated to account for nearly 40% of all trauma-related deaths,
with the majority occurring in the first 24 h after injury [2]. In the recent American military
experience, hemorrhage after traumatic injury is the leading cause of preventable death on
the battlefield, accounting for 90% of all preventable combat fatalities [3].

The standard of care for the bleeding trauma patient includes rapid control of ongoing
hemorrhage and fluid resuscitation to re-establish oxygen delivery to ischemic tissues by
restoring cardiac output. Multiple endpoints to traumatic shock resuscitation have been de-
scribed, including restoration of arterial blood pressure, but also clearance of accumulated
lactate and restoration of normal hemostatic function [4]. Damage control resuscitation
(DCR) refers to a specific resuscitation strategy used for treating bleeding casualties un-
til complete control of the hemorrhage is achieved. DCR focuses on the restoration of
hemostasis by emphasizing whole blood resuscitation (as opposed to crystalloids) and
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permissive hypotension (i.e., a systolic blood pressure target of 80–90 mmHg), balancing
between the needs of providing sufficient tissue perfusion and avoiding exacerbation of
the hemorrhage [5].

The delivery of goal-directed resuscitative care to the bleeding trauma patient is a
cognitively demanding task, even for highly experienced providers [6]. Physiological
closed-loop controllers (PCLCs) for resuscitation have been proposed as a potential solu-
tion to mitigate cognitive overload while improving the precision of care [7]; this benefit
could be especially pronounced for situations in which care is highly specialized (such
as burn resuscitation), or in mass-casualty scenarios when any given provider must care
for multiple high-acuity patients [8,9]. In general, closed-loop control systems attempt
to control a variable of interest around a setpoint by varying the intensity of an input.
As an example, a thermostat controls the temperature of a room by varying the intensity
of the air conditioning or heating. In the case of hemorrhagic shock resuscitation, the
standard goal in clinical practice, as well as the one most suitable to serve as the setpoint
for a PCLC, would be the patient’s arterial pressure, by modulating the intensity of fluid
resuscitation; i.e., essentially, an automated version of goal-directed therapy which is the
current recommended practice [10].

While multiple PCLCs for the resuscitation of hemorrhagic shock have been pro-
posed [11], methods for comparing the performance of one controller to another remain
limited. In this study we compared four controller types, each configured two ways, for a
total of eight controller configurations. These four controller types, decision table [12,13],
single-input fuzzy logic [14], dual-input fuzzy logic [15–17], and proportional–integral–
derivative [18–20], have been previously used in PCLC applications but not compared
head-to-head. The goal for this effort was to determine, as objectively as possible, which of
the many possible controllers demonstrate the best performance, making it favorable for fur-
ther development. Towards this, we use the HATRC test platform we previously developed
for hardware-in-loop testing of controllers through a range of hemorrhage scenarios [21].
We propose a series of aggregate metrics tuned to different controller performance features
for inter-controller comparisons across various testing scenarios.

2. Materials and Methods
2.1. Controller Design and Tuning

A total of eight controller types and configurations were evaluated using the HATRC
test platform (see Section 2.2). Four controller types were used: decision table (DT),
single-input fuzzy logic (SFL), dual-input fuzzy logic (DFL), and proportional–integral–
derivative (PID) control. Two configurations of each controller type were obtained using
a conservative and aggressive tuning methodology. Conservative tuning was guided by
more rigorously avoiding overshooting the set point while allowing a larger rise time.
Aggressive tuning prioritized minimizing the rise time above avoiding overshoot. Each
controller was developed as follows.

2.1.1. Decision Table

Decision Table logic was adapted from a prior study conducted by Marques et al. [22].
Logic was modified to a target pressure of 65 mmHg and each step in the logic was
proportional to the max flow rate (QMax) for HATRC infusion—500 mL/min—and target
pressure (PTarget). From previous work, the logic was found to be incapable of reaching the
target in severe hemorrhage scenarios [21], so it was adjusted as highlighted in Table 1 for
the aggressive and conservative DT tuning. Due to the nature of DT logic, it was not as
objectively tuned as the other three controller types.
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Table 1. Overview of decision table controller logic for aggressive and conservative tuning. PTarget is
the target pressure, which was set at 65 mmHg throughout, while P is the current pressure. QMax is
the maximum possible infusion rate of the test platform which was set at 500 mL/min throughout.

Aggressive Decision Table Conservative Decision Table

If P ≤ 85% PTarget, Q = QMax If P ≤ 60% PTarget, Q = QMax

If P ≤ 95% PTarget, Q = 66% QMax If P ≤ 70% PTarget, Q = 80% QMax

If P ≤ PTarget, Q = 33% QMax If P ≤ 80% PTarget, Q = 60% QMax

If P > PTarget, Q = 0 If P ≤ 90% PTarget, Q = 40% QMax

If P ≤ PTarget, Q = 20% QMax

If P > PTarget, Q = 0

2.1.2. Single-Input Fuzzy Logic

Fuzzy logic controllers were developed using the Fuzzy Logic Designer toolbox in
MATLAB (MathWorks, Natick, MA, USA). All fuzzy logic controllers had a single output of
infusion flow rate, and a Sugeno-type fuzzy inference system was used due to its improved
computational efficiency and guaranteed continuity over the output surface compared
to a Mamdani-type system [23]. For the SFL controllers, performance error (% of target
pressure, with a value of 1 meaning the input is at the target) was used as the input, and
the conservative/aggressive tuning was applied to the three input membership functions
shown in Figure 1. For example, a system pressure of 32.5 mmHg with a set point of
65 mmHg would result in a performance error input value of 0.5. The membership functions
of the conservative tuning would classify this as a “Low” pressure with a ~0.75 degree of
membership while aggressive tuning would classify this as “VeryLow” with a 1 degree
of membership. All outputs were linearly mapped to three values: Max (0–500 mL/min),
Medium (0–250 mL/min), and Off (0 mL/min). The aggressive and conservative tuning
configurations used the same three rules:

(1) If PerformanceError is VeryLow, then InfusionRate is Max.
(2) If PerformanceError is Low, then InfusionRate is Med.
(3) If PerformanceError is Set, then InfusionRate is Off.
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2.1.3. Dual-Input Fuzzy Logic

For the two DFL controller configurations, performance error was again used as the
first input to the system. The second input was the rate of the performance error change
over the last three samples. This was chosen as the second input to account for cases
where the pressure may be near the set point, resulting in a performance error ~ 1, but the
presence of a large hemorrhage may prevent the controller from reaching the set point. The
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membership functions for these inputs are shown in Figure 2. Rules for the conservative
tuning were as follows:

(1) If PerformanceError is VeryLow or (d/dt)PerformanceError is dropFast, then InfusionRate
is Max.

(2) If PerformanceError is Low and (d/dt)PerformanceError is not riseFast, then InfusionRate
is Med.

(3) If PerformanceError is Set and (d/dt)PerformanceError is not dropSlow, then InfusionRate
is Off.
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The aggressive tuning utilized a modified set of rules:

(1) If PerformanceError is VeryLow or (d/dt)PerformanceError is dropFast, then InfusionRate
is Max.

(2) If PerformanceError is Low, then InfusionRate is Max.
(3) If (d/dt)PerformanceError is dropSlow, then InfusionRate is Max.
(4) If PerformanceError is not Set, then InfusionRate is Med.
(5) If PerformanceError is Set, then InfusionRate is Off.

2.1.4. Proportional–Integral–Derivative Control

We previously developed PID controllers for automated hemorrhagic shock resuscita-
tion using the HATRC platform [24]. Here, the same controllers were compared against
additional controller types. Briefly, pressure to volume infusion relationships were estab-
lished by analyzing hemorrhage data from a previous porcine animal study [25]. Utilizing
the System Identification Toolbox in MATLAB, a plant model based on those pressure–
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volume relationships was obtained to tune an aggressive and conservative PID controller.
As previously stated, conservative tuning was guided by more rigorously avoiding over-
shooting the set point while allowing a larger rise time, while aggressive tuning prioritized
minimizing the rise time rather than avoiding overshoot.

2.2. HATRC Platform and Subject Variability

To physiologically imitate volume responsiveness of swine during various hemor-
rhaging scenarios, a Hardware-in-loop Automated Testbed for Resuscitation Controllers
(HATRC) was utilized [21,24]. The HATRC consisted of a closed loop system, circulating
water via a peristaltic pump at 145 mL/min and monitored through a pressure trans-
ducer (ICU Medical, San Clemente, CA, USA). The venous capacitance for the system
was provided by two PhysioVessels (PVs) designed to hydrostatically emulate the empiric
pressure–volume relationship seen in experimental swine hemorrhagic shock resuscitation
data for both whole blood (PVWB) and crystalloid (PVCrys) infusates [26] These two Phys-
ioVessels were integrated into the system via solenoid valves (Grainger, Lake Forest, IL,
USA) and connected to two additional peristaltic pumps for fluid infusion and outflow. The
PhysioVessels for these experiments were developed to avoid an unnecessarily complex
physiological model but were restrictive to the underlying swine physiological data they
modeled. These PhysioVessels were designed to simulate swine arterial pressure response
to volume resuscitation in the pressure range between profound shock and the target
pressure of DCR using either WB or Crystalloids; simulating anything outside of this range
would require a different, more convoluted model. For subject variability, the PVWB and
PVCrys can be substituted for additional PVs to alter the volume responsiveness of the
system +/− 1 SD of the modeled swine data. The entire system, including infusion rates
as determined by the controllers and dynamically calculated variable outflow rates, was
fully controlled using MATLAB. Serial communication was used for pump control, and a
USB interface (U3, LabJackCorp, Lakewood, CO, USA) was used for solenoid valve control.
A data acquisition system (PowerLab, ADinstruments, Sydney, Australia) was used to
capture “arterial” pressure waveform data at a rate of 40 Hz and MAP was calculated using
a 5 s moving average.

An MAP of 65 mmHg was set as the target for controlled infusion for all scenarios,
as this agreed with the Remote Damage Control Resuscitation (RDCR) guidelines [5].
Outflow from HATRC was a factor of urine and hemorrhage rates. Urine rate was held
constant at 1.4 mL/min unless MAP fell below 50 mmHg, at which point urine output
ceased [27]. Hemorrhage rate was a result of an MAP-dependent hemorrhage factor and a
hemostasis factor. The hemorrhage factor was configured to be zero at 30 mmHg MAP and
linearly increasing with MAP until reaching a maximum hemorrhage rate of 140 mL/min
at an MAP of 65 mmHg. The hemostasis factor slowed the hemorrhage rate over time
except for coagulopathy scenarios, in which case the hemostasis factor was zero. Lastly,
to imitate the rupture of a clot, if MAP ever exceeded the target value by more than 5%,
the hemostasis and hemorrhage factors would be reset to their initial values to increase
the rebleed rate [25]. The hemostasis factor was determined through the analysis of the
normalized swine hemorrhage data sets utilizing linear regression and R-squared values as
described in a previous study [24].

2.3. Hemorrhage Scenarios for Testing

We previously developed 11 hemorrhage scenarios to challenge PCLCs using different
infusates, starting MAP values, and differing hemorrhage rates simulating trauma relevant
injuries [24]. For testing of the eight PCLC types and configurations in this new study, that
initial list of 11 scenarios was down selected to 4. These scenarios focused exclusively on
resuscitation with WB, as this is the preferred infusate for DCR [5] and prior PID controller
evaluation showed similar performance for WB vs. Crystalloid [24]. Scenario 1 was the only
62 min-long scenario, designed to simulate a severe, compressible hemorrhage that has
been successfully controlled prior to beginning resuscitation (e.g., tourniquet application
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on a limb hemorrhage). Therefore, this scenario had a low starting MAP with no active
bleed. The controller was allowed to attempt to reach the target MAP for 30 min. At
the 30 min mark, a severe bleed was triggered to imitate hemorrhage recurrence (e.g.,
slippage of a tourniquet) that was subsequently corrected after 2 min, and the system
was allowed to equilibrate again during the remaining 30 min of the scenario. All other
scenarios were 30 min long. Scenarios 2 and 3 were designed to simulate a non-compressible
hemorrhage, only slowed by internal hemostatic mechanisms. The difference between these
two scenarios was the initial MAP: Scenario 2 began at 65 mmHg to mimic a resuscitation
starting at a higher initial point (compensated shock), and Scenario 3 began at 45 mmHg
simulating profound hypotension. Both of these scenarios simulated an ongoing bleed
with a severe initial hemorrhage rate and included hemostasis in the simulation to slow
the bleeding rate over time. Lastly, Scenario 4 incorporated coagulopathy (caused, for
instance, by hypothermia [28]) for increased complexity, manifested as gradual failure of
internal hemostatic mechanisms after 5 min, allowing continued, exacerbating massive
hemorrhaging. Scenario 4 began at 45 mmHg with an initial bleed that slowed due to
hemostasis factors until the 5 min mark. Hemostasis was then gradually reduced, and the
hemorrhaging rate increased to a maximum rate (140 mL/min) until the end of the scenario.

2.4. Performance Evaluation

A series of metrics was used to assess the performance of each PCLC in handling
the four test scenarios. Some of these were as described by Varvel [29], Mirinejad [30],
Marques [22], and the International Electrotechnical Commission [31], others are modifica-
tions of those same metrics, and another set we introduced in a previous work [21,24]. For
aggregate metrics, unitless or percentage-based metrics were preferred, so normalization
methods are detailed below when they were required. A summary of these metrics is as
follows:

• Median Performance Error (MDPE): the median of the measured errors relative to
target pressure (%, lower is better).

• Median Absolute Performance Error (MDAPE): the median of the absolute value of
the measured errors (%, lower is better).

• Target Overshoot: the maximum pressure measured relative to the target (%, lower
is better).

• Effectiveness: the percent of time that the pressure stayed within ±5 mmHg of the
target pressure (%, higher is better).

• Wobble: the median of the absolute difference for each measured error and MDPE (%,
lower is better)

• End-state Divergence: the slope of the linear fit of measured error vs. time during the
final 10% segment of the test scenario (%/hr). For simplicity, the absolute value of the
End-state Divergence was used, and the units were removed by multiplying the total
length (in hours) of each scenario (%, lower is better).

• Percent Rise Time: the time required for measured pressure to reach 90% of the target
value (min). This metric was made proportional to the total scenario time, in minutes
(%, lower is better).

• Volume Efficiency: the ratio of the total input volume to the total output volume
during the test scenario (no units, lower is better)

• Areas Above and Below Target: in a plot of pressure vs. time, these are the sum of the
areas between the measured pressure and the target pressure lines, normalized by the
target pressure and kept separated as those that lie above and below the target line,
respectively (min). These metrics were further normalized to the total scenario time
to make them proportional to the highest possible area above or below the target (%,
lower is better).

• Mean Infusion Rate: the mean rate of infusion across the scenario window relative to
the maximum (500 mL/min) possible infusion rate (%, lower is better)
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• Infusion Rate Variability: the standard deviations of infusion rates calculated in 2 min-
long segments, first averaged and then normalized using the mean infusion rate (%,
lower is better)

In addition to these performance metrics, we introduce here an additional one termed
‘MDAPE at Steady State’ (MDAPESS). This is simply the MDAPE as described above,
calculated after the system has reached steady state. This modified measurement attempts
to describe the longer-term accuracy of the controller by looking past the scenarios’ initial
conditions after the system has stabilized.

2.5. Aggregate Metric Methodology

The described testing method created an abundance of data and performance met-
rics that can be overwhelming, impeding conclusion formation and decision making for
controller design. For the purpose of making the results more accessible and concise,
performance metrics representing general attributes of the controllers were collated into
three groups, titled:

• Intensity—how good the controller is at rapidly and effectively treating hypotension.
This group included effectiveness, area-below-target, and percent rise time as shown
in Equation (1).

Intensity =
PercentRiseTime× AreaBelowTarget

E f f ectiveness
(1)

• Stability—how the controller performs in maintaining a stable state and minimizing
overshoot. This group included MDAPESS, wobble, target overshoot, area-above-
target, and absolute value of end-state divergence as shown in Equation (2). Prelimi-
nary analysis revealed that this metric was not sufficiently penalized for not reaching
target pressure, so MDAPESS was squared in the aggregate calculation to address this,
as it is the only individual metric in the aggregate that reflects this impact.

Stability = Wobble× |End-stateDivergence| × (AreaAboveTarget + TgtOvershoot)× (MDAPESS)
2 (2)

• Resource Efficiency—the controller’s ability to minimize consumption of fluid and
hardware wear-and-tear. This group included infusion rate variability, mean infusion
rate, and volume efficiency as shown in Equation (3).

Resource E f f iciency = MeanIn f usionRate× In f usionRateVariability×VolumeE f f iciency (3)

For each metric, a low score means better controller performance. Aggregate scores
were only calculated for average performances across the four scenarios. To normalize the
weights of each underlying metric, each performance metric was normalized to its median
across the 8 PCLC types and configurations prior to aggregate metric calculation. Each
controller received a score in all three aggregate metrics. An average score was obtained by
calculating an average of the intensity, stability, and resource efficiency aggregate metrics,
where each aggregate was weighed evenly. A significant limitation in this approach is the
lack of clinical knowledge to determine the physiologic and clinical implications of these
metrics, namely “what is the optimal resuscitation profile?” Further clinical and pre-clinical
research is required to answer this question, which is key to the design and evaluation of
any PCLC fluid resuscitation system.

Lastly, we investigated correlations between the aggregate metrics—intensity, stability,
and resource efficiency—as well as the average aggregate score vs. each individual perfor-
mance metric. This was performed using Prism 9.3.1 (GraphPad, San Diego, CA, USA) by
a performing linear regression between each pair of aggregate metric and corresponding
individual metric for each controller type and configuration (n = 8). Coefficients of determi-
nations (R2) were compiled in a heat map and a correlation matrix was used to evaluate
which individual metric correlated to aggregate scores.
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3. Results
3.1. Scenario 1 Controller Performance

We first evaluated each controller using a scenario where the MAP was 45 mmHg and
no active bleed was present, such as a compressible hemorrhage that had been controlled.
After 30 min, a severe re-bleed occurred for 2 min followed by no ongoing hemorrhage—
mimicking re-achievement of hemorrhage control. Representative results for the aggres-
sive and conservative PID controller are shown for MAP and inflow/outflow vs. time
(Figure 3A,B). Similar results for the other controllers can be found in Supplementary
Figure S1. Without an active bleed, all controllers were able to reach the target effectively,
but the aggressive configurations were typically overshooting the target. Looking at the
percent rise time, the aggressive configurations of all the controllers outperformed their
conservative configuration as anticipated (Figure 3C). Comparing across controller types,
the aggressive DFL and DT reduced percent rise time the most (aggressive DT 1.81% vs.
SFL 4.07% vs. DFL 2.54% vs. PID 3.38%). The conservative SFL had the slowest rise time
of all controller types tested at 7.87%. To quantify the overshoot effect, the area above the
target metric highlighted the larger results for the aggressive configurations compared
to the conservative (Figure 3D). All controllers overshot the target except the SFL con-
servative. Scenario 1 results for all performance metrics for each controller are shown in
Supplementary Table S1.
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Figure 3. Controller performance for Scenario 1. Representative (A) MAP and (B) inflow/outflow vs.
time for a single run of the aggressive and conservative PID controllers through Scenario 1. Outflow
rates are only shown for one controller run. In Scenario 1, MAP begins at 45 mmHg with no active
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hemorrhage until at 30 min when a severe hemorrhage occurs for 2 min, followed by a return to no
hemorrhage. Performance results for each controller type (DT = decision table; SFL = single-input
fuzzy logic; DFL = dual-input fuzzy logic; PID = proportional–integral–derivative controller) and
configuration (Agg = aggressive; Con = conservative) for the (C) percent rise time (lower is better)
and (D) area above the target pressure metric (lower is better). Average results are shown for three
subject variability runs for each. Error bars denote the standard deviation.

3.2. Scenario 2 Controller Performance

Next, Scenario 2 involved an active hemorrhage that reduced its rate with time and an
initial MAP of 65 mmHg—simulating a re-bleed event after initial stabilization. MAP and
inflow/outflow vs. time plots are shown for the aggressive and conservative configurations
of the SFL controller (Figure 4A,B). Plots for the remaining controller types and configura-
tions are provided in Supplementary Figure S2. With an active hemorrhage, the scenario
resulted in more dynamic pump rates, with infusion rate variability being as high as 167%
for the aggressive DT (Figure 4C). Interestingly, the conservative DT also had higher infu-
sion rate variability than other controller types, indicating that the DT logic had inherently
high scores for this metric, within this scenario. Each controller responded quickly to
prevent large drops in MAP for this scenario, but the aggressive configuration continued
to do so more quickly (Supplementary Figure S2). As a result, the area below the target
pressure was minor for all controllers, with both DT configurations and DFL aggressive
having the smallest metric values (Figure 4D). The Scenario 2 results for all performance
metrics for each controller type and configuration are shown in Supplementary Table S2.

3.3. Scenario 3 Controller Performance

Scenario 3 was similar to the previous scenario except the starting MAP was set to
45 mmHg, simulating acute resuscitation with an active, non-compressible hemorrhage.
Representative results are shown for aggressive and conservative configured DT controller
types, for MAP and inflow/outflow rate vs. time (Figure 5A,B). Plots for the other controller
types and configurations can be found for Scenario 3 in Supplementary Figure S3. This
scenario presented wider discrepancies between controller configurations than the first
two scenarios as a result of the initial distance from the target MAP and active hemorrhage
slowing the recovery rate. This was best reflected by the area below the target pressure
metric where both DT configurations, DFL aggressive, and PID aggressive outperformed
the other controller configurations and types (Figure 5C). Another metric to highlight for
this scenario was MDAPE at steady state which measured the error the controllers settled
at (Figure 5D). The SFL conservative controller had the highest error at 9.5%, indicating
that it was far from the target pressure at steady state. The SFL conservative controller had
an average effectiveness of less than 8% for the 30 min scenario window, while all other
controllers reached ±5 mmHg of the target for more than 75% of the scenario window
(Supplementary Table S3). Scenario 3 results for all performance metrics for each controller
type and configuration are shown in Supplementary Table S3.
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Figure 4. Controller performance for Scenario 2. Representative (A) MAP and (B) inflow/outflow
vs. time for a single run of the aggressive and conservative single-input fuzzy logic controller runs
through Scenario 2. Outflow rates are only shown for one controller run. In Scenario 2, MAP begins
at a stable 65 mmHg and presents a severe hemorrhage that clots over the 30 min test scenario.
Performance results for each controller type (DT = decision table; SFL = single-input fuzzy logic;
DFL = dual-input fuzzy logic; PID = proportional–integral–derivative controller) and configuration
(Agg = aggressive; Con = conservative) for the (C) percent infusion rate variability (lower is better)
and (D) area below the target pressure metric (lower is better). Average results are shown for three
subject variability runs for each. Error bars denote the standard deviation.
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Figure 5. Controller performance for Scenario 3. Representative (A) MAP and (B) inflow/outflow vs.
time for a single run of the aggressive and conservative decision table controllers through Scenario 3.
Outflow rates are only shown for one controller run. In Scenario 3, MAP begins at 45 mmHg with
an active hemorrhage clotting over the 30 min test run. Performance results for each controller type
(DT = decision table; SFL = single-input fuzzy logic; DFL = dual-input fuzzy logic; PID = proportional–
integral–derivative controller) and configuration (Agg = aggressive; Con = conservative) for the
(C) area below target pressure (lower is better) and (D) median absolute performance error (MDAPE)
at steady state (lower is better). Average results are shown for three subject variability runs for each.
Error bars denote the standard deviation.

3.4. Scenario 4 Controller Performance

The final scenario mimicked Scenario 3 except that active clotting ceased after 5 min,
allowing coagulopathy to set in, which gradually increased the hemorrhage rate to the
maximum, severe level and held at that rate for the remainder of the scenario. This was the
most challenging to resuscitate against as there was a severe hemorrhage present the entire
30 min. This exaggerated scenario, although unlikely to be encountered in a clinical setting,
was intentionally chosen as more of a stress-test to evaluate the limits of the controllers.
Representative results are shown for both DFL controller configurations for MAP and
inflow/outflow vs. time (Figure 6A,B). Results for all other controller configurations and
types can be found in Supplementary Figure S4. Most controllers reached steady state at
different distances from the target MAP as can be seen in the DFL controllers MAP vs. time
plots. This was reflected by the MDAPE at steady state with the aggressive configurations
of the DT, DFL, and PID controllers outperforming the others (Figure 6C). This result was
further shown with the effectiveness metric, as both SFLs, DFL conservative, and PID
conservative had values below 20% while the rest of the controllers remained above 70%
(Figure 6D). Scenario 4 results for all performance metrics for each controller type and
configuration are shown in Supplementary Table S4.
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Figure 6. Controller performance for Scenario 4. Representative (A) MAP and (B) inflow/outflow
vs. time for a single run of the aggressive and conservative dual-input fuzzy logic controller run
through Scenario 4. Outflow rates are only shown for one controller run. In Scenario 4, MAP be-
gins at 45 mmHg with an active hemorrhage that initially clots until the 5 min timepoint where
clotting mechanisms were halted, and hemorrhage rates increased. Performance results for each
controller type (DT = decision table; SFL = single-input fuzzy logic; DFL = dual-input fuzzy logic;
PID = proportional–integral–derivative controller) and configuration (Agg = aggressive; Con = con-
servative) for the (C) median absolute performance error (MDAPE) at steady state (lower is better)
and (D) effectiveness (higher is better). Average results are shown for three subject variability runs
for each. Error bars denote the standard deviation.

3.5. Overall Controller Performance
3.5.1. Performance Metrics

We evaluated overall, average controller performance across all scenarios. Average
results for all performance metrics for each controller type and configuration are shown in
Supplementary Table S5. For percent rise time, both DTs and DFL aggressive performed
the best, with the SFL conservative having the worst performance (Figure 7A). Infusion
rate variability highlighted how drastically flow rates were modified through the scenario
and the reverse data trend was mostly observed, with both DTs altering pump settings
most substantially, followed by the PID aggressive (Figure 7B). However, the data trend
was not reversed for the DFL aggressive which had a low infusion rate variability. End-
state divergence highlighted how stable the controller was at each scenario’s end. The
DFL aggressive and both PIDs had the highest performance for this metric (Figure 7C).
Lastly, effectiveness highlighted how much of each scenario’s duration the controller was
within 5 mmHg of the target. As the SFL conservative consistently struggled to reach the
target through the later scenarios, it had the worst performance with respect to this metric
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(Figure 7D). The aggressive configurations in general retained higher overall effectiveness
as they more rapidly reached the target MAP.
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Figure 7. Average performance metrics results. Mean performance results for each controller type
(DT = decision table; SFL = single-input fuzzy logic; DFL = dual-input fuzzy logic; PID = proportional–
integral–derivative controller) and configuration (Agg = aggressive; Con = conservative) for (A) per-
cent rise time (lower is better), (B) infusion rate variability (lower is better), (C) end-state divergence
(lower is better), and (D) effectiveness (higher is better). Average results are shown for three subject
variability runs. Error bars denote the standard deviation.

3.5.2. Aggregate Metrics Results

As is evident when examining the individual performance metrics, performance for
each controller varied depending on which metric was selected for analysis. In order to
make the controller comparison more accessible and support decision making, we created
three aggregate metrics composed of a number of individual metrics that focused on certain
controller performance features. Of note, a low score on each metric is preferred and
indicates that the controller excelled for that specific measurement. Descriptions of each
aggregate metric are detailed in Section 2.5. The results for the intensity aggregate are
shown in Figure 8A. The best performing controllers for this aggregate were both DTs, DFL
aggressive, and PID aggressive; all had values below one. Results for the stability aggregate
are shown in Figure 8B. The best performers for this aggregate were the DT aggressive and
PID conservative. Results for the resource efficiency aggregate are shown in Figure 8C. The
best performers for this aggregate were both SFLs and DFL conservative.
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Figure 8. Aggregate metrics for each controller. Results for three developed aggregate metrics are
shown for each controller type (DT = decision table; SFL = single-input fuzzy logic; DFL = dual-input
fuzzy logic; PID = proportional–integral–derivative controller) and configuration (Agg = aggressive;
Con = conservative): (A) intensity (note the broken x-axis), (B) stability, and (C) resource efficiency
(lower is better for each). Each metric component is detailed in Section 2.5. Average results are shown
for three subject variability runs. Error bars denote the standard deviation.

Across all aggregate metrics, the DFL aggressive performed most consistently (Figure 9A)
and had the lowest average score across all three aggregates (Figure 9B). Lastly, each aggregate
metric and the overall average scores were evaluated for correlation to individual metrics.
This was completed to identify if a single performance metric was sufficient for predicting the
aggregate metric score, superseding the need for new aggregate scoring metrics (Figure 9C).
The intensity score correlated strongly to a range of individual metrics including some that
were not even included in the aggregate calculation (MDAPE at steady state). Three metrics
had R2 correlations to the intensity greater than 0.80: MDAPE at steady state, effectiveness,
and percent rise time. The stability metric had no strong correlation to any individual metric.
The strongest correlation was to wobble at a 0.58 R2 value. Resource efficiency correlated
strongly to infusion rate variability only (R2 = 0.997). The average of the aggregates had R2

values above 0.80 for three metrics: MDAPE at steady state, effectiveness, and percent rise
time, the same metrics as the intensity aggregate.
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Figure 9. Average metric scores and correlation. (A) Stacked bar graph for all three aggregate metrics
to highlight the various scores for each controller type (DT = decision table; SFL = single-input
fuzzy logic; DFL = dual-input fuzzy logic; PID = proportional–integral–derivative controller) and
configuration (Agg = aggressive; Con = conservative) (lower is better). (B) Average metric of intensity,
stability, and resource efficiency metrics for each controller type and configuration (lower is better).
Note the broken x-axis for each plot. (C) Correlation matrix for each individual performance metric vs.
intensity, stability, and resource efficiency metrics. In addition, correlations were performed against
the average aggregate metric score. Heat map colors reflect R2 values for each linear fit correlation,
with darker grey indicating a stronger correlation.

4. Discussion

Resuscitation of a patient in hemorrhagic shock is a very demanding task, requiring
constant attention and patient monitoring. This level of concentration might not be readily
available in resource austere conditions, such as in mass casualty incidents or in forward
military positions. If properly constructed, medical devices such as PCLCs for managing
hypotension, hold the potential to greatly improve resuscitation outcomes. While multiple
PCLCs have been investigated, how to assess controller performance and thus choose
optimum PCLCs for advanced development remains unclear.

In this work, we developed and configured several controller types for evaluation in
our hardware-in-loop testing platform for simulated hemorrhagic shock scenarios. Assess-
ment of these controllers included traditional controller-type performance metrics, as well
as newly developed indicators focused on how well the simulated patient was resuscitated.
The combination of this physical testbed, simulated trauma scenarios, and key performance



Bioengineering 2022, 9, 420 16 of 18

indicators provides a streamlined platform for comparison of a large number of controller
types and tunings for identification of systems for further animal and clinical testing.

Evaluating controllers using 13 single performance metrics identifies individual con-
trollers that perform both well and sub-optimally in each scenario. This discrete analysis
limits an overall decision about optimal controller choice, as some controllers perform well
in one scenario and badly in others. This pattern of irresolution prompted the development
of aggregate performance metrics. These new metrics combine subsets of the originals to al-
low for examination of multiple dimensions of the controller performance. These aggregate
metrics can therefore be centered around how well the controller resuscitates the simulated
patient (intensity), how well the controller monitors and maintains the simulated patient at
setpoint (stability), and how well the medical device performs (resource efficiency).

By allowing for a higher-level, more comprehensive assessment of controller perfor-
mance, these aggregate metrics permitted us to identify the aggressive configuration of
the DFL controller for advanced development. This controller type and configuration
performed well in all three aggregate metrics, when averaged across all scenarios.

The different scenarios presented here were designed to represent diverse real-world
clinical circumstances that a PCLC system might encounter. As might be expected, the
PCLC systems demonstrated variable performance across different scenarios. These dif-
ferences in PCLC performance suggests that specific PCLCs are better suited to specific
clinical circumstances compared to others. However, the optimal resuscitation profile for
these different hemorrhage scenarios is not known. Further, the underlying reasons for the
differences in performance are not immediately clear from this data either. Future progress
in this line of research needs to address what the optimal resuscitation profile is. Answers
to this question along with developing a deeper understanding of controller performance
characteristics will allow for a better alignment of PCLC type with patient conditions such
that the optimal controller is engaged for the patient’s present condition.

The results presented here should be interpreted in view of certain limitations. First,
while our HATRC benchtop circulatory system is modeled on empirical physiological data,
like any in vitro or in silico solution, it is unable to replicate exactly the physiology of a
living organism—planned future work will address this limitation by deploying selected
PCLCs in an in vivo model of hemorrhage and resuscitation. Second, our aggregate metrics
were formulated based on an application-oriented, rather than a mathematical, approach;
alternative aggregate metrics certainly exist and may come to different conclusions. While
doing so is beyond the scope of the present effort, future work may focus on developing
aggregate performance metrics based on mathematical analysis of controller performance.
Third, controllers were tuned as aggressive or conservative against similar goals, but this
process is subjective and there are an infinite number of controller tunings that can be
evaluated. The downselected DFL controller will be further tuned using HATRC prior
to in vivo deployment. Finally, while this paper presents the functional characteristics of
multiple PCLCs across different clinically relevant hemorrhage scenarios, it was beyond
the scope of this effort to directly compare the performance of the PCLC against the
performance of a human operator; accordingly, we cannot make any inferences as to the
relative effectiveness of the PCLC systems compared to the current standard of care. Future
iterations of this project may involve direct comparison of human operators against a PCLC
system in clinically and militarily relevant simulated patient management scenarios.

5. Conclusions

From these data, we conclude that it is possible to compare PCLC performance across
multiple simulated hemorrhage conditions. However, results are hard to track across the
wide range of performance metrics. Instead, we identified aggregated metrics to simplify
data interpretation and identified an aggressively configured DFL controller as the best
combination of intensity, stability, and resource efficiency, and to therefore recommend it
for future development.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering9090420/s1, Supplementary Figures S1–S4 and
Tables S1–S5 for this work are included in supporting documentation. Each figure provides all
controllers’ MAP vs. time for each of four scenarios. Each table compiles the individual performance
metrics for all controllers for each scenario as well as averaged across all four scenarios.
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