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Abstract: Phenolic compounds, while widely recognized for their biological potential, when added
into food matrixes may interact with food constituents. One example of this is the interaction between
phenolic compounds and proteins, that may result in the formation of complexes and alter the
bioavailability of both phenolic compounds and the nutrient availability. Moreover, when adding
compounds to improve the functionality of a food matrix, these interactions may compromise the
perceived benefits of the additions. Nanoencapsulation has been considered one of the means to
circumvent these interactions, as they may function as a physical barrier between the phenolic
compounds and the matrix (preventing not only the loss of bioactivity, but eventual sensorial
alterations of the foods), protect phenolic compounds through the gastrointestinal tract, and may
enhance phenolic absorption through cellular endocytosis. However, despite these advantages the
food industry is still limited in its nanotechnological solutions, as special care must be taken to use
food-grade encapsulants which will not pose any deleterious effect towards human health. Therefore,
this review aims to provide an encompassing view of the existing advantages and limitations of
nanotechnology, associated with the inclusion of phenolic compounds in dairy beverages.
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1. Introduction

Functional foods have become a staple of current dietary habits, with consumers’ demands
for healthier and more nutritional foods rising over the years. However, the current fast paced
lifestyle, has forced the food industry to develop new technological approaches capable of fulfilling
consumers’ nutrition and health demands using “easy-to-eat” and “on the go” foodstuffs [1,2].
Given their portability, nutritional profile and widespread consumer acceptance, dairy beverages
present themselves as an interesting base to be used to develop new functional foods. The incorporation
of ingredients with potential health benefits (e.g., antioxidants), may be a possible way to improve the
functional value of a product. However, the incorporation of bioactive ingredients into a food matrix
poses some interesting technological challenges, an example of this is relatively straightforward: the
addition of a new ingredient is likely to result in the alteration of the organoleptic characteristics of
the final foodstuff. In fact polyphenols, widely reported as having interesting health promoting
potential, have also been described as possessing some intrinsic color, as well as a bitter and
astringent taste, that can affect the overall flavor and aspect of food products [3–5]. Nanotechnology,
particularly nanoencapsulation, presents an interesting solution that may circumvent some of the
sensory modifications caused by the phenolic supplementation of a given food matrix. Moreover,
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nanoencapsulation also brings other potential benefits. As phenolic compounds can interact with some
food matrix components, this interaction can be attenuated through their nanoencapsulation. A well
described example of this are phenolic–protein interactions that can result not only in a potential loss
of functionality of both polyphenols and proteins, but also in a reduction of their bioavailability, with a
subsequent reduction of the nutritional value of the foodstuff [6]. From a technological standpoint,
the incorporation of phenolic compounds into foods may also present some advantages that derive
from their antioxidant and antimicrobial activities (e.g., longer shelf-life and stronger resistance to
contaminations), potential benefits that may also be compromised by the interaction of phenolics with
food matrix components, and potentially circumvented by nanoencapsulation [7–9]. Considering the
above arguments the present review aims to provide some insights into the methodologies that can be
used to nanoencapsulate phenolic compounds, while contextualizing their potential application in
dairy beverages.

2. Materials and Methods

The literature review that served as a base for the current review was compiled using Google
Scholar and ScienceDirect databases, and the search was conducted using terms such as: bioactive
properties of phenolic compounds, bioavailability of phenolic compounds, nanoencapsulation
techniques, nanoencapsulation of phenolic compounds, phenolic–protein interaction, phenolic
compounds dairy matrix, safety concerns nanoparticles, and safety concerns phenolic compounds.

3. Results and Discussion

3.1. Phenolic Compounds and Health

Diet has long been associated with positive or negative impacts upon health and wellbeing,
with foodstuffs of plant origin being strongly associated with a healthier status. Most importantly,
the potential benefits of their consumption have been frequently associated with the phenolic
compounds present, which have long been recognized as exerting a positive influence upon human
health. Polyphenols have long been studied as one of the most likely class of compounds, present in
whole plant foods, which can affect physiological processes that may grant some protection against
chronic diet-associated diseases. There are numerous researches which have reported the potential
health benefits of these compounds, including several epidemiological studies, thus giving strength to
this connection [10–15].

One of the properties most commonly associated with phenolics is antioxidant activity, as the
position of the hydroxyl group bound to the aromatic ring are efficient electron donners. Moreover,
phenol groups can also accept electrons resulting in the formation of relatively stable phenoxyl radicals.
Consequently, this allows for the disruption of chain oxidation reactions that can be detrimental
in biological systems. When in foods, they can help limit the oxidative damage of the matrix
itself (allowing for longer shelf life), or after ingestion, be absorbed by the body and act as local
antioxidants. For instance, anthocyanins (water soluble flavonoid pigments that are abundant in
red and purple fruits) have been described as capable of protecting liver and red blood cells against
in vitro and in vivo oxidative damage, and several phenolic rich extracts have been associated with
the reduction of plasmatic antioxidant levels and oxidation stress markers. There are evidences
that the beneficial effects attributed to dietary polyphenols depend on their biotransformation by
the gut microbiota [16–23]. Phenolic compounds have also been associated to the prevention of
neurodegenerative diseases (e.g., Parkinson and Alzheimer), as well as with the amelioration and/or
prevention of other neurological pathologies such as memory loss, posttraumatic stress disorder
(PTSD), and ischemic brain damage. Furthermore, several epidemiological studies have also linked
phenolic compound’s ingestion to a reduction of the risk for developing diabetes, cancer, cardiovascular,
and inflammatory diseases [15,19,24–30].
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It has been described that the use of phenolic compounds as ingredients can enhance the
technological and nutritional properties of food, thus increasing the functionality of food products.
Furthermore, non-extractable polyphenols, which are not released from the food matrix and therefore
manage to reach the colon nearly intact, have been shown to exhibit health promoting properties as
well, namely in relation to gastrointestinal health. The gut microbiota is responsible for converting
these compounds in small size phenolics, which are better absorbed and persist in the blood for
more than 48 h, showcasing antioxidant and anti-inflammatory activity. Recent studies have shown
that the intake of polyphenol extracts helps to modulate the human gut microbiota, increasing the
abundance of Bifidobacteria and Lactobacilli and diminishing the presence of Clostridium histolyticum,
which considering that the latter has been associated with inflammatory bowel disease, contributes
to a healthier profile of the gut. Moreover, different studies have shown that phenolics can alter the
Bacteroides/Firmicutes balance, with Firmicutes being more predominant in people who suffer from
obesity and Bacteroides being reported as significantly contributing to the reduction of blood pressure
and high-density lipoprotein cholesterol [21,31–37].

3.2. Phenolic Compounds and Food Matrixes

The supplementation of a foodstuff with polyphenols presents an interesting means through
which functionality may be added into a food product. However, as mentioned previously,
the incorporation of these compounds into complex food matrixes may result in a series of interactions
with several different constituents. When considering complex protein rich matrixes like dairy
products and dairy beverages, this problem gains particular relevance given the high affinity between
polyphenols and proteins, resulting in interactions that may alter not only the sensory profile of the
dairy products, but also the (phyto)nutrient bioavailability [38–41]. An example of these effects, results
from the interaction of caseins and whey proteins with vanillin, which has been reported to result in a
reduction of vanillin’s flavor [41].

In general, protein–phenolic interactions are one of the best characterized interactions in
literature, with both covalent and non-covalent interactions having been the subject of several revision
papers [38,42–45]. Interactions between flavonoids and proteins are frequently non-specific (except
when concerning enzymatic interactions) and can therefore be altered by the food matrixes composition
and the presence of other, non-protein compounds. These alterations lead to conformational changes
and the modification of the proteins’ structure [46–48]. An example of these alterations has been
reported by Aberkane, et al. [49] for complex systems such as β-lactoglobulin-gum and acacia-quercetin.
These authors reported that β-lactoglobulin lost some β-sheets as the result of an increase in exposure
of the protein’s hydrophobic pockets. Overall, phenolic–protein interactions frequently result in the
formation of complexes that result in aggregates, and eventually the precipitation of both proteins
and flavonoids [48]. London forces and hydrogen bonds have also been reported to play a role in
phenolic–protein interactions, in fact, Papadopoulou, et al. [50] reported that quercetin and rutin
bind to bovin serum albumin more strongly than (−)-epicatechin or (+)-catechin (regardless of the
hydrophilic rutinose group), as the non-polar groups of quercetin and rutin are easier to polarize than
those of catechin and epicatechin. It is likely that London forces played an important role in the results
reported by these authors.

Phenolics and Dairy Products

Dairy beverages have been widely described as being associated with bone health, as well as
a reduction in the risk of suffering stroke, metabolic syndrome, and some cancers. Moreover, their
protein-rich composition makes them an interesting, nutritious alternative to be used as a part of a
healthy diet throughout the day [51]. In the past, several studies indicated that the incorporation of
polyphenols into dairy matrices was not feasible given the occurrence of interactions between dairy
proteins [52,53]. In vivo tests showed that the ingestion of milk fortified with epicathechin led to
differences in metabolite excretion profiles; furthermore, the ingestion of blueberries in association
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with milk impairs the in vivo antioxidant properties of blueberries and reduces the absorption of caffeic
and ferrulic acids [54,55]. Arts, Haenen, Wilms, Beetstra, Heijnen, Voss, and Bast [53] have shown
that the antioxidant activity of several components of green and black teas, such as epigallocathein
and gallic acid with α- and β-casein or albumin was not cumulative, but it appeared masked by an
interaction and depended on the protein or flavonoid studied. Thus, the addition of milk to black tea,
may result in the formation of protein–polyphenols complexes, which decrease the bioavailability of
polyphenols [52,53]. Moreover, these interactions of cathechins were suggested to occur with proline
rich proteins (e.g., caseins), and also with milk fat [56].

In chemical terms, plant phenolics can interact covalently or non-covalently with proteins;
both ways can lead to the precipitation of proteins via either multisite interactions (several phenolics
bound to one protein molecule), or multidentate interactions (one phenolic bond to several protein
sites or protein molecules) [57]. Non-covalent interactions between phenolics and proteins have been
suggested to be created by hydrophobic and van der Walls association, which may be subsequently
stabilized by hydrogen bonding. These interactions are reversible and alter the solution properties
of proteins, while covalent interactions permanently modify the structure of a protein. Furthermore,
reversible associations may or may not result in protein precipitation, depending on factors such as
ionic composition of solution and pH. Protein precipitation that occurs at low ratios of protein to
polyphenolic, which may be reversed as the ratio increases [40]. Moreover, from a dairy perspective,
tannins, procyanidins, phenolic acids, and flavonoids have been reported as resulting in the
modification of dairy globular proteins resulting in the alteration of some of their physical properties,
and even their precipitation [39,58–61]. As discussed previously, protein–phenol interactions are likely
to modify bioavailability of both proteins and phenols [62]. As the bioavailability and nutraceutical
effects of many phenolic compounds are modified in the presence of proteins, it is of fundamental
importance to understand the nature of the protein–phenolic interaction in dairy products to obtain
the maximum benefit of these phenolic compounds [63].

Hence, a recent work of our research center studied the interactions of rosmarinic acid with
dairy proteins [64,65]. Rosmarinic acid is a natural polyphenol carboxylic acid, a tannin, and an ester
of caffeic acid with 3,4-dihydroxyphenyllactic acid and appears in higher amounts in families such
as Boraginaceae and Lamiaceae, but in the latter, it is restricted to a subfamily, the Nepetoideae. It has
been identified as one of the active components of several medicinal plants (e.g., Salvia officinalis),
with several potential biological properties associated therewith, such as antioxidant, anti-mutagenic,
anti-bacterial, and anti-viral capabilities. Their inclusion in any food, such as dairy matrices can
contribute to an increase of the nutritional and health benefits value. Hence, the research performed,
was made to study the interactions between rosmarinic acid (RA) and bovine milk whey proteins
(i.e., α-Lactoalbumin, β-Lactoglobulin and Lactoferrin) and caseins (α-s1-casein, β-casein and κ-casein).
Radical quenching assay (e.g., ABTS), optical density, liquid chromatography (e.g., HPLC or FPLC),
dynamic light scattering and zeta-potential, Fourier transform infrared spectroscopy, and differential
scanning calorimetry were used for the screening of the interactions at 0, 3, and 24 h of storage at
4 ◦C. Interactions were assessed both at neutral pH of the complexes in water and acidic pH 3 and
4.5. Results showed the occurrence of non-covalent interactions between RA and whey proteins
and caseins, such as hydrophobic, hydrogen bonding, and dipole–dipole type. Radical quenching
activity of RA decreased in the presence of milk proteins, yet at the initial time especially in the case
of α-Lactoalbumin, α-s1-casein and β-casein, meaning that amount of free polyphenol diminished.
Complex dimension was different depending on pH, and on primary and secondary structure of
proteins. Interactions showed to be favored at the lowest pH, and reversible in all the cases; nonetheless,
complexes RA–proteins were more stable than proteins alone.
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3.3. Nanoencapsulation

While several reasons can be found to justify the importance of encapsulating polyphenolic
compounds, they can be split into two major groups, one that is due to technological aspects of their
incorporation into a matrix and another that is linked to their biological properties.

As discussed previously, the inclusion of polyphenols into a matrix may pose some difficulties,
not only because of their interactions with the food matrix, but also because the incorporation itself may
not be a straight forward process or lead to organoleptic changes. An example of this is the difficulty
in incorporating compounds with a relatively low water solubility, like essential oils or resveratrol;
a limitation that proved to be effectively overcome through their incorporation into cyclodextrin
based nanoparticles [66–69]. From an organoleptic standpoint, the encapsulation of polyphenols
may contribute to improve the characteristics of the product (for essential oils the nanoencapsulation
process results in a reduction of their volatility which will prolong their aromatic properties), but may
also mask any negative impact the compounds themselves may have (e.g., hide the astringency of the
compounds) [66,70,71].

On a different perspective, the eventual biological potential of polyphenolic compounds is
intrinsically linked with their bioavailability. This means that it is dependent on their stability both
in the food products and through the gastrointestinal tract, as well as their absorption through the
gut epithelium [72]. Nanoparticles have been known to aid in all these aspects. They act as barriers
protecting the encapsulated polyphenols from the environment of the different digestive compartments
and may enhance absorption by endocytosis or through specific targeting [73–77]. Resveratrol,
for example, is a polyphenolic compound that has a reduced bioavailability, not only due to its
sensitivity to the digestive process, but also because of its low cellular absorption. Moreover, to benefit
from resveratrol’s potential benefits, an average person must absorb around 50 mg, so the final
plasmatic concentration is ca. 10 mg per liter of blood [78–80]. Considering this, several authors have
reported that the nanoencapsulation of resveratrol is an important factor to not only to improve cell
uptake, but also because it facilitates its absorption and protects it from degradation during its passage
through the gastrointestinal tract [67,80–84].

3.3.1. Nanoencapsulation Techniques

Several of the physicochemical properties of a nanoparticle (such as size, surface area, shape,
solubility, polydispersity, or encapsulation efficiency), will vary with the encapsulation technique
employed to produce them. A top-down approach, e.g., emulsification (with or without solvent
evaporation) or drying, implies the use of precise tools to control the size reduction and shape of the
nanomaterial, or a bottom-up approach where some self-assembly/organization of the particles occurs,
e.g., supercritical fluid technique, nanoprecipitation, inclusion complexation, and coacervation. All of
these techniques have been reported as being capable of encapsulating phenolic compounds [85–92].

Emulsion is a technique used to encapsulate both lipophilic (oil in water emulsion) and
the more common hydrophilic (water in oil emulsion) polyphenols, which results in a colloidal
mixture of nanoparticles (i.e., nanoemulsion) that is relatively stable; and has a low viscosity and
appears transparent to the naked eye. The nanoemulsions are typically produced by mixing two
immiscible liquids, which are then dispersed to yield nanoparticles populations with relatively low size
distributions [93–95]. Kunieda et al. [96] reported that a methodology that supplies the energy in the
shortest time and most constant manner, yields the smallest nanoparticles and smaller size intervals,
though the dispersion itself may be carried out using an array of different means, like microfluidisation
(high pressure; up to 20,000 psi) or ultrasonication [95,97]. A variation of this technique pairs it
with solvent evaporation (emulsification-solvent evaporation). This implies the emulsification of a
polymer (e.g., ethyl cellulose or polylactic acid) into the aqueous phase, followed by induction of the
polymer’s precipitation through the evaporation of its solvent. The size of the resulting particles can be
adjusted through the control of the stir rate, temperature, type/amount of dispersing agents, and the
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overall viscosity of the phases with Zambaux et al. [98] reporting that, to attain small particles sizes,
ultrasonication or high stirring velocities may be required [95,98,99].

Supercritical fluids, liquids or gases at the vapor–liquid critical point, exhibit properties that
are intermediate between liquids and gases (e.g., low viscosity, low density, or high solvating
power), which in turn, can be used to nanoencapsulate compounds using an array of different
techniques [78,100]. Supercritical antisolvent precipitation is one of the most commonly employed
methods. It is based on the dissolution of a liquid solution (containing the polyphenolic) in a
supercritical fluid (miscible with the liquid solution, but unable to dissolve the polyphenolic),
which results in the expansion of the liquid phase and the precipitation of nanoparticles [101,102].

The nanoprecipitation method, also known as solvent displacement, is based on the interfacial
deposition of a polymer as a result of the displacement of a semi-polar solvent, miscible in water, from
a lipophilic solution to a hydrophilic one [103]. This method allows for the relatively fast production
of nanoparticles, with a size ranging from 50 to 300 nm, while requiring a small amount of raw
materials and energy [104–107]. However, the traditional approach is not very effective on water
soluble compounds like polyphenols [108]. To circumvent this limitation, a two-step nanoprecipitation
method has been developed, where the first step implies the precipitation of the active ingredient by
the solvent, which generates nanoparticles that are then dissolved by another solvent, and a second
nanoprecipitation is promoted to encapsulate the active ingredient [104,109].

Another possibility is the encapsulation of a polyphenol through the establishment of an
interaction (hydrogen bonding, van der Walls, or hydrophobic interactions) with a substrate. The most
commonly used substrate are cyclodextrins, as their cylinder-shaped structure, hydrophobic interior,
and hydrophilic exterior make them particularly interesting to encapsulate less polar polyphenols
(like essential oils, quercetin, or resveratrol), while increasing their water solubility with smaller more
hydrophobic polyphenols having a higher affinity for the cyclodextrins [66–69].

Most of the above-mentioned techniques result in liquid suspensions of nanoparticles which
poses some stability limitations, like leakage of the encapsulated ingredients or the aggregation of the
nanoparticles. Limitations that may be circumvented if the particles are in a solid state/phase [110].
Freeze and spray drying are two techniques commonly used to attain dry, more stable nanoparticles.
However, the conditions in which the drying occurs are relevant not only for the stabilization of the
nanoparticles, but also to minimize the stress induced by the drying process to the nanoparticles [110].

3.3.2. Common Types of Nanoparticles

In many of the in vitro studies, the amounts of bioactive compounds that exert some potential
against some disease, are used in amounts significantly higher than those to which humans are
exposed to through the diet or that could be found in the blood. Their content after absorption,
as well as their metabolites, determines their bioactivity and potential impact on health. Major barriers
for some compounds are their poor water solubility and susceptibility to alkaline conditions, light,
oxygen exposure, and heat which also limit their clinical efficacy. Encapsulation has been used to
overcome most of the drawbacks and is defined as a process in which tiny particles or droplets
of a micro-component are surrounded by another material called wall material/coating/carrier,
or are embedded in a homogeneous or heterogeneous matrix resulting in the formation of small
capsules [111].

Nanoparticles with entrapped nutraceuticals are generated by adding a water-miscible solvent
solution of the nutraceutical, and a water-insoluble polymer to water (with or without a surfactant).
In this process, the polymer condenses and aggregates, and some of the nutraceutical is trapped
inside the polymer. One commonly used polymer is poly(lactic-co-glycolic acid), or PLGA, which is
biodegradable and biocompatible and is approved by the US FDA for therapeutic usage [112].

Polysaccharides, due to their abundance and wide availability, are frequently used as
encapsulation material. Characterized accordingly to their biological origin (plant-starch, cellulose,
pectin, and guar gum; animal-chitosan; algal-alginate and carrageenan; microbial-xanthan, dextran
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and cyclodextrins), they are stable, non-toxic molecules that can be easily modified [113]. Additionally,
they possess technologically relevant properties, such as biodegradability, hydrophilicity, and gel
formation capacity, which makes them interesting as materials to be used in targeted drug delivery
systems [114]. Acetylated starch has been used to encapsulate food and flavor ingredients [115],
with the acetylation process enhancing hydrophobicity, resistance to enzymatic hydrolysis and
reducing swelling of the fibers, all attributes which are deemed useful in food delivery systems [116].
Similarly, native guar gums have been depolymerized using partial hydrolysis (with acids, enzymes,
heat induced acid hydrolysis, and other methods) to overcome their natural high viscosity. They can
then be included in food delivery systems, such as an alginate matrix, along with a cross linking agent
(glutaraldehyde) to overcome their rapid dissolution for targeted nutrients delivery [117]. Another
example is chitosan, a polysaccharide obtained from the deacetylation of chitin, which can be used
to produce chitosan-tripolyphosphate (TPP) through an ionic-gelation procedure. These chitosan
nanoparticles can be used to control the release profile of bioactives in the intestine, and have been
applied in encapsulation of catechins [118] and rutin [119]. However, there are still some drawbacks
regarding the usage of carbohydrate-based delivery systems, as a fundamental lack of understanding
of the major factors governing the rational design of these systems for particular applications exists.
Despite its great potential for future works, knowledge regarding their toxicity, residual solvent
analysis, and evaluation of their biological fate during digestion, absorption, and excretion should be
pursued [113].

Another example of a commonly used nanoparticle system, are Solid lipid nanoparticles (SLNs).
These nanoparticles were first introduced in the early 1990s, and can be characterized by their
small particle size (50–100 nm) [77,120] and lack of toxicity, which makes them important colloidal
carriers because they combine advantages, such as physical stability, controlled release, and excellent
tolerability, being one of the most currently used systems [121,122]. The reduction of particle size and
the use of non-toxic materials, make these particles important colloidal carriers because they combine
advantages such as physical stability, controlled release and excellent tolerability, characteristics
that make them one of the most currently used systems [121,122]. They are obtained through
nanoemulsification of lipid matrixes, which contain melting points above room and body temperature
[such as triglycerides, mono, di and triglycerides mixtures (witepsol bases), waxes (beewax, cetyl
palmitate), hard fats (stearic acid and palmitic acid), or other types of lipids such as paraffin], with
common emulsifiers such as poloxamer and 302 polysorbate 20, 60 and 80, lecithin, tyloxapol, sodium
cholate, and sodium glycocholate, among others [118]. Their fabrication can be obtained through
different technologies [high shear homogenization, ultrasound, high pressure homogenization (cold
homogenization and hot homogenization), solvent emulsification/evaporation, and microemulsion
method] [123]. Some of their main advantages are the possibility of improving the stability of the
incorporated compounds; thermal stability; increased oral bioavailability of compounds (particularly
lipophilic molecules), e.g., labile drug molecules can be protected from the external environment
(during storage); protection from the digestive process (following oral administration); and the scaling
up of the formulation technique to industrial production level is feasible at low cost and in a relatively
simple way [124]. On the contrary, several disadvantages are also associated with SLNs dispersions
namely, they may contain a high amount of water, drug-loading capacity of SLNs are limited due to
the crystalline structure of solid lipid, expulsion of encapsulated drug may take place during storage,
drug release profile may change with storage time, polymorphic transitions are possible, and growth is
possible during storage [125,126]. Several drugs (hydrophobic and hydrophilic) have been incorporated
in the SLN formulations and in most cases the aim was to improve oral bioavailability, either by
increasing gastrointestinal absorption or by bypassing the first-pass metabolism. Hydrophilic drugs
can also be incorporated in SLNs, but such procedure is considered to be challenging because of the
affinity between the drug and the lipid, and the tendency of partitioning the encapsulated molecules
in the water during the production process of nanoparticles [123,124,127].
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3.3.3. Nanoencapsulation of Phenolic Compounds

The application of nanotechnology to the food sector could generate innovation in the macroscale
characteristics of food, such as texture, taste, and other sensory attributes like coloring, strength,
processability, and stability during shelf-life leading to a great number of new products. Moreover,
nanotechnology can also improve the water solubility, thermal stability, and oral bioavailability of
bioactive compounds [8,9,128,129]. The food industry is limited to the use of food-grade ingredients
for encapsulation (e.g., proteins, carbohydrates, fats, and food-grade emulsifiers), and there is still
a large need in target release of bioactives in the body via encapsulation technologies which use
food-grade encapsulants. This will require control over permeability, rupture stress properties,
and enzyme-degradation kinetics of encapsulant materials in response to a variety of trigger
mechanisms for the release of encapsulated nutrients or bioactives [93]. At present, applications of
nanotechnology in food industries include nanocomposites (hybrid nanostructured materials) in food
packaging material for controlling diffusion and microbial protection, nanobiosensors for detection of
contamination and quality deterioration, and nanoencapsulation or nanocarrier for controlled delivery
of nutraceuticals [72,74,130,131].

Foods fortified with encapsulated fish oils have been reported in recent years, and they include
beverages, dressings (salad dressings, mayonnaise, margarines), dairy products (ice cream, cheese,
flavored milk), and powdered products (infant formula, dairy products) [9]. Encapsulating natural
antioxidants, such as vitamin E, C and flavonoids (quercetin, catechin) is a promising way of protecting
and incorporating the bioavailability of these components [132].

To improve stability of blackcurrant anthocyanin, the pomace was mixed with maltodextrin and
inulin, representing a good additive for incorporation into functional foods [133]. (+)-Catechin or
green tea extract were encapsulated in soy lecithin nanoliposomes and incorporated into a full-fat
cheese, then ripened at 8 ◦C for 90 days demonstrating the potential for using cheese as a delivery
vehicle for green tea antioxidants [134]. Zein, a biocompatible, biodegradable macromolecule was
employed for nanoencapsulation of green tea catechins by electrospraying technique, and the catechins
had significantly improved in vitro gastrointestinal stability and Caco-2 cell monolayer permeability
compared to unencapsulated catechins [135]. Compounds with low hydrophilicity, like quercetin, were
incorporated into solid lipid nanoparticles using an emulsification at low-temperature solidification
method. As quercetin’s in vivo effects are dependent on its absorption and bioavailability, the use
of these types of nanoparticles to fortify dairy beverages may not only result in the protection
of the compound’s bioactivity, but actually contribute to its improvement [76]. Resveratrol is a
natural polyphenolic phytoalexin, found in various common foods, that has been described as having
potentially significant beneficial effects on health. However, like with quercetin, resveratrol suffers
from a low and variable oral bioavailability, a limitation that can be overcome through the use of
SLNs [136]. Moreover, the use of SLNs loaded with polyphenols in dairy matrices has already been
successfully reported, hinting that their use in the development of fortified dairy beverages may be an
interesting alternative to exploit, particularly when considering compounds with a low bioavailability.
In particular, this process has been associated not only with a lack of non-specific interactions with the
matrix, but also with granting some protection to the bioactive molecules throughout the digestive
process [137]. This last process has been described in a work that focused on the protection granted by
SLNs to rosmarinic acid and a herbal extract, against digestion mediated degradation [124,138].

To the best of our knowledge, relatively few authors focus on the organoleptic impact of using
dairy beverages fortified with nanoencapsulated phenolic compounds. Fathi, et al. [139] studied the
potential use of SLNs as a means to incorporate hesperetin (a low solubility flavonoid) into a milk
sample, with the sensory analysis reporting that the nanoencapsulation was successful in masking
the bitter taste and aftertaste of hesperetin, whilst masking the alterations in homogeneity and color
that resulted from the straightforward addition of this flavonoid [139,140]. This example represents a
clear illustration of the potential for using nanoencapsulated ingredients, particularly polyphenolics,
towards the development of improved foodstuffs, without the loss of sensory quality. Overall, for an
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encapsulated ingredient to be successful in the market place, it must be tested in the final food product,
taking into account the storage stability of the encapsulated ingredient, its compatibility with the food
matrix, the processing stresses it has to withstand during food manufacture when it is in intimate
contact with other ingredients, and how it breaks down when consumed. With respect to the storage
stability of the encapsulated ingredients, powdered formats in the glassy state have the advantages of
convenience, ease of transport, and improved storage stability over equivalent liquid formulations.
Microencapsulated powders can be used for blending with other dry ingredients, or incorporated as
powders into some food products at various stages during the manufacturing process, or reconstituted
prior to incorporation into liquid products [141].

3.4. Safety Concerns

Nanotechnology has been revolutionizing the entire food system from production to processing,
storage, and development of innovative materials, products, and applications. Nanoparticles, to be
used in the food industry must be prepared using materials and technologies that are food grade.
However, the assumption of safety when dealing with nanomaterials is not as straight forward.
When manipulated at a nanoscale level, materials exhibit properties that are not found at the
macro-scale level, which means that products that are recognized as safe may present an unforeseen
risk. As nanoparticles may allow for larger concentrations of compounds to reach the tissues, they could
also cause harmful imbalances to the homeostasis. Moreover, the same concern can be considered when
contemplating the nanoparticles themselves, regardless of their content. Therefore, it is important
to perform a toxicity/safety assessment whenever their inclusion into food products is considered.
The understanding of the bio-kinetic profile of nanoparticles for the different organs may allow for
the identification of the areas with a larger risk of adverse reactions [142,143]. The gastrointestinal
uptake of nanoparticles, depends on their capacity to migrate through the mucous, contact with the gut
epithelium, and consequent translocation process (direct passage through the tight junctions or through
the transcellular route) [77,144–147]. Typically, smaller nanoparticles migrate faster than the larger ones;
cationic particles have been described to remain in the mucus barrier, while negatively charged particles
reach the endothelium, and should they be effectively protected from local degradation/metabolization,
they can then reach the circulatory system, spread throughout the body, and either accumulate or be
excreted [148–150]. The nanoparticles interaction with blood components and their intrinsic properties
will be a determinant factor in their fate. Hydrophobic nanoparticles can be sequestered within the
liver or spleen, and smaller particles are more widespread than their larger counterparts [146,150–153].
This means that, while the literature that contemplates the toxicity of nanoparticles has been expanding,
it should be taken into account that the results that are obtained for one size and charge may not be the
same as those observed for a different nanoparticle, and perhaps the tissues to be considered must also
be different [144].

From a regulatory standpoint, most food safety agencies have yet to propose specific regulations
for “nanoproducts”, leaving a regulatory vacuum behind. The European Union and associated
regulatory councils, have stated that there must be an adjustment of the legislation, guidelines,
and guidance documents when including nanoparticles, but the overall lack of knowledge has this
process in a relative standstill. A similar lack of legislation can be found in other regions worldwide.
In the United States of America, the Food and Drug Administration has no regulations that contemplate
nanotechnologies as they regulate “products, not technologies”, meaning that the actual regulatory
framework for a given product can only be established well after the product is developed [144,154].
Despite this, some existing American laws (e.g., Toxic Substances Control Act or the Food, Drug and
Cosmetic Act) provide some legal framework. The United Kingdom’s government commissioned a
study, carried out by the Royal Society and the Royal Academy of Engineering, contemplating the
pros and cons of nanotechnology. From this study emerged a recommendation to treat nanoparticles
as a new substance, and therefore follow the same regulatory procedures already established by
the European Union [154]. Regardless, some authors have already reported on the safety profile
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of Witepsol or carnauba’s SLN loaded with rosmarinic acid, with the reported data demonstrating
that neither type of nanoparticle exhibited no in vitro genotoxicity or cytotoxicity, and had a in vivo
safety profile in rats (orally treated) [155]. These results, seem to indicate that at least where SLNs are
concerned, they present an interesting alternative to be exploited when considering the design of new,
sensory appealing dairy beverages, with improved functional profiles, and without the loss of any
nutritional value.

4. Conclusions

Overall this review shows that nanoencapsulation based approaches possess great potential as
tools for the development of functional beverages, which may combine the benefits of dairy products
with the known biological properties of phenolic compounds, without resulting in a loss of sensory
or nutritional quality. However, despite the potentials associated with this technology, it is still not
market ready, as the lack of specific legislation, regulatory procedures, and compounds validation
limits its development and implementation.
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