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Abstract: Fourier transform infrared spectroscopy (FT-IR) has gained popularity in the wine sector
due to its simplicity and ability to provide a wine’s fingerprint. For this reason, it is often used for
authentication and traceability purposes with more than satisfactory results. In this review, an outline
of the reasons why authenticity and traceability are important to the wine sector is given, along
with a brief overview of the analytical methods used for their attainment; statistical issues and
compounds, on which authentication usually is based, are discussed. Moreover, insight on the mode
of action of FT-IR is given, along with successful examples from its use in different areas of interest
for classification. Finally, prospects and challenges for suggested future research are given. For more
accurate and effective analyses, the construction of a large database consisting of wines from different
regions, varieties and winemaking protocols is suggested.
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1. Introduction

Wine is a product that can be characterized both as a commodity but also as a luxury, depending
on its price [1]. To satisfy shifting consumer behavior, the wine sector offers a wide range of wine prices,
starting from low priced affordable wines and reaching such high values in the case of premium wines,
that the latter can even be considered as an investment [2]. Especially for these fine wines, quality is of
the outmost importance, while notions such as safety and also integrity are equally necessary for their
price justification. Indeed, a premium wine should first of all be safe to consume, present high-quality
characteristics and have the means to communicate its superiority [3]. This is difficult to achieve;
hence, the consumer or buyer must either rely on a wine’s reputation (market success, connoisseur
reviews, absence of negative reviews about its authenticity or safety, etc.) and make a purchase based
on a wine brand or label, or on the laws protecting geographical indications and traditional specialties,
which mark the wines with a special logo to help verify their authenticity [4]. Geographical indication
authenticates the wine in terms of location of the vineyards used in winemaking, but also sets a number
of regulations regarding the wine production itself, such as grape variety used in winemaking, aging
or not, use of barrel or not, etc. This set of regulations guarantees that the wine was produced in the
most favorable way in order to reach optimum quality. Geographical classification is used throughout
the wine world, with regulations based on the same type of parameters, i.e., type of grapes, aging and
use of oak, except in the case of Bordeaux, one of the most prestigious and high-quality wine regions,
where the ranking of the wines in “crus” is based on their reputation and trading price in 1855, the year
the classification was established [5].
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Whatever type of classification is used to differentiate wines, it is based on their unique
characteristics, imparted to them either by the place of origin, a specific type of grape variety
or a specific winemaking protocol; thus there is a need for traceability in order to verify the steps
followed during wine production and also for authentication in order to eliminate the possibility of
adulteration, which, especially in the fine wine market, has been the source of many types of fraud,
including dilution, mislabeling, use of unauthorized grape varieties or barrel wood sources, etc. [6].

2. Authentication and Traceability in the Wine Sector

2.1. Traceability

In the last years, the price of wine became a less reliable attribute in defining the overall quality of
a product and consumers started considering alternative factors called credence attributes as more
important [7]. This, together with the need of millennials for cleaner, sustainable and ecofriendly
products, led to a series of changes in the wine sector that ultimately made wineries impose strict
controls in the quest for higher quality. Traceability naturally became important as it is a quality
assurance system, able to verify the origin and all production steps and processes performed from grape
to bottle. Different systems have been used since traceability has been introduced in the 1990s, but it is
widely and generally more successfully used by large companies with aligned supply chains which
are more likely to store production information or use automated systems [8]. Indeed, “boutique” or
medium-sized wineries without privately owned vineyards face difficulties gathering all the relevant
information as different people are in charge of different processes. For example, information such as
parcel location, grape variety, irrigation, time of pruning, use of fertilizers and/or fungicides, etc., come
from the grape producer, while the winemaker is responsible for collecting data concerning all the
details of wine production, such as the winemaking protocol implemented (all winemaking procedures
such as maceration, clarification, racking, barrel aging and blending, among others), any types of
additives used, as well as dates of all operations performed, including dates and details of grape
receival. Finally, the distributor is responsible for bottle storage information, and is the one who will
provide data on dates and times of dispatching and possible receivals in case the wines are returned [8].

Different tools are available to make data collection easier, such as computer software or digital
applications, but the biggest breakthrough in traceability in the wine supply chain comes from the
ability to monitor grape cultivation parameters using remote sensing technologies such as the Global
Positioning System/Geographic Information System (GPS/GIS). Precision viticulture can help grape
growers manage the variability of different factors that affect grape quality such as soil characteristics,
topography, yield and even pests and diseases [9]. Then, not only there can be improvements to quality,
but all data are simultaneously gathered, leaving less room for human errors.

2.2. Authentication

Even if all traceability procedures, including taking records, gathering data, contracts and all
details regarding grape cultivation and production are followed to the letter, wine identity and
provenance need to somehow be guaranteed by analyses on the final product, in order to eliminate
unintentional mistakes such as mislabeling. For this reason, wine origin and composition must be
verified using strict guidelines that are often set by national authorities.

2.2.1. Origin Authentication

Origin authentication is essential as the quality of grapes, and by extension, the quality of
wine, is directly affected by the specific climatic and topographic conditions of a place. Moreover,
as mentioned earlier, many countries have set “geographical indications” or “denominations of
origin”, recognizing this way that location directly influences the final product [10]. Between these
denominations, some are set based on traditional practices, such as the case of the Greek Retsina wine,
which underlines the fact that not just the geographical origin, but the “terroir”, i.e., not only the
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location, but also procedures typically used at a certain place, can impart specific characteristics to a
wine. In order to verify origin in terms of geography, authentication analyses are based on unique
compounds called chemical “markers” that can be used as indicators of a place, provided that they can
be found both in the soil and the grapes themselves as well. For this reason, many studies are based on
the trace element composition of wine [11–13].

2.2.2. Identity Authentication

In order to authenticate a wine’s identity, the term identity should first of all be defined. In most
cases, it is not clear which criteria are applied in order to declare a wine representative of its category,
or typical of its variety [14]. Naturally, the grape variety, the cultivation area, the winemaking protocol,
the alcohol level and potential barrel aging between others all characterize a wine, outlining its unique
profile and making up its identity. However, a wine’s sensory character, or more specifically, its
“typicity”, i.e., if the wine can be characterized as a typical example of a wine made from a given grape
variety, is difficult to be objectively measured. For example, typicity cannot be defined by analysis
of volatile compounds; the wine needs to be evaluated by a trained panel of professionals instead.
Given that wine is a product with a highly complex matrix, and due to the fact that sensory attributes
can be very difficult not only to detect but to describe using a fixed vocabulary, common to all wine
tasting panels, fully characterizing a wine’s sensory character can be very difficult [15]. Moreover,
identity authentication may involve analyses regarding not only the parameters mentioned earlier, but
additional ones that either have to do with the type of production and are of interest, for example,
due to economic reasons (i.e., analyses to identify the type of method followed in sparkling wine
production), due to health issues (i.e., if allergens were used during wine production, such as isinglass)
or due to current day interests such as concern over whether a certain wine is organic, vegan, etc.
For some, strict laws are imposed, as in the case of the EU demanding the use of oak chips to be
reported on the label, or woods other than oak and chestnut wood to not be used for wine aging [16].
Maturation in stainless steel tanks or in contact with some type of wood, mostly oak, has been the
focus of many studies, since barrel aging can add value to a wine, although the time the wine needs to
spend in the cellar plus the price of a wooden barrel increases the cost of production.

It is essential, therefore, to include all these parameters when authenticating a wine. As with
origin, identity authentication is based on identification of the composition of the wine, using either
marker compounds that are characteristic and unique for each parameter, or comparisons with known
and authentic samples.

3. Authentication and Traceability Methods

3.1. Authentication and Traceability Methods

Many methods and techniques are used for the traceability and authentication of wines, based on
the nature of the target compounds. Among the most commonly used techniques in wine research
laboratories, high pressure liquid chromatography (HPLC) and gas chromatography (GC) are routinely
used for qualitative and quantitative analyses of chemical compounds present in wine, and also for
the development of its overall profile. Chemical groups of interest in the case of HPLC are mostly
the phenolic compounds [17,18]. HPLC is a robust and reproducible technique, although it involves
many preparatory steps, making the analysis quite laborious [18]. GC is equally robust, versatile and
of high sensitivity, and investigates the origin of the wine through the analysis of its volatile profile or
deals with its identity through the determination of volatile marker compounds [14]. One of the key
advantages of GC is that it can detect volatiles present in wood; thus it can verify barrel aging [19].

Other techniques that have been successfully used include isotope ratio mass spectroscopy
(IRMS) [20], nuclear magnetic resonance (NMR)-based techniques [21], inductively coupled plasma
mass spectrometry (ICP-MS) [22,23] and also DNA techniques and sensor technology [18,24]. Over the
past twenty years, metabolomic approaches started also becoming more and more appealing, as they
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offered a wide range of authentication possibilities. These techniques examine changes on a set of
metabolites, with weights less than 1500 Da, which can be found in grapes and wines as well [25].
However, most of these techniques are cost effective, with high detection limits, or require sophisticated
preparation steps and specialized operators, which makes them less appealing for fast and precise
analysis in wine.

Spectroscopy offers a set of techniques, such as near infrared (NIR), mid-infrared (MIR), Raman
and hyperspectral imaging that have gained a lot of attention from the research community during
the past few years. Specifically, in wine authentication and traceability, they can offer more than
satisfactory results while they are able to also produce quantification models for a wide set of chemical
compounds [26–28]. Spectroscopy offers simplicity, is fast and cost effective, and most importantly,
requires few, if any, preparatory steps; it can produce results through nondestructive measurements on
a small amount of sample. Between these techniques, Fourier transform infrared spectroscopy (FT-IR)
is gaining more attention regarding wine analysis, given its higher selectivity and performance when
compared to the other techniques.

3.2. Chemometry

In general, chemometrics are essential for authentication and traceability purposes as they present
a solution in handling and combining complex analysis results. Indeed, in the absence of unique
compounds that could potentially be used as traceability or authenticity markers for a specific sample,
various types of analysis results must be combined in order for a pattern to be revealed. Algorithms
can be developed following several techniques, such as principal component analysis (PCA) or cluster
analysis, canonical, linear and factorial discriminant analysis, soft independent modeling by class
analogy (SIMCA), artificial neural networks and support vector machines [29–32].The most often used
methods are PCA, linear discriminant analysis (LDA), partial least squares (PLS) regression analysis and
SIMCA. All these methods aim to treat the data in the most efficient way in order to model the analyzed
samples according to a particular parameter based on similarities and differences resulting from the
sample’s spectra or polyphenolic profile, revealing groups of categorized samples [33]. The methods
used for categorization can be separated into supervised and unsupervised methods depending on
whether the groups result from combining analysis results without setting corresponding output
variables beforehand (for example, a PCA plot (unsupervised technique) reveals groups that may have
been formed by the samples, while an LDA plot depicts the groups the user has already set as classes)
and to what extent the samples fall correctly into each group [33].

3.3. Compounds of Interest

Since the group of polyphenols is the most important group both in grapes and wines, most of
the analyses performed for authentication purposes focus on anthocyanins, flavonols, flavanols and
generally on phenol combinations.

For example, anthocyanins, which are colored pigments responsible for the color of red grapes
and wines, are not present in white grapes or wines, so their presence can obviously be an indicator of
variety color. It has also been proposed that red grape varieties can be discriminated based on their
anthocyanic fingerprint, so all anthocyanins, especially the acetylated ones, have been analyzed, and
with the use of PCA, several varieties have been successfully discriminated [29,34,35]. Flavanols are
also used as varietal markers [36], while flavanols have been successful in determining both variety and
origin [37]. Nonflavonoids were also used in wine origin discrimination [38], and a broad combination
of phenolics can be used to classify wines not only based on origin but also on variety as well [39].
Tannins are commonly used for identification of wood contact, as hydrolyzable tannins are only present
in barrels or their alternatives (chips, cubes, sticks, etc.) and cannot be found in grapes [40]. Finally,
volatile compounds have been used for vintage authentication [41,42] and aging [43].

Naturally, many other chemical compounds outside the polyphenol group can be used for
authentication purposes, such as aminoacids, proteins or minerals [41]. Indeed, trace elements reflect
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the soil geochemistry, and have the ability to move from soil to grape and from grape to wine.
In particular, the group of lanthanides—or rare earth elements—are very appealing due to their
chemical similarity and the fact that they remain unaltered passing from soil to the plant, which
establishes them as powerful geochemical markers [44,45]. In a recent study, 10 minerals were needed
to help discriminate Chinese wines from different regions; however, most times statistical approaches
required more than 10 compounds in order to create a profile of the content of trace metals or the
elements’ fingerprint [46]. Trace elements are used as chemical markers since passing from soil to
grape and then to wine does not affect them; however, wine fining can modify the resulting fingerprint
by causing fractionation, an issue addressed by several authors [45,47,48]. Except for the use of
trace elements, the distribution of stable isotopes has been studied; however, this type of analysis
requires univariate comparison with a databank of authentic samples, such as the databank set up by
the European Union [49]. However, compound selection poses many limitations and some serious
considerations, as rarely a single group of chemical compounds can be responsible for a complete
classification. For this reason, profiles constructed by untargeted analyses provide a more complete
way of describing a sample and consequently classifying it. For this type of analysis, vibrational
spectroscopy coupled with chemometrics is ideal, as it helps obtain structural characteristics and
provide the sample’s “fingerprint”. This gives the researcher the great advantage to use information
recorded in a sample’s spectra that not only comes as a result of chemicals that have not been quantified,
but also information resulting from unidentified compounds whose impact on the classification
itself could not be individually evaluated beforehand. For these types of analyses, multivariate data
analysis (MDA) is essential, as it will be the tool needed to establish the link between the analytical
instrument and the parameter set for classification. In the case of origin classification, for example, if
the components established from statistical analysis have enough discriminatory power, MDA will
help detect a pattern or a fingerprint, based on which the geographical origin will be discriminated [50].

4. FT-IR Spectroscopy

In FT-IR spectroscopy, infrared radiation is emitted by a source and passed through a sample
via a Michelson interferometer (Figure 1). The interferometer splits the beam of light, transmitting
one-half and reflecting the other. With the help of two mirrors, one fixed and one moveable, the split
beams are reflected back together, producing interference fringes. The produced “interferogram”,
which measures the change in radiation intensity, is recorded by a detector as a signal; then it is
amplified, and finally it is transferred to a computer in which Fourier transform is carried out and the
interferogram is converted into a spectrum [51].
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The spectrum is a plot of the measured IR intensity versus the wavelength of light measured in
wavenumbers in cm−1, displayed in decreasing order of wavenumbers (Figure 2). The peaks of the
spectrum, called absorbance bands, correspond to different types of bonds, specifically to vibrations of
the sample’s atoms. When the IR radiation passes through the sample, it makes particular bonds in the
molecule absorb energy and vibrate. Then, the bonds take different forms such as scissoring, rocking,
stretching, bending, etc., modes [52]. Even though different bond types result from different atoms,
their vibrations have the same frequency; hence, they produce peaks at the same wavenumbers since
wavenumbers are directly proportional to frequencies. Moreover, with the exception of optical isomers,
no two molecules share the same IR spectrum [53]. This way, with the use of correlation tables from
spectra recorded from known substances, a sample’s identity, and also its structure and molecular
composition, can be revealed.
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A typical spectrum is recorded from 4000 to 400 cm−1 and contains information on the types
of bonds and their vibrations. Most of the information is provided by the region 1500 to 400 cm−1,
called the “fingerprint” region, and for this reason it is the one mostly used for the discrimination of
food products [18]. Normally, the whole spectral range is usually recorded for every sample, but for
statistical analyses, smaller regions can be used. Phenolic groups are depicted in the peak found
around 1500–1400 cm−1, sugar functional groups at 1200–950 cm−1, and esters, carboxylic acid and
carbonyl groups at 1618 and 1407 cm−1 [54]. Even if only the fingerprint region, which amounts to
one-half of the spectrum, is used for discrimination purposes and even if it contains an ostensibly low
number of peaks or absorption bands, the use of chemometrics is the key for further analysis.

For FT-IR spectroscopy, the use of chemometrics is imperative. Indeed, all FT-IR instruments
come with a built-in software that is used for spectra interpretation and for statistical analyses as the
volume of information contained in an IR spectrum is considerably large. External statistical packages
can also be successfully used; however, not all can handle the extremely large volume of data produced
after exporting a spectrum in formats that store data in tables.

The optimum steps of statistical analysis contain firstly an exploratory step, typically performed by
PCA analysis, which gives information on potentially existing trends in the dataset. PCA’s advantage
is that it reduces the number of variables, replacing them by a new set of variables known as principal
components. After PCA, supervised methods can be performed, in order to check if the samples can
be grouped according to the desired feature, i.e., according to their place of origin.

Supervised methods need a set of known sample data for training purposes, which are essential
for the building of the model, and then a second set of new, unknown sample data to evaluate the
model’s efficiency and accuracy. Usually, a third set of data, part of the training dataset, is also used for
validation purposes, this way assessing the goodness of fit of the model [33]. It is evident that in order
for three sets of data to form, a large number of samples is needed. The number of samples not only
affects the quality of the developed model, but is also necessary to avoid overfitting problems, since IR
spectra result in a large number of variables that may exceed the number of samples. This problem is
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common when building models with spectral data; it can, however, also be overcome with techniques
such as stepwise regression [27].

5. FT-IR as a Traceability and Authenticity Tool

FT-IR has become a valuable tool in wine analysis, since it has been successfully used not only to
detect and quantify key wine compounds but also to classify wines and monitor their fermentation or
aging process [55]. Its ability to record the chemical “fingerprint” of wine has made it extremely useful
in quality control, as it can serve as an indicator of a wine’s status in terms of quality and origin.

5.1. Traceability

In traceability, FT-IR has aided with peripheral analyses, such as the authentication of labels from
expensive and prestigious wines [56]. However, a fingerprinting system has also been developed
which is able to confirm whether a wine’s composition has changed during transport and processing
by scanning samples at control points with mid-IR spectrophotometers and then using a similarity
index method to classify them [57]. With this method, 98% of the wines were correctly classified.

5.2. Authenticity

In authenticity, FT-IR is becoming an invaluable tool as it can provide classifications based on a
wide number of parameters and is extensively used either through attenuated total reflectance (ATR),
diffuse reflectance Fourier transform (DRIFT) or transmission techniques.

5.2.1. Origin

FT-IR has been successful in differentiating Shiraz wines from different Australian regions
(98 wines, 95.3 correct classification with SIMCA), Sauvignon blanc wines from Australia and New
Zealand (64 wines, 86% correct classification with partial least squares discriminant analysis models),
Cabernet Sauvignon wines from Australia, Chile and China (540 wines, 97%, 97% and 92% correct
classification for each country, respectively, with SIMCA) and also for South Australian Chardonnay
grapes from different geographical indications (83% correct classification with PLS) and for wines from
different zones from the same appellation (La Mancha), which requires a higher degree of differentiation
(120 wines, 73% correct classification with SIMCA) [50,58–61]. The spectral region used for origin
authentication was mostly from 1500 to 800 cm−1. In the study classifying Sauvignon blanc from
Australia and New Zealand, the highest PCA eigenvectors (eigenvector is the direction of the vector
defining the new feature space on PCA) were observed around 1045–1080 cm−1, related to the C-OH
found in glycerol, ethanol, glucose and fructose; around 1454–1419 cm−1, where organic acids and
aldehydes absorb; with a peak around 1268 cm−1 which related to aromatic groups [50].

5.2.2. Grape Variety

Red grape varieties have extensively been analyzed and showed very good classification results.
White wines, for which clear links between composition and quality have been made, are considered
more difficult in classification, even more so because they lack substantial amounts of phenolic
compounds on which most of the classification analyses are based. Research, however, has shown
successful discrimination results for red wines from Xinomavro, Agiorgitiko and Merlot grapes
grown in different regions in Greece with the ATR technique (34 samples, between 84–99% correct
classification for each sample by comparison with libraries from OMNIC software, v.7.3, Thermo
Electron Corporation, Waltham, MA, USA) and also for red (Kotsifali and Mandilari) and white
wines (Vilana and Dafni) from the same origin (Crete, Greece) with both ATR and the transmittance
technique (88 samples for the ATR technique, complete discrimination for red and white with LDA,
154 samples for the transmittance technique, 82% validation with LDA) [62–64]. In all three studies,
samples contained wines maturing both in stainless steel tanks and in wooden barrels, in order to
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increase sample variability. Young wines (400 samples) from South African red and white cultivars
were correctly discriminated as well; in a study that used gas chromatography coupled with FT-IR
and chemometrics, however, the highest percentage of correct classification was based only on IR
spectra analysis (98.3%, LDA). However, in this study, wines were young, without oak maturation or
aging in order to minimize variability [65]. FT-IR along with artificial neural networks (ANN) also
provided satisfactory results in the discrimination of five grape varieties, red and white, used for
the protected designation of origin (PDO) in Vino de calidad de Cangas in Spain [66], while varietal
discrimination has been successful using grapes and grape juice (from the white varieties Chardonnay
and Riesling) as well [67]. The spectral regions used for variety discrimination with the ATR technique
performed by Tarantilis et al. (2008) were in the region of 1800–900 cm−1, as in this area the fingerprint
region is included. Absorptions in this region correspond to antisymmetric in-plane bending of -CH3,
deformation of -CH2, symmetric in-plane bending of -CH3, CH bending, CH2 wagging, in-plane
bending of O-H and stretching vibration of C-O, plus it is the region where the phenyl nucleus (C=)
absorbs [62]. For the classification of Cretan wines with the transmittance technique, the region selected
for analysis was from 1300 to 900 cm−1, which is the area where the grape-derived tannins occur [63],
while with the ATR technique, the region used was the fingerprint region (1800–900 cm−1) [64]. For the
discrimination of grape juices, the most important peaks seem to be the peak of fructose at 1070 cm−1,
water at 780 cm−1 and the peak of phenolic compounds at 1256 cm−1 [67].

5.2.3. Type and Length of Maturation

Discrimination of wines maturing in stainless steel vats or in contact with different types of
wood (French and American oak, acacia and chestnut) in the form of a barrel or as sticks has recently
been successful in samples from Greek wines (154 samples, LDA) [63]. The IR region selected for
the discrimination was from 1800 to 1500 cm−1 where hydrolyzable tannins or wood tannins absorb.
Correct discrimination reached 96%, although the external validation set reached only 52% of correct
classification, probably due to the high variability in tannin concentrations. However, wine samples
maturing in acacia and chestnut barrels were completely discriminated, with 82% and 100% correct
classification in the validation sets, respectively. In the same experiment, samples were correctly
classified based on the length of contact with the wine container by 100% in the training and test sets,
and 93% for the validation set. The region used for the analyses was the area from 1800–1500 cm−1.

5.2.4. Vintage

The vintage is a complex parameter, chemically manifested indirectly through changes in wine
composition due to a number of factors such as the weather, the time of harvest, the winemaking
conditions, etc. Vintage authentication with FT-IR can also be performed indirectly, by measuring
the “chemical wine” age as defined by Somers in 1977 [68]. FT-IR has successfully been used to
predict chemical age indexes i and ii by PLS regression modeling [69]. Recently, a study examined
the feasibility of using FT-IR to define vintage, giving encouraging results, as the discrimination was
complete for wines aged over six years [70].

5.2.5. Adulteration/Taints

Millennials’ interest in wine has prompted winemakers to try and meet the generation’s demands,
since this is the consumer group currently in the spotlight [71]. Among others, this means an elevated
demand for ethically produced food with as few chemicals as possible, hence increased production of
organic and biodynamic wines that need to be authenticated [72]. FT-IR has been shown to be able to
correctly classify more than 85% of wines belonging to organic or nonorganic systems in an experiment
on 172 red and white wine samples from 13 different regions in Australia [73].

Moreover, reduced quality due to taints such as smoke, a recurring problem in wines coming
from Australia, for example, which has been hit with extremely destructive bushfires over the last few
years, can be also detected with FT-IR. Indeed, in 2012, LDA models helped correctly classify 70% of



Beverages 2020, 6, 30 9 of 13

smoke-tainted wines, revealing the potential of mid-IR spectroscopy combined with chemometrics in
rapid quality screenings regarding this wine fault [74,75].

6. Prospects and Challenges

It is evident that FT-IR spectroscopy is a successful tool in wine authentication and traceability.
However, most analyses focus on one or several parameters of interest which in turn increase based on
consumer and market demands. Future research should be based on typical authentication needs that
still require sophisticated analyses such as the detection of chaptalization—an illegal sugar addition to
wine—but also need to follow modern production practices and deal with contemporary techniques
such as the use of genetically modified yeasts and the possibility of discriminating the wines produced.

FT-IR’s flexibility allows remote detection, so new styles are emerging such as open path FT-IR
that can detect volatiles without a gas cell (which is needed in gas phase infrared spectroscopy) and
which was recently used to detect volatile compounds in grapes and vinegars [75]. This provides new
possibilities in wine research, where quality is inseparably connected to the volatile profile.

The biggest and most imperative need in the search for more effective and complete classifications,
however, is the construction of a wine databank which would help minimize the variability issues all
studies based on analyses with large spectral data face.

7. Conclusions

FT-IR spectroscopy continuingly gains popularity in wine research, as it provides a simple, fast
and cost-effective way to analyze different components even in low concentrations without the need
for chemicals or preparatory steps. It can be a valuable tool in wine authentication and traceability,
provided that a large set of samples is analyzed or a database constructed by various wine samples
is used for comparison reasons. The optimization of algorithms used in chemometrics can boost the
performance of FT-IR-based models and provide more efficient classifications. Finally, the renewed
interest in the examination of the volatile profile with the use of FT-IR and chemometrics could be
implemented in wine authentication in order to amplify the fingerprint provided.
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