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Abstract: The effects of 1-methylcyclopropene (1-MCP), storage atmosphere (controlled (CA) or
regular (RA)), and juice processing (clear or cloudy) on the volatile aroma compounds from McIntosh
and Honeycrisp apples following 4-month storage were studied. All the major esters, aldehydes,
and total volatile content from McIntosh juice were significantly affected by the two-way interaction
between harvest maturity and 1-MCP treatment (p ≤ 0.01), as well as harvest maturity and storage
atmosphere (p ≤ 0.001). In McIntosh juices, a remarkable reduction of all types of esters, aldehydes,
most alcohols, and total volatile compounds was found when juices were prepared from 1-MCP-treated
apples. In Honeycrisp, significant differences in the level of esters and the total volatile aroma was
caused by storage atmosphere and juice processing techniques (p≤ 0.001), but not by 1-MCP treatment.
As compared to clear juices, cloudy juice samples from Honeycrisp had a considerably higher content
of total volatiles, esters, and aldehydes.
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1. Introduction

Apple juice is the second most widely consumed fruit juice in the world [1]. The aroma
is an important organoleptic quality parameter of apple juice used by consumers to determine
acceptability [2]. The volatile compound composition is responsible for the aroma of apple juice
and can be influenced by many factors, including cultivar, harvest maturity, postharvest and storage
treatments, and juice processing techniques [3]. Currently, the apple industry in North America has
adopted the extensive use of a potent ethylene action inhibitor, 1-methylcyclopropene (1-MCP), as a
means to extend the storage and shelf-life of apples. However, the inhibition of fruit ripening associated
with 1-MCP treatment could have a deleterious effect on volatile aroma production of climacteric fruits,
including apples [4–6].

The effect of different postharvest treatments and storage conditions on the volatile composition
of fresh apple fruit has been examined [7,8]. Nevertheless, the impact of 1-MCP treatment on apple
juice volatile aroma composition has not yet been reported. Moreover, information about the volatile
composition of apple juice from the relatively newer apple cultivars such as Honeycrisp is limited.
Honeycrisp is a unique, crisp fruit texture, large fruit that makes it highly desirable for the fresh market.
However, due to the large percentage of rejections due to uneven or unusually size for the fresh market,
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Honeycrisp is also used in juice processing. However, a delayed cooling treatment (stored at 20 ◦C for
several days before storage in cold temperature condition) is recommended for Honeycrisp apples to
reduce the development of soft scald and low-temperature breakdown. This study aimed to determine
the effect of 1-MCP treatment, in combination with harvest maturity, storage atmosphere, and juice
processing techniques on the content and composition of volatile aroma compounds of cloudy and
clear juice produced from McIntosh and Honeycrisp apples.

2. Materials and Methods

2.1. Apple Harvesting, 1-MCP Treatment, and Storage

Redmax McIntosh (hereafter referred to as McIntosh) and Honeycrisp apples were harvested
from a commercial farm (J.W. Mason, Windsor, NS, Canada) at either optimum (commercial) or late
maturity stages. Apples free of disease and damage were selected, packed in carton boxes, wrapped
with plastic, and transported to the Agriculture and Agri-Food Canada (AAFC) Research Centre in
Kentville, NS, Canada. Within 6–8 h of harvest, McIntosh and Honeycrisp fruit were held at 10 and
20 ◦C overnight, respectively. Fruits were divided randomly into control and 1-MCP treatment groups
and treated with 1 µL/L 1-MCP within 24 h of harvest in a 2 m3 gas-tight chamber at room temperature
for 24 h. 1-MCP was generated from SmartFresh™ Research Tablets (AgroFresh, Inc., Philadelphia,
PA, USA) in accordance with the manufacturer’s instructions and a battery-operated fan (Coleman,
Wichita, KS, USA) facilitated the circulation of 1-MCP throughout the chamber. After 1-MCP treatment
and venting, fruit, which were in plastic crates, were loosely covered with a single layer of polyethylene
film to reduce water loss and placed in controlled atmosphere (CA) or regular atmosphere (RA) storage.
Honeycrisp apples were held at 20 ± 1 ◦C for one week before being placed in RA or CA storage to inhibit
scald development during storage. Control and 1-MCP-treated fruits were stored at 0 ± 0.5 ◦C and 95% RH
in the air (RA) or CA, which was comprised of 2.5% CO2, and 2.5% or 2% O2 for McIntosh and Honeycrisp
apples, respectively. Samples were removed from CA or RA storage after 4 months. The two apple cultivars
were stored in two different rooms. A total of 16 bushels or 1600 (one-bushel = about 100 apples) apples
were used for this experiment. At each removal, 50 fruit per experimental unit were sampled and
processed into juice.

2.2. Juice Preparation

Cloudy apple juice was prepared by washing six medium-sized apples with tap water, cutting each
into 12 pieces and pressing them using a laboratory-scale juice extractor (Supreme Juicerator, Windsor,
NJ, USA). Juice samples were collected into 250-mL beakers containing 0.5 g/L ascorbic acid [9].
The juice was filtered with four-layer cheesecloth and pasteurized at 80 ◦C for 5 min using a water
bath and then cooled immediately to room temperature (20 ◦C) [9]. Samples were placed in 50-mL
centrifuge tubes (Fisher Scientific, Ottawa, ON, Canada) and stored at −20 ◦C until analysis.

Clear apple juice was prepared as above without ascorbic acid addition. Filtered juice samples
were treated with Ultrazym 100 G (Novozymes Ultrazym 100 G, 0.04 g/L) for 3 h at 25 ◦C and then
heated at 80 ◦C for 5 min (to prevent further enzyme activity which can reduce juice clarity). Ultrazym,
a clarification aid enzyme, acts only on soluble pectin [10] and is reported to contain pectinesterases,
polygalacturonases, and pectin lyases. After enzyme treatment, the juice was allowed to settle overnight
at 4 ◦C, centrifuged at 8500 rpm for 15 min and stored at −20 ◦C until analysis. The same procedure
was repeated separately for each of the three replicates for both apple cultivars and juice types.

2.3. Volatile Analysis from the Juice

Frozen juice samples were defrosted overnight at 4 ◦C. Juice samples (10 mL) were pipetted
into a new 20-mL vial followed by the addition of 2 g of NaCl and 100 µL of the internal standard
[2-octanone (0.524 µg/mL 100% methanol)]. Volatile analysis of juice samples was conducted by
headspace solid-phase microextraction (HS-SPME) followed by GC-MS. During SPME extraction,
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the juice sample was agitated at 250 rpm. A 20-mm DVB/CAR/PDMS HS-SPME fiber (Supelco
Analytical, Bellefonte, PA, USA) was exposed to the head-space of the juice sample for 30 min at
30 ◦C. The fiber was desorbed at 250 ◦C for 5 min using a split ratio of 1:3 using a Varian 4000 GC-MS
system (Varian Chromatography Walnut Creek, CA, USA), equipped with a Varian 1177 injector and
a CombiPAL autosampler (CTC Analytics AG, Zwingen, Switzerland). Volatile compounds were
separated on a VF-WAXms capillary column (30 m × 0.32 mm i.d., 1.0 µm, Agilent Technologies,
Amstelveen, The Netherlands). The temperature program was 35 ◦C for 5.0 min, 35 to 240 ◦C at
10 ◦C/min, and 240 ◦C for 4.5 min. The injector was maintained at 250 ◦C, and the carrier gas was
helium with a flow rate of 2.5 mL/min. Detection by MS was carried out in electron ionization (EI)
mode with a mass range of 35–400 amu, emission current of 25 µAmps, a scan rate of 0.60 s (4 µscans),
and a total run time of 30 min. Temperatures of the transfer line, trap, manifold, and ion source were
170, 100, 50, and 180 ◦C, respectively. All the peak areas were normalized using the peak area of
the internal standard. The volatile compounds were identified based on retention index (RI) and by
comparing mass spectra with spectral data from the National Institute of Standards and Technology
library and confirming where possible with standards. The RI values were calculated based on the
retention times of a series of alkane standards.

2.4. Volatile Analysis from Whole Apples

Apples were held in a 4-L sealed glass jar with a Teflon lid for 1 h at 20 ◦C. A 100-mL sample
of head-space was captured on an adsorption tube (89 long × 6.4 mm outer diameter) containing
Carbopack B (155 mg) and Carboxen 1000 (70 mg), both from Supelco Inc. (Oakville, ON, Canada).
Adsorption tubes were held at −86 ◦C until the time of analysis. Volatiles were removed from the
adsorption tube using a TurboMatrix 650 ATD thermal desorber (PerkinElmer Life and Analytical
Sciences, CT, USA). Tubes were heated to 250 ◦C using an outlet split of 1:2 for sample introduction
into a Varian 4000 gas chromatography mass-spectrometry system (GC-MS) (Varian Inc., Walnut Creek,
CA, USA). The volatile analysis was conducted using a VF-WAXms column (0.32 mm, internal diameter
× 30 m, length × 1.00 µm, film thickness, Varian Inc., Lake Forest, CA, USA). The column was held
at 35 ◦C for 5 min, increased 10 ◦C per min to 240 ◦C, and held for 4.5 min. The column flow rate
was 2.5 mL/min of helium while temperatures of the transfer line from the GC to the MS and the
MS were 180 and 220 ◦C, respectively. Detection by MS was carried out in electron ionization (EI)
mode with a mass range of 35–400 amu, emission current of 25 µAmps, and a scan rate of 0.60 s
(4 µscans). Temperatures of the transfer line, trap, manifold, and ion source were 170, 100, 50, and
180 ◦C, respectively. The analyses were done on three replicates, each with 1.0 ± 0.1 kg.

2.5. Experimental Design and Statistical Analysis

The experimental design was a four-factor factorial with three replications. The independent
variables included (i) 1-MCP treatment, (ii) storage atmosphere, (iii) harvest maturity, and (iv) juice type.
Statistical analyses were performed using Minitab software (Release 17, Minitab Inc. State College,
PA, USA). Analysis of variance (ANOVA) was done using the general linear model (GLM) procedure.
Whenever there were significant main or interaction effects, multiple mean comparisons were employed
using Tukey’s method at a significance level, α = 0.05. For each response, the validity of model
assumptions, namely normal distribution and constant variance of the error terms, were verified by
examining residual plots. In some data sets, transformations had to be used to achieve normality [11].

3. Results

3.1. Volatile Aroma Composition

From the GC-MS analysis of clear and cloudy juice produced from McIntosh (Figure 1)
and Honeycrisp (Figure 2) apples, the 14 most abundant volatile aroma compounds were identified
(Table 1). The volatile compounds from McIntosh juice were composed of about 42% aldehydes,
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37% esters, and 19% alcohols (Figure 3A). The major aldehyde detected in McIntosh juice was
2-methyl-4-pentenal (38.4%) with a minor content of (E)-2-hexenal (3.4%) (Figure 3A). The major esters
detected in McIntosh juice included ethyl butanoate, butyl butanoate, hexyl butanoate, and 2-methyl
butyl acetate, which contributed 11.8%, 8.1%, 7.8%, and 2.8% of the total volatile compounds,
respectively (Figure 3A). Unidentified branched-chain alcohol and 2-hexen-1-ol, which comprised
12.6% and 6.0% of the total volatiles, were the major alcohols detected in the McIntosh juice (Figure 3A).
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Table 1. Major volatile compounds isolated from clear and cloudy apple juice of McIntosh and
Honeycrisp apples.

Volatile Compounds Retention
Time (min)

Experimental
Retention

Index (RI) a
Odor Property Odor Threshold

(mg/L)

Esters
Ethyl acetate 6.83 898 Ether like [2] 7.50 [12]

Ethyl butanoate 10.15 1049 Sweet fruity [13] 0.001 [14]
Butyl acetate 10.91 1087 Sweet fruity [13] 0.066 [12,14]

2-Methyl butyl acetate 11.83 1137 Fresh [13] 0.011 [14]
Butyl butanoate 13.46 1233 Fresh [13] 0.10 [14]

Hexyl acetate 14.32 1287 Sweet fruity [13] 0.002 [14]
Hexyl butanoate 16.41 1433

Aldehydes

2-(E)-hexenal 13.64 1244 Green apple like
[2] 0.011 [12]

2-Methyl-4-pentenal 15.49 1367 Desirable, green
grass, fruity [15]

Alcohols
Ethanol 7.88 944 Sweet [2] 716 [12]

(Z)-2-hexen-1-ol 11.09 1096 Fresh leaf green
[13] 0.07 [16]

Unidentified
branched-chain alcohol 16.56 1444

Acids
Ethyl

2-methylbutanoic acid 10.43 1063

Hydrocarbon
Alkene I 13.16 1214

a Retention index (RI) was calculated based on the retention times of a series of alkane standards.
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Figure 3. The relative abundance of volatile compounds identified in fresh, clear, and cloudy apple juices
from McIntosh (A) and Honeycrisp (B) apples, as well as from whole McIntosh (C) and Honeycrisp (D)
apples stored for 4 months under controlled atmosphere (CA) or regular atmosphere (RA) conditions
and harvested at commercial or late maturity stage. The value for each bar represents the mean of
48 samples each with three biological replicates.
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The aroma volatiles in Honeycrisp juice were dominated by esters, which comprised 78.9% of the
total volatiles followed by aldehydes (11.8%) and alcohols (8.7%) (Figure 3B). The major esters found
in Honeycrisp juice were butyl acetate (31.3%), 2-methyl butyl acetate (22.9%), ethyl acetate (10.3%),
and hexyl acetate (8.0%) (Figure 3B). As in McIntosh, the major aldehyde in Honeycrisp juice was
2-methyl-4-pentenal (10.4%) with a minor amount of (E)-2-hexenal (1.4%) (Figure 3B). The unidentified
branched-chain alcohol (5.7%) and 2-hexen-1-ol (2.1%) were the major alcohols detected in Honeycrisp
juice. In both cultivars, ethanol was a minor constituent, accounting for <1% of the total volatile
compounds (Figure 3A,B).

3.2. Effect of Harvest Maturity, 1-MCP, and Storage Conditions on the Volatile Composition

3.2.1. McIntosh Juice

Total volatile content from McIntosh juice was greater in juice produced from late-harvested
fruit and from fruit stored in RA than juice from commercial maturity and CA-stored fruit. The juice
produced from late-harvested fruit had higher concentrations of all the major esters than the commercial
maturity harvested fruit, averaging 2.7- to 6.5-fold greater (Table 2). There was a significant interaction
between 1-MCP and harvest maturity on their effects on the content of total volatiles and all major esters.
The 1-MCP treatment increased the total volatile content of juice produced from commercial harvest
fruit by 69% but reduced total volatiles in juice from late-harvested fruit by 32%. All major esters
demonstrated this same effect with 1-MCP-treated fruit being 2.3- to 4.9-fold greater in commercial
harvest fruit but 1.4- to 2.7-fold less in late-harvest fruit. There was also a significant interaction
between harvest maturity and storage atmosphere on their effects on total and major ester composition
of McIntosh juice (Table 2). Juice made from commercial maturity harvested fruit tended to have
higher concentrations of total volatile and major esters from CA-stored than RA-stored fruit, but with
late-harvested fruit, volatiles were the greatest in juice made from RA-stored fruit. Cloudy juice also
tended to have higher concentrations of total volatiles and major esters than clear juice, with hexyl
butanoate averaging 6.9-fold greater.

The major aldehydes and alcohols identified in McIntosh juices were 2- to 3-fold more abundant in
juice produced from late-harvested fruit than from commercial maturity fruit except (E)-2-hexenal that
had a 2.3-fold greater concentration in juice from the commercial harvest maturity (Table 3). The 1-MCP
treatment had a significant interaction with harvest maturity that affected the aldehyde and alcohol content
of McIntosh juice. In juice made from commercial maturity fruit, concentrations of 2-methyl-4-pentenal,
the unknown branched-chain alcohol, and (Z)-2-hexen-1-ol were 2.3-, 3.9-, and 1.2-fold greater in
juice made from 1-MCP-treated fruit than untreated fruit. However, in late-harvested fruit, the fruit
concentrations were lower in juice from 1-MCP-treated fruit except for (E)-2-hexenal, which was 1.7-fold
higher. There was also a significant interaction between harvest maturity and storage atmosphere.
In juice made from commercial maturity fruit, concentrations of 2-methyl-4-pentenal and the unknown
branched-chain alcohol were 2.5- and 6.3-fold greater in juice made from CA- than RA-stored fruit.
However, in late-harvested fruit, these concentrations were lower in juice from CA-stored fruit except
for (E)-2-hexenal, which was 1.6-fold higher. The concentration of (E)-2-hexenal was 1.6- to 1.9-fold
higher in clear juice than in cloudy juice produced from both commercial maturity and late-harvested
fruit, respectively (Table 3). The concentration of (Z)-2-hexen-1-ol was also about 1.5-fold higher in
clear juice than cloudy juice from commercial maturity fruit, but in juice from late-harvested fruit,
the concentration in cloudy juice was 1.5-fold higher than in clear juice. It is also interesting to note
that ethanol was not detected among the volatiles of McIntosh juice.
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Table 2. The relative amounts of major esters and total volatile compounds identified in clear and cloudy juice samples from McIntosh apples harvested at commercial
or late-harvest maturity, treated, or untreated with 1-MCP and stored under CA or RA conditions for 4 months.

Treatment Combinations
Normalized Peak Area Counts a

Ethyl Butanoate Butyl Butanoate Hexyl Butanoate 2-Methyl Butyl Acetate Total Volatile h

Harvest Comm. b 0.59 ± 0.06 B 0.31 ± 0.05 B 0.20 ± 0.29 B 0.43 ± 0.13 B 20.31 ± 3.28 B

(H) Late 2.47 ± 0.06 A 2.01 ± 0.05 A 0.89 ± 0.29 A 1.16 ± 0.13 A 37.14 ± 3.28 A

1-MCP 1-MCP 1.48 ± 0.06 A 0.94 ± 0.05 A 0.41 ± 0.29 A 0.79 ± 0.13 A 27.87 ± 3.28 A

(M) Control 1.09 ± 0.06 A 0.79 ± 0.05 A 0.43 ± 0.29 A 0.80 ± 0.13 A 29.58 ± 3.28 A

Atmos. c CA d 0.99 ± 0.06 A 0.64 ± 0.05 A 0.31 ± 0.29 A 0.42 ± 0.13 B 21.07 ± 3.28 B

(A) RA e 1.62 ± 0.06 A 1.14 ± 0.05 A 0.57 ± 0.29 A 0.16 ± 0.13 A 36.38 ± 3.28 A

Juice Clear 0.94 ± 0.06 A 0.61 ± 0.05 A 0.16 ± 0.29 B 0.72 ± 0.13 A 24.37 ± 3.28 A

(J) Cloudy 1.69 ± 0.06 A 1.18 ± 0.05 A 1.10 ± 0.29 A 0.87 ± 0.13 A 33.08 ± 3.28 A

H ×M Comm. 1-MCP 1.22 ± 0.08 A,B 0.62 ± 0.07 B,C 0.31± 0.42 A,B 0.61 ± 0.18 B,C 25.80 ± 4.64 B

Comm. Control 0.25 ± 0.08 B 0.14 ± 0.07 C 0.13 ± 0.42 B 0.26 ± 0.18 C 14.82 ± 4.64 B

Late 1-MCP 1.77 ± 0.08 A 1.37 ± 0.07 A,B 0.55 ± 0.42 A,B 0.97 ± 0.18 A,B 29.95 ± 4.64 A,B

Late Control 3.40 ± 0.08 A 2.87 ± 0.07 A 1.46 ± 0.42 A 1.34 ± 0.18 A 44.33 ± 4.64 A

H × A Comm. CA 1.64 ± 0.08 B 0.72 ± 0.07 B 0.41 ± 0.42 A 0.58 ± 0.18 B 25.54 ± 4.64 B

Comm. RA 0.16 ± 0.08 C 0.12 ± 0.07 B 0.09 ± 0.42 B 0.28 ± 0.18 B 15.08 ± 4.64 B

Late CA 0.56 ± 0.08 B,C 0.57 ± 0.07 B 0.24 ± 0.42 B 0.26 ± 0.18 B 16.60 ± 4.64 B

Late RA 7.86 ± 0.08 A 5.50 ± 0.07 A 3.40 ± 0.42 A 2.05 ± 0.18 A 57.86 ± 4.64 A

H × J Comm. Clear 0.48 ± 0.08 B 0.27 ± 0.07 B 0.09 ± 0.42 B 0.46 ± 0.18 B 20.55± 4.64 B

Comm. Cloudy 0.72 ± 0.08 A 0.36 ± 0.07 B 0.42 ± 0.42 A 0.41 ± 0.18 B 20.08 ± 4.64 B

Late Clear 1.71 ± 0.08 A 1.24 ± 0.07 A 0.27 ± 0.42 A 0.98 ± 0.18 A 28.19 ± 4.64 A

Late Cloudy 3.50 ± 0.08 A 3.31 ± 0.07 A 2.92 ± 0.42 A 1.33 ± 0.18 A 46.09 ± 4.64 A

Statistical Significance f

H *** H *** H *** H *** H ***
A *** A ***

J ***
H ×M * H ×M * H ×M * H ×M * H ×M **

H × A *** H × A *** H × A *** H × A *** H × A ***
H × J **

Lambda g 0.2 0.2 0 1 1

All the values represent mean ± standard error of three biological replicates. Means followed by the same letter within a column are not significantly different. a Ratio of sample peak area
counts to the peak area count of the internal standard, 2-octanone. b Comm. = commercial maturity for long-term storage. c Atmos. = storage atmosphere. d CA = controlled atmosphere.
e RA = regular atmosphere. f Statistical significance = only significant main or interaction effects are reported for each response. *, **, *** = significant at p < 0.05, p < 0.01, or p < 0.001,
respectively. A, atmosphere; H, harvest; M, 1-MCP; J, juice. g The lambda values other than zero indicate the power to which all the data should be raised. Zero lambda values indicate the
natural log transformation. Mean values were back-transformed to their original values. h Total volatile is for all the volatiles included in Tables 2 and 3.
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Table 3. Relative amounts of major aldehydes and alcohols identified in clear and cloudy juice samples
from McIntosh apples harvested at commercial or late-harvest maturity, treated or untreated with
1-MCP and stored under CA or RA conditions for 4 months.

Treatment Combinations

Normalized Peak Area Counts a

2-Methyl
4-Pentenal (E)-2- Hexenal Branched-Chain Alcohol (Z)-2-Hexen-1-ol

Harvest Comm. b 6.37 ± 0.19 B 1.15 ± 0.05 A 0.32 ± 0.37 B 1.06 ± 0.07 B

(H) Late 12.69 ± 0.19 A 0.49 ± 0.05 B 0.98 ± 0.37 A 2.07 ± 0.07 A

1-MCP 1-MCP 9.73 ± 0.19 A 0.84 ± 0.05 A 0.55 ± 0.37 A 1.40 ± 0.07 A

(M) Control 8.81 ± 0.19 A 0.62 ± 0.05 B 0.58 ± 0.37 A 1.57 ± 0.07 A

Atmos. c CA d 8.26 ± 0.19 A 0.78 ± 0.05 A 0.37 ± 0.37 A 1.65 ± 0.07 A

(A) RA e 10.33 ± 0.19 A 0.66 ± 0.05 A 0.85 ± 0.37 A 1.33 ± 0.07 B

Juice Clear 7.67 ± 0.19 A 0.97 ± 0.05 A 0.51 ± 0.37 A 1.50 ± 0.07 A

(J) Cloudy 11.01 ± 0.19 A 0.55± 0.05 B 0.66 ± 0.37 A 1.46 ± 0.07 A

H ×M Comm. 1-MCP 9.30 ± 0.27 A 1.12 ± 0.07 A 0.63 ± 0.53 B 1.20 ± 0.09 B,C

Comm. Control 4.00 ± 0.27 B 1.19 ± 0.07 A 0.16 ± 0.53 C 0.94 ± 0.09 C

Late 1-MCP 10.17 ± 0.27 A 0.65 ± 0.07 B 0.48 ± 0.53 B 1.63 ± 0.09 B

Late Control 15.50 ± 0.27 A 0.38 ± 0.07 C 2.01 ± 0.53 A 2.63 ± 0.09 A

H × A Comm. CA 9.54 ± 0.27 B 1.01 ± 0.07 A 0.82 ± 0.53 B 1.16 ± 0.09 A

Comm. RA 3.84 ± 0.27 C 1.33 ± 0.07 A 0.13 ± 0.53 C 0.97 ± 0.09 B

Late CA 7.07 ± 0.27 B,C 0.63 ± 0.07 B 0.17 ± 0.53 C 2.35 ± 0.09 A

Late RA 19.96 ± 0.27 A 0.39 ± 0.07 C 5.76 ± 0.53 A 1.83 ± 0.09 A

H × J Comm. Clear 6.13 ± 0.27 B 1.41 ± 0.07 A 0.31 ± 0.53 B 1.34 ± 0.09 A

Comm. Cloudy 6.62 ± 0.27 B 0.96 ± 0.07 A,B 0.33 ± 0.53 B 0.85 ± 0.09 C

Late Clear 9.38 ± 0.27 A 0.70 ± 0.07 B 0.85 ± 0.53 A 1.69 ± 0.09 A

Late Cloudy 16.51 ± 0.27 A 0.36 ± 0.07 C 1.12 ± 0.53 A 2.53 ± 0.09 A

Statistical Significance f

H *** H *** H * H ***
A *

M **
J ***

H ×M *** H ×M ** H ×M *** H ×M ***
H × A *** H × A *** H × A ***

H × J * H × J ***
Lambda g 0.5 0.5 0 0

All the values represent mean ± standard error of three biological replicates. Means followed by the same letter
within a column are not significantly different. a Ratio of sample peak area counts to the peak area count of
the internal standard, 2-octanone. b Comm. = commercial maturity for long-term storage. c Atmos. = storage
atmosphere. d CA = controlled atmosphere. e RA = regular atmosphere. f Statistical significance = only significant
main or interaction effects are reported for each response. *, **, *** = significant at p < 0.05, p < 0.01, or p < 0.001,
respectively. A, atmosphere; H, harvest; M, 1-MCP; J, juice. g The lambda values other than zero indicate the power
to which all the data should be raised. Zero lambda values indicate the natural log transformation. Mean values
were back-transformed to their original values.

3.2.2. Honeycrisp Juice

Regardless of the postharvest treatment and storage conditions, Honeycrisp juice had about
4-fold higher ester and total aroma volatile content than McIntosh juice. In Honeycrisp, significant
differences in the level of esters and total aroma volatiles were mainly caused by storage atmosphere
and juice processing techniques (p ≤ 0.001) but not by 1-MCP treatment (Table 4). Overall, cloudy juice
produced from Honeycrisp fruit had a 3- to 4-fold higher content of all the major esters and total
volatile compounds than in clear juice. Similar to McIntosh, CA storage of Honeycrisp fruit resulted
in juices that exhibited a 27% to 51% reduction of most straight-chain esters as compared to RA
storage (Table 4). However, the concentration of the branched-chain ester 2-methyl butyl acetate was
2.6-fold higher in juice from CA-stored fruit than RA-stored fruit. This was similar to juice made
from commercial maturity McIntosh fruit, but not late-harvested fruit, which had higher 2-methyl
butyl acetate concentration in juice from RA-stored fruit than CA-stored fruit. Ethyl acetate was the
only volatile compound that was significantly reduced in juice made from 1-MCP-treated Honeycrisp
apples, being only 8% to 21% of that from untreated fruit. This is an interesting observation because
ethyl acetate is a major volatile that leads to off-flavors.

The major aldehydes and alcohols in Honeycrisp juice were significantly affected by the storage
atmosphere (p ≤ 0.001). The concentration of 2-methyl-4-pentenal and the unknown branched-chain
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alcohol in juice made from CA-stored fruit were 29% and 74%, respectively, less than in juice
from RA-stored fruit, while (E)-2-hexenal and (Z)-2-hexen-1-ol were 40% and 51% greater (Table 5).
The 1-MCP treatment reduced the concentration of the unknown branched-chain alcohol and ethanol
by 91% and 84%, respectively, in Honeycrisp juice. Aldehyde content was 31% and 50% less for
2-methyl-4-pentenal and (E)-2-hexenal, respectively, in juice produced from late-harvested fruit
compared to commercial harvest fruit. On average, cloudy juice from Honeycrisp fruit had 33.5%
to 66.9% higher content of all the major aldehydes and alcohols as compared to clear juice, with the
difference being most prominent in late-harvested fruit samples (Table 5).

Table 4. Relative amounts of major ester volatile compounds identified in clear and cloudy juice
samples from Honeycrisp apples harvested at commercial or late-harvest maturity, treated or untreated
with 1-MCP and stored under CA or RA conditions for 4 months.

Treatment Combinations
Normalized Peak Area Counts a

Butyl Acetate 2-Methyl Butyl
Acetate Ethyl Acetate Hexyl Acetate Total Volatile

Harvest
(H)

Comm. b 16.17 ± 0.09 A 14.26 ± 0.20 A 3.57 ± 0.03 A 4.77 ± 0.06 A 58.44 ± 8.17 A

Late 16.46 ± 0.10 A 12.44 ± 0.21 A 4.24 ± 0.03 A 3.36 ± 0.06 A 48.31 ± 8.43 A

1-MCP
(M)

1-MCP 15.64 ± 0.10 A 15.22 ± 0.20 A 1.41 ± 0.03 B 4.08 ± 0.06 A 50.09 ± 8.17 A

Control 17.02 ± 0.10 A 11.58 ± 0.20 A 9.33 ± 0.03 A 3.96 ± 0.06 A 56.37± 8.43 A

Atmos. c

(A)
CA d 13.95 ± 0.10 B 19.78 ± 0.20 A 2.69 ± 0.03 B 2.82 ± 0.06 B 57.91± 8.17 A

RA e 19.09 ± 0.10 A 8.15 ± 0.20 B 5.51 ± 0.03 A 5.54 ± 0.06 A 48.75± 8.43 A

Juice
(J)

Clear 9.08 ± 0.10 B 6.48 ± 0.20 B 2.53 ± 0.03 B 1.79 ± 0.06 B 30.90 ± 8.17 B

Cloudy 29.33 ± 0.10 A 22.63 ± 0.20 A 5.81 ± 0.03 A 7.72 ± 0.06 A 91.36 ± 8.43 A

H ×M

Comm. 1-MCP 14.70 ± 0.14 A 16.70 ± 0.28 A 0.90 ± 0.04 B 4.23 ± 0.08 A 53.62 ± 11.6 A

Comm. Control 17.79 ± 0.14 A 12.02 ± 0.28 A 11.01 ± 0.04 A 5.36 ± 0.08 A 63.70 ± 11.6 A

Late 1-MCP 16.64 ± 0.15 A 13.81± 0.30 A 2.13 ± 0.04 B 3.95 ± 0.09 A 46.79 ± 11.6 A

Late Control 16.29 ± 0.15 A 11.14± 0.30 A 7.86 ± 0.04 A 2.84 ± 0.099 A 49.88 ± 12.3 A

H × A

Comm. CA 12.93 ± 0.14 A 20.43 ± 0.28 A 2.55 ± 0.04 B 3.39 ± 0.08 A 65.88 ± 11.6 A

Comm. RA 20.23 ± 0.14 A 9.20 ± 0.28 B 4.91± 0.04 A 6.50 ± 0.08 A 51.84 ± 11.6 A

Late CA 15.04 ± 0.15 A 19.15 ± 0.30 A 2.84 ± 0.04 B 2.33 ± 0.09 B 50.91 ± 12.3 A

Late RA 18.01± 0.15 A 7.17 ± 0.30 B 6.16 ± 0.04 A 4.68 ± 0.09 A 45.85 ± 11.6 A

H × J

Comm. Clear 11.95 ± 0.14 c 9.61 ± 0.28 B 3.19 ± 0.04 B 2.56 ± 0.08 B 45.07 ± 11.6 B

Comm. Cloudy 21.88 ± 0.14 A 19.84 ± 0.28 A 4.00 ± 0.04 A 8.06 ± 0.08 A 75.77 ± 11.6 A

Late Clear 6.89 ± 0.15 C 3.97 ± 0.30 B 2.00 ± 0.04 B 1.19 ± 0.09 B 21.19 ± 12.3 C

Late Cloudy 39.30 ± 0.15 A 25.60 ± 0.30 A 8.28 ± 0.04 A 7.39 ± 0.09 A 110.17 ± 11.6 A

Statistical Significance f

M *** M *
A * A *** A *** A ***
J *** J *** J *** J *** J ***

H ×M **
H × J *** H × J ** H × J ** H × J ***

Lambda g 0 0.5 0.2 0.3 0

All the values represent mean ± standard error of three biological replicates. Means followed by the same letter
within a column are not significantly different. a Ratio of sample peak area counts to the peak area count of
the internal standard, 2-octanone. b Comm. = commercial maturity for long-term storage. c Atmos. = storage
atmosphere. d CA = controlled atmosphere. e RA = regular atmosphere. f Statistical significance = only significant
main or interaction effects are reported for each response. *, **, *** = significant at p < 0.05, p < 0.01, or p < 0.001,
respectively. A, atmosphere; H, harvest; M, 1-MCP; J, juice. g The lambda values other than zero indicate the power
to which all the data should be raised. Zero lambda values indicate the natural log transformation. Mean values
were back-transformed to their original values.
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Table 5. The relative amounts of major aldehydes and alcohols identified in clear and cloudy juice
samples from Honeycrisp apples harvested at commercial or late-harvest maturity, treated or untreated
with 1-MCP and stored under CA or RA conditions for 4 months.

Treatment Combinations

Normalized Peak Area Counts a

2-Methyl-4-
Pentenal

(E)-2-
Hexenal

Branched
Chain

Alcohol

(Z)-2-
Hexen-1-ol Ethanol

Harvest (H) Comm. b 6.62 ± 0.103 A 1.02 ± 0.133 A 1.07 ± 0.017 A 1.33 ± 0.184 A 0.56 ± 0.113 A

Late 4.57 ± 0.103 B 0.51 ± 0.141 B 1.11 ± 0.018 A 1.61 ± 0.195 A 0.71 ± 0.119 A

1-MCP (M) 1-MCP 5.22 ± 0.107 A 0.70 ± 0.137 A 0.39 ± 0.018 B 1.52 ± 0.189 A 0.17 ± 0.116 B

Control 5.81 ± 0.107 A 0.74 ± 0.137 A 3.69 ± 0.018 A 1.41 ± 0.189 A 1.09 ± 0.116 A

Atmos. c (A) CA d 4.64 ± 0.107 B 0.93 ± 0.137 A 0.58 ± 0.018 B 1.97 ± 0.189 A 0.50 ± 0.116 A

RA e 6.52 ± 0.107 A 0.56 ± 0.137 B 2.23 ± 0.018 A 0.97 ± 0.189 B 0.77 ± 0.116 A

Juice (J) Clear 3.37 ± 0.107 B 0.54 ± 0.137 B 0.66 ± 0.018 B 0.92 ± 0.189 B 0.41 ± 0.116 B

Cloudy 8.98 ± 0.107 A 0.96 ± 0.137 A 1.88 ± 0.018 A 2.02 ± 0.189 A 0.86 ± 0.116 A

H ×M

Comm. 1-MCP 5.59 ± 0.146 A 0.85 ± 0.188 A 0.31 ± 0.024 B 1.38 ± 0.260 A 0.10 ± 0.159 A

Comm. Control 7.85 ± 0.146 A 1.22 ± 0.188 A 5.10 ± 0.024 A 1.29 ± 0.260 A 1.02 ± 0.159 A

Late 1-MCP 4.87 ± 0.155 A 0.58 ± 0.199 A 0.51 ± 0.024 B 1.67 ± 0.275 A 0.24 ± 0.169 A

Late Control 4.29 ± 0.155 A 0.45 ± 0.199 A 2.72 ± 0.024 A 1.54 ± 0.275 A 1.18 ± 0.169 A

H × A

Comm. CA 5.74 ± 0.146 A 1.48± 0.188 A 0.62 ± 0.024 A 1.82 ± 0.260 A 0.45 ± 0.159 A

Comm. RA 7.64 ± 0.146 A 0.47 ± 0.188 A 1.97 ± 0.024 A 0.84 ± 0.260 A 0.67 ± 0.159 A

Late CA 3.75 ± 0.155A 0.58 ± 0.199 A 0.54 ± 0.024 A 2.11 ± 0.275 A 0.55 ± 0.169 A

Late RA 5.57 ± 0.155 A 0.45 ± 0.199 A 2.53± 0.024 A 1.11 ± 0.275 A 0.87 ± 0.169 A

H × J

Comm. Clear 5.68 ± 0.146 B 0.71 ± 0.188 A 0.87± 0.024 B,C 1.07 ± 0.260 B 0.55 ±0.159 A,B

Comm. Cloudy 7.73 ± 0.146 A,B 1.48 ± 0.188 A 1.34 ± 0.024 B 1.60 ± 0.260 A,B 0.57± 0.159 A,B

Late Clear 2.00 ± 0.155 C 0.41 ± 0.199 A 0.51 ± 0.024 C 0.76 ± 0.275 B 0.26 ± 0.169 B

Late Cloudy 10.44 ±0.155 A 0.62 ± 0.199 A 2.69 ± 0.024 A 2.45 ± 0.275 A 1.16 ± 0.169 A

M × A

1-MCP CA 4.03 ± 0.146 A 1.04 ± 0.188 A 0.20 ± 0.024 D 2.18 ± 0.260 A 0.08 ± 0.159 A

1-MCP RA 6.75 ± 0.155 A 0.47± 0.188 A 0.91 ± 0.024 C 0.87 ± 0.260 A 0.26 ± 0.159 A

Control CA 5.34 ± 0.155 A 0.83 ± 0.199 A 2.25± 0.024 B 1.75 ± 0.275 A 0.92 ± 0.169 A

Control RA 6.31 ± 0.146 A 0.67± 0.199 A 6.35 ± 0.024 A 1.08 ± 0.275 A 1.27 ± 0.169 A

Statistical significance f

H * H ***
M *** M ***

A * A *** A *** A ***
J *** J *** J *** J ** J ***

H ×M ***
M × A **

H × J * H × J ** H × J ** H × J *
Lambda g 0 0 0 1 1

All the values represent mean ± standard error of three biological replicates. Means followed by the same letter
within a column are not significantly different. a Ratio of sample peak area counts to the peak area count of
the internal standard, 2-octanone. b Comm. = commercial maturity for long-term storage. c Atmos. = storage
atmosphere. d CA = controlled atmosphere. e RA = regular atmosphere. f Statistical significance = only significant
main or interaction effects are reported for each response. *, **, *** = significant at p < 0.05, p < 0.01, or p < 0.001,
respectively. A, atmosphere; H, harvest; M, 1-MCP; J, juice. g The lambda values other than zero indicate the power
to which all the data should be raised. Zero lambda values indicate the natural log transformation. Mean values
were back-transformed to their original values.

4. Discussion

4.1. Volatile Aroma Composition

As to the authors’ knowledge, this is the first study to report the volatile profile from Honeycrisp
juices. Substantiating our results, esters, aldehydes, and alcohols have been reported as major groups
of volatile compounds in juices from different apple cultivars including McIntosh [17], Jonagold [13],
Golden Delicious, Red Delicious [18], Holsteiner Cox, Ingrid Marie, and Rajka [19]. Our results
indicated quantitative and qualitative differences in the level of volatile compounds between the two
cultivars. Esters are known for their desirable aromatic notes in apple beverages, which are often
described as “fresh apple”, “fruity”, and “sweet”, and it is reasonable to assume that the higher amount
of total esters in Honeycrisp juices would increase its overall aroma and flavor [20]. The higher content
of 2-methyl-4-pentenal in McIntosh juice samples could offer desirable green grass and fruit aroma
notes [15]. Despite the greater content of total esters in Honeycrisp juices, the higher level of ethyl
acetate in Honeycrisp juices may lead to the development of undesirable flavor as excessive amounts
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of fermentation volatiles, including ethyl acetate, which can generate off-flavors and aromas [3].
The higher concentration of butanoate esters in McIntosh juices could provide juice with a favorable
fruity, ripe, and sweet aroma [2]. Due to the low odor threshold values (Table 2) of acetate and butanoate
esters, these groups of esters could generate a significant contribution to the final aroma of the juice
samples. Accordingly, it has been demonstrated that acetate esters, including butyl acetate, 2-methyl
butyl acetate, hexyl acetate, and ethyl butanoate, are major contributors to the typical apple-like aroma
and flavor in many apple cultivars [21,22]. Similarly, hexyl acetate, butyl acetate, and ethyl butanoate
were reported as the most important volatiles in Jonagold juice [23].

In addition to straight-chain esters, a branched-chain ester, 2-methyl butyl acetate, was one of the
most abundant volatile compounds detected in Honeycrisp and McIntosh juices. Owing to its lower
threshold value, 2-methyl butyl acetate has been described as one of the most significant odor active
volatile compounds in other apple cultivars, including Gala [24].

It has been indicated that C-6 aldehydes, particularly (E)-2-hexenal and hexenal, are responsible
for the fresh green aroma in apple juice [25]. Excessive concentration of C-6 aldehydes (>2430 µg/L) in
apple juice has been associated with negative odor impressions and thus led to lower sensory scores
and is often denoted by sensory descriptors such as “artificial flavor, too green, and shampoo-like” [2].
Thus, it is reasonable to assume the relatively high content of C-6 aldehydes in McIntosh juices might
lead to the development of negative organoleptic properties.

The volatile compounds identified from McIntosh and Honeycrisp juices are a combination of
primary (synthesized by the intact fruit) and secondary (synthesized in response to cellular disruption
during juice processing) volatile compounds [25]. The volatile compounds detected from intact fruit
are mainly composed of esters and ethanol (Figure 3C,D). These primary volatiles are synthesized by
controlled enzymatic reactions mainly from fatty acid metabolism [26]. It is well known that fatty acids
are major precursors of aroma volatiles in several fruits, including apple, and the biosynthetic pathway
includes beta-oxidation (primary volatiles) and lipoxygenase (LOX) action (secondary compounds) [26].
The beta-oxidation pathway provides alcohols and acyl co-enzyme-A (CoA,), which are the main
precursors for volatile ester production. Acyl CoAs are reduced by acyl CoA reductase to produce
aldehydes, which in turn are reduced by alcohol dehydrogenase (ADH) to form alcohols that are
converted to esters via the action of AAT [25].

Secondary volatiles, which are mainly C-6 aldehydes and the associated alcohols, are formed by
the LOX pathway from unsaturated fatty acids (linoleic and linolenic acids) when the fruit is crushed
and exposed to oxygen [26]. In our experiment, C-6 and C-5 aldehydes such as (E)-2-hexenal and
2-methyl-4-pentenal were detected only in juice samples but not in whole apple samples (Figure 3).
This is in agreement with other studies, which reported the higher content of C-6 aldehydes in apple
juice compared to intact fruit [27,28]. As discussed earlier, the presence of aldehydes in juice samples
but not in intact Honeycrisp and McIntosh apples is attributed to the oxidation of unsaturated fatty
acids (linoleic and linolenic) during juice processing.

4.2. Effect of 1-MCP, Storage Atmosphere, and Juice Processing

According to the results presented, the content and composition of volatile compounds from
clear and cloudy juice were strongly influenced by the different combinations of 1-MCP treatment,
storage atmosphere, harvest maturity, and juice type. The subsequent impact of the levels of esters
and aldehydes on the juice odor depends on its odor threshold value (i.e., the detection or recognition
values, above which the compound can be detected by smell) and concentration [21]. Based on the
threshold values of volatile compounds summarized from the literature (Table 2), esters and aldehydes
have considerably lower threshold values as compared with alcohols. This means esters and aldehydes
may have a key role in influencing the odor of the juice even at low concentrations. On the other hand,
volatile compounds with higher threshold values (notably ethanol, Table 2) might not have a large
impact on the odor of apple juice. Hence, our discussion will focus on aldehydes and esters.
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In McIntosh juices, whether it is clear or cloudy, our results indicated a remarkable reduction of
all types of esters, aldehydes, most alcohols, and total volatile compounds when juices are extracted
from 1-MCP-treated fruit stored in CA or RA. This is consistent with previous studies that found a
substantial suppression of volatile aroma compounds in several apple cultivars that had been treated
with 1-MCP before storage in RA or CA [6,7].

Unlike McIntosh, 1-MCP treatment alone (1-MCP + RA) in Honeycrisp apples did not alter
the content of most volatile compounds except ethyl acetate and ethanol, which were substantially
suppressed by the treatment. This effect might be attributed to the unusual response of this cultivar to
1-MCP treatment. In our previous study (unpublished) while 1-MCP + RA treatment in McIntosh
apples inhibited ethylene production better than the control + CA/RA treatments, the same treatment in
Honeycrisp produced the highest ethylene (49.03 µL kg−1 h−1) level, which was present at higher levels
than in control fruit (17 µL kg−1 h−1). As reported in other cultivars [6,7] elevated ethylene production
is usually accompanied by an increased level of volatile compounds and vice versa. Nevertheless,
this trend did not occur in Honeycrisp apples. As there is no published information regarding the
volatile profile of Honeycrisp fruit or juice, especially none focusing on 1-MCP treatment, it is difficult
to account for the unusual response of this cultivar to 1-MCP treatment.

The observed inhibitory effect of CA storage on the content of volatile compounds is consistent
with previous studies in different apple cultivars [29,30]. Reduced sensitivity to ethylene [31] or
suppressed ethylene production of CA-stored fruit [31,32] has been suggested as a mechanism by which
volatile production could be inhibited in CA-stored apples. The biosynthesis of volatile compounds
via beta-oxidation or the LOX pathway needs oxygen, and therefore their production could be slowed
down by CA condition where the oxygen level is much lower than the RA atmosphere [5].

Even though CA storage suppressed the content of most volatile compounds, it also enhanced
some branched-chain esters detected from intact Honeycrisp apples (3-methyl-1-butyl acetate) as
well as from Honeycrisp juices (2-methyl butyl acetate). In agreement with our observation, other
studies also reported the increased level of branched-chain acetate esters in Delicious [33], Gala [30],
and Fuji [21] apples that were kept under low oxygen storage conditions. A study in pear fruit found
an increased level of branched-chain esters associated with a higher level of amino acids, which are
the main precursors of branched-chain esters [34]. The higher concentration of (E)-2-hexenal in juices
from 1-MCP and/or CA-treated Honeycrisp apples might be attributed to the suppressed ripening
of the apples associated with lower ethylene production [30]. Contrary to the results observed in
late-harvested McIntosh juices, the suppressive effect of 1-MCP and/or CA storage was not clearly
observed in juices extracted from fruit harvested at commercial maturity. These results are unexpected,
and no explanation or corresponding results were found in the literature.

As compared to clear juices, cloudy juice samples from McIntosh and Honeycrisp apples had
considerably higher levels of all the major esters, aldehydes, and total volatiles, which was most
pronounced in Honeycrisp juices. Even though there is a lack of literature pertaining to the volatile
composition of cloudy apple juices, one recent study reported higher levels of total esters in apple juice
with pulp as compared to juice from concentrate [18]. The reduction of esters in clear juice samples
can be explained by the hydrolysis of esters by the action of esterase that is present in the commercial
enzyme preparation [26]. As mentioned in the methodology part, one of the major differences between
the two juices is the absence (clear) or presence (cloudy) of ascorbic acid. The higher content of
aldehydes in cloudy juices, which is processed with ascorbic acid addition, is consistent with a previous
study [13] that investigated the changes in the aroma value (the ratio of volatile concentration to odor
threshold) of volatile compounds due to the addition of ascorbic acid (0.2% w/v) to the apple juice.
Komthong et al. [13] found considerably higher (4- to 5-fold) aroma value of (E)-2-hexenal and hexanal
in juices treated with ascorbic acid than the control. Even though there is limited information about
the exact mechanism of ascorbic acid reaction with volatile compounds, the reduced concentration of
aldehydes in clear juice samples has been associated with the action of ADH during the clarification
process. The lower content of aldehydes in clear juice samples was ascribed to the conversion of
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aldehydes to alcohols by the action of ADH during the enzymatic incubation [26,35]. The longer
incubation period (about 3 h at 25 ◦C, in our case) would give additional time for different enzymatic
reactions activated via endogenous enzymes, including ADH. In our experiment, the long incubation
period was not part of cloudy apple juice preparation; instead, the juice was immediately cooled and
then pasteurized. This immediate cooling, which was followed by pasteurization, could slow down
and inactivate the action of the indigenous enzymes such as ADH. Hence, the preservation of aldehydes
in cloudy apple juice could be attributed to the inhibition of ADH activity during processing [26].

Generally, our study suggests that the content and composition of volatile aroma compounds
in apple juice could be strongly influenced by the fruit quality and juice processing techniques.
As each group of the volatile compound has a typical odor characteristic, the difference in their
abundance associated with postharvest treatments and juice processing steps could affect the subsequent
organoleptic quality of the juices. However, in future investigations, sensory evaluation is warranted
to assess the consumers’ perception associated with the change of volatile aroma compounds observed
in this study.

Author Contributions: Conceptualization, H.P.V.R., R.A.S. and C.F.F.; methodology, B.M.M. and M.J.; formal
analysis, B.M.M.; investigation, B.M.M.; resources, H.P.V.R.; data curation, H.P.V.R.; writing—original draft
preparation, B.M.M.; writing—review and editing, H.P.V.R., R.A.S. and C.F.F.; visualization, B.M.M.; supervision,
H.P.V.R., R.A.S. and C.F.F.; project administration, H.P.V.R.; funding acquisition, H.P.V.R. and C.F.F. This manuscript
is based on the Doctoral thesis of B.M.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Department of Foreign Affairs, Trade and Development (DFATD) of
Canada granted to Bizuayehu M. Muche (B.M.M.) and H.P. Vasantha Rupasinghe (H.P.V.R.).

Acknowledgments: Authors thank Tess Astatkie for administrative support related to DFATD funds.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rupasinghe, H.P.V.; Thilakarathna, S. Apple juice. In Handbook of Functional Beverages and Human Health,
1st ed.; Shahidi, F., Alasalvar, C., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016;
pp. 93–106.

2. Nikfardjam, M.P.; Maier, D. Development of a headspace trap HRGC/MS method for the assessment of the
relevance of certain aroma compounds on the sensorial characteristics of commercial apple juice. Food Chem.
2011, 126, 1926–1933. [CrossRef] [PubMed]

3. Dixon, J.; Hewett, E.W. Factors affecting apple aroma/flavour volatile concentration: A review. N. Z. J. Crop
Hortic. Sci. 2000, 28, 155–173. [CrossRef]

4. Graell, J.; Lopez, M.; Fuentes, T.; Echeverría, G.; Lara, I. Quality and volatile emission changes of ‘Mondial
Gala’ apples during on-tree maturation and postharvest storage in air or controlled atmosphere. Food Sci.
Technol. Int. 2008, 14, 285–294. [CrossRef]

5. López, M.; Villatoro, C.; Fuentes, T.; Graell, J.; Lara, I.; Echeverría, G. Volatile compounds, quality parameters
and consumer acceptance of ‘Pink Lady®’ apples stored in different conditions. Postharvest Biol. Technol.
2007, 43, 55–66. [CrossRef]

6. Kondo, S.; Setha, S.; Rudell, D.R.; Buchanan, D.A.; Mattheis, J.P. Aroma volatile biosynthesis in apples
affected by 1-MCP and methyl jasmonate. Postharvest Biol. Technol. 2005, 36, 61–68. [CrossRef]

7. Rupasinghe, H.P.V.; Murr, D.; Paliyath, G.; Skog, L. Inhibitory effect of 1-MCP on ripening and superficial
scald development in ‘McIntosh’ and ‘Delicious’ apples. J. Hortic. Sci. Biotechnol. 2000, 75, 271–276. [CrossRef]

8. Yan, T.; Qin, H.; Zhang, P.; Tian, S.; Li, J.; Li, B. Effects of 1-methylcyclopropene combined with ξ-polylysine
on quality and volatile components of Fuji apples during shelf life after cold storage. Shipin Kexue (Bejing)
2018, 39, 207–214.

9. Oszmianski, J.; Wojdylo, A.; Kolniak, J. Effect of enzymatic mash treatment and storage on phenolic composition,
antioxidant activity, and turbidity of cloudy apple juice. J. Agric. Food Chem. 2009, 57, 7078–7085. [CrossRef]

10. Scaman, C.H.; Jim, V.J.W.; Hartnett, C. Free galactose concentrations in fresh and stored apples (Malus domestica)
and processed apple products. J. Agric. Food Chem. 2004, 52, 511–517. [CrossRef]

http://dx.doi.org/10.1016/j.foodchem.2010.12.021
http://www.ncbi.nlm.nih.gov/pubmed/25213978
http://dx.doi.org/10.1080/01140671.2000.9514136
http://dx.doi.org/10.1177/1082013208094119
http://dx.doi.org/10.1016/j.postharvbio.2006.07.009
http://dx.doi.org/10.1016/j.postharvbio.2004.11.005
http://dx.doi.org/10.1080/14620316.2000.11511236
http://dx.doi.org/10.1021/jf900806u
http://dx.doi.org/10.1021/jf034643k


Beverages 2020, 6, 59 14 of 15

11. Montgomery, D.C. Design and Analysis of Experiments, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008;
p. 752. [CrossRef]

12. Flath, R.A.; Black, D.R.; Guadagni, D.G.; McFadden, W.H.; Schultz, T.H. Identification and organoleptic
evaluation of compounds in Delicious apple essence. J. Agric. Food Chem. 1967, 15, 29–35. [CrossRef]

13. Komthong, P.; Igura, N.; Shimoda, M. Effect of ascorbic acid on the odours of cloudy apple juice. Food Chem.
2007, 100, 1342–1349. [CrossRef]

14. Jennings, W.; Tang, C. Volatile components of apricot. J. Agric. Food Chem. 1967, 15, 24–28. [CrossRef]
15. Sampaio, K.L.; Garruti, D.S.; Franco, M.R.B.; Janzantti, N.S.; Da Silva, M.A. Aroma volatiles recovered in the

water phase of cashew apple (Anacardium occidentale L.) juice during concentration. J. Sci. Food Agric. 2011,
91, 1801–1809. [CrossRef] [PubMed]

16. Young, C.C.; Suffet, I. Development of a standard method—Analysis of compounds causing tastes and odors
in drinking water. Water Sci. Technol. 1999, 40, 279–285. [CrossRef]

17. Sapers, G.M.; Abbott, J.; Massie, O.; Watada, A.; Finney, E.E. Volatile composition of McIntosh apple juice as
a function of maturity and ripeness indices. J. Food Sci. 1977, 42, 44–47. [CrossRef]

18. Schmutzer, G.R.; Magdas, A.D.; David, L.I.; Moldovan, Z. Determination of the volatile components of apple
juice using solid phase microextraction and gas chromatography-mass spectrometry. Anal. Lett. 2014, 47,
1683–1696. [CrossRef]

19. Martínez Vega, M.; Varming, C.; Skov, T.; Toldam-Andersen, T. Post-harvest ripening increase cultivar
specific sensory and analytical aroma profile in apple juice: A study of four commercial cultivars in Denmark.
Acta Agric. Scand. Sect. B 2014, 64, 244–251. [CrossRef]

20. Poll, L. Influence of storage temperature on sensory evaluation and composition of volatiles of McIntosh
apple juice. Lebensm. Wiss. Technol. 1983, 16, 220–223.

21. Echeverrıa, G.; Fuentes, T.; Graell, J.; Lara, I.; López, M. Aroma volatile compounds of ‘Fuji’ apples in relation
to harvest date and cold storage technology: A comparison of two seasons. Postharvest Biol. Technol. 2004, 32,
29–44. [CrossRef]

22. Aaby, K.; Haffner, K.; Skrede, G. Aroma quality of Gravenstein apples influenced by regular and controlled
atmosphere storage. LWT Food Sci. Technol. 2002, 35, 254–259. [CrossRef]

23. Komthong, P.; Katoh, T.; Igura, N.; Shimoda, M. Changes in the odours of apple juice during enzymatic
browning. Food Qual. Preference 2006, 17, 497–504. [CrossRef]

24. Plotto, A.; McDaniel, M.R.; Mattheis, J.P. Characterization of changes in ‘Gala’ apple aroma during storage
using Osme analysis, a gas chromatography-olfactometry technique. J. Am. Soc. Hortic. Sci. 2000, 125,
714–722. [CrossRef]

25. Dimick, P.S.; Hoskin, J.C.; Acree, T.E. Review of apple flavor-State of the art. Crit. Rev. Food Sci. Nutr. 1983,
18, 387–409. [CrossRef] [PubMed]

26. Schreier, P.; Drawert, F.; Steiger, G.; Mick, W. Effect of enzyme treatment of apple pulp with a commercial
pectinase and cellulase on the volatiles of the juice. J. Food Sci. 1978, 43, 1797–1800. [CrossRef]

27. Paillard, N.M.M.; Rouri, O. Hexanal and 2-hexenal production by mashed apple tissues. Lebensm. Wiss. Technol.
1984, 17, 345–350.

28. Su, S.; Wiley, R. Changes in apple juice flavor compounds during processing. J. Food Sci. 1998, 63, 688–691.
[CrossRef]

29. Lara, I.; Echeverría, G.; Graell, J.; López, M.L. Volatile emission after controlled atmosphere storage of
Mondial Gala apples (Malus domestica): Relationship to some involved enzyme activities. J. Agric. Food Chem.
2007, 55, 6087–6095. [CrossRef]

30. Mattheis, J.P.; Fan, X.; Argenta, L.C. Interactive responses of Gala apple fruit volatile production to controlled
atmosphere storage and chemical inhibition of ethylene action. J. Agric. Food Chem. 2005, 53, 4510–4516. [CrossRef]

31. Kader, A.A. Mode of action of oxygen and carbon dioxide on postharvest physiology of ‘Bartlett’ pears. ISHS
Acta Hortic. 1988, 258, 161–168. [CrossRef]

32. Yang, S.F.; Hoffman, N.E. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol.
1984, 35, 155–189. [CrossRef]

33. Fellman, J.K.; Rudell, D.R.; Mattinson, D.S.; Mattheis, J. Relationship of harvest maturity to flavor regeneration
after CA storage of ‘Delicious’ apples. Postharvest Biol. Technol. 2003, 27, 39–51. [CrossRef]

http://dx.doi.org/10.1002/9780470191750
http://dx.doi.org/10.1021/jf60149a032
http://dx.doi.org/10.1016/j.foodchem.2005.10.070
http://dx.doi.org/10.1021/jf60149a009
http://dx.doi.org/10.1002/jsfa.4385
http://www.ncbi.nlm.nih.gov/pubmed/21681760
http://dx.doi.org/10.2166/wst.1999.0310
http://dx.doi.org/10.1111/j.1365-2621.1977.tb01214.x
http://dx.doi.org/10.1080/00032719.2014.886694
http://dx.doi.org/10.1080/09064710.2014.905622
http://dx.doi.org/10.1016/j.postharvbio.2003.09.017
http://dx.doi.org/10.1006/fstl.2001.0852
http://dx.doi.org/10.1016/j.foodqual.2005.06.003
http://dx.doi.org/10.21273/JASHS.125.6.714
http://dx.doi.org/10.1080/10408398309527367
http://www.ncbi.nlm.nih.gov/pubmed/6354595
http://dx.doi.org/10.1111/j.1365-2621.1978.tb07417.x
http://dx.doi.org/10.1111/j.1365-2621.1998.tb15813.x
http://dx.doi.org/10.1021/jf070464h
http://dx.doi.org/10.1021/jf050121o
http://dx.doi.org/10.17660/ActaHortic.1989.258.16
http://dx.doi.org/10.1146/annurev.pp.35.060184.001103
http://dx.doi.org/10.1016/S0925-5214(02)00193-X


Beverages 2020, 6, 59 15 of 15

34. Zhang, L.P.; Shen, Y.X.; Bu, Q.Z.; Ji, S.J. Effects of 1-methylcyclopropene on the metabolic pathways of
aroma-related compounds in Nanguo pear. J. Food Process. Preserv. 2013, 38, 1749–1758. [CrossRef]

35. Poll, L. The effect of pulp holding time on the volatile components in apple juice (with and without pectolytic
enzyme treatment). Lebensm. Wiss. Technol. 1988, 21, 87–91.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/jfpp.12138
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Apple Harvesting, 1-MCP Treatment, and Storage 
	Juice Preparation 
	Volatile Analysis from the Juice 
	Volatile Analysis from Whole Apples 
	Experimental Design and Statistical Analysis 

	Results 
	Volatile Aroma Composition 
	Effect of Harvest Maturity, 1-MCP, and Storage Conditions on the Volatile Composition 
	McIntosh Juice 
	Honeycrisp Juice 


	Discussion 
	Volatile Aroma Composition 
	Effect of 1-MCP, Storage Atmosphere, and Juice Processing 

	References

