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Abstract: Consumers increasingly prefer and seek food and beverages, which, due to their natural
characteristics, bring health benefits, both in the prevention of diseases and in their curative power. In
this way, the production of nutraceutical foods and beverages gains more and more importance in the
market. On the other hand, and because the eyes also eat, producing attractive foods due to their color,
texture, appearance, and sensory characteristics is a permanent challenge in the food industry. Being
able to gather healthy and attractive items in a single food is an even greater challenge. The long list
of benefits associated with phenolic compounds, such as antioxidant, anticancer, anti-inflammatory,
and antiaging properties, among others, fully justifies their use in the enrichment of various food
products. Thus, in this review, we propose to summarize the potential use of phenolic compounds
used as ingredients of pleasant and functional beverages.

Keywords: nutraceutical properties; human health; phenolic compounds; fermented beverages;
nonfermented beverages

1. Introduction

As many researchers state, color is an important product-intrinsic sensory cue when
it comes to establishing people’s anticipations regarding the likely taste and flavor of a
food or a drink. Several researchers now suggest that our experience of taste and flavor is
determined by the expectations that we generate before tasting, especially when we can
inspect a drink visually before deciding on whether, or not, to buy or taste it [1,2]. Brain
and visual system development are intimately linked to the acquisition of food and drink,
and contemporary neuroscience demonstrates that the sight of appealing food or drink is a
powerful cue for the brain, especially the brain of a hungry person [3].

Consequently, many of us often have our sense of taste tricked by the sense of sight.
We expect the food and drink to taste like what we see. When the color of a drink is different
from what was expected, our brain tells us that it will taste different. Scientific studies
proved that we frequently judge food quality based on colors to identify the taste, which
ultimately affects our purchase decision. Taste buds play a significant role in determining
the six basic tastes—sweet, salty, sour, bitter, umami, and fat [4]. Signals will be sent from
taste buds to the brain that will interpret taste and flavor. The taste transduction mechanism
is schematized in Figure 1. The apical surface of the taste receptor cell contains channels
and G protein-coupled receptors that are activated by chemical stimuli. The basolateral
surface contains voltage-gated Na+, K+, and Ca2+ channels, as well as all the mechanisms
for synaptic transmission mediated by serotonin. The ion Ca2+ acts as a 2nd messenger
and the increase in cytoplasmatic Ca2+ occurs due to the activation of voltage-gated Ca2+

channels or due to their release from intracellular stores. This second messenger causes
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synaptic vesicles to fuse and release their transmitter onto receptors on primary sensory
neurons, directly to the gustatory cortex, in the brain [5,6].
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optic nerve to the visual cortex. When light falls on the retina, it creates a photochemical 
reaction in the rods and cones at the back of the retina. The reactions then continue to the 
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eye triggers the photochemical reaction in rods and cones of the retina; (2) chemical reaction acti-
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adapted from Stangor and Walinga [8]. 

Moir [9] was the first to report that people’s perception of taste and flavor could 
change merely by changing the color of food. Later, many researchers studied this issue, 
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Figure 1. Transduction mechanisms in a generic taste cell. Adapted from Purves et al. [5] and Vera
and Wooding [6].

However, before we eat or drink, we will look at the food or drink first, and signals are
sent to the brain which interprets the taste of the food or beverage before we consume it,
predetermining the expected taste and flavor. The detection of shape and color is done by
the eyes. Light enters the eye through the cornea, passing through the pupil at the center of
the iris (Figure 2). The lens adjusts to focus the light on the retina, where it appears upside
down and backward. Receptor cells on the retina send information via the optic nerve to
the visual cortex. When light falls on the retina, it creates a photochemical reaction in the
rods and cones at the back of the retina. The reactions then continue to the bipolar cells,
the ganglion cells, and eventually to the optic nerve [7], which sends the information to the
brain (Figure 2).
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Figure 2. Anatomy of the human eye and the retina with its specialized cells. (1) Light entering the
eye triggers the photochemical reaction in rods and cones of the retina; (2) chemical reaction activates
bipolar cells; (3) information is sent to the visual cortex via the thalamus. Retrieved and adapted
from Stangor and Walinga [8].

Moir [9] was the first to report that people’s perception of taste and flavor could
change merely by changing the color of food. Later, many researchers studied this issue,
trying to comprehend how vision influences taste and flavor. Some of the researchers found
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that changing the hue and/or intensity of the color added to a beverage could influence
the perceived identity and/or intensity of the flavor. Many people will say that a cherry-
flavored drink tastes like lime if colored green, while perceiving it to taste like orange if
colored orange [10,11]. Zampini et al. [11] found that supertasters were significantly less
influenced by the inappropriate coloring of a beverage than were medium tasters. Medium
tasters were, also, less influenced than the non-tasters (Figure 3).
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Figure 3. Mean percentage of correct flavor identification responses in blackcurrant and orange
solutions, for the three groups of participants (non-tasters, medium tasters, and supertasters). Black
columns are solutions where fruit acids had been added; white columns are solutions without fruit
acids. Adapted from Zampini et al. [11].

Thus, humans tend to associate colors with food and connect these colors to certain
tastes and flavors. For example, black-colored food is usually perceived as bitter or having a
burnt flavor. Bright colors, like yellow, are perceived as sweet or sour; red can be perceived
as spicy. Several studies, conducted over the last thirty-five years, show that the majority
of us do indeed match basic tastes to colors in a nonrandom way that is regular across
individuals and consistent over time [12–15].

The phenolic compounds, which naturally occur in many fruit-based beverages,
may positively or negatively affect their sensory traits, with important impacts on color,
perceived taste and flavor, and astringency. Polyphenols originate from plants due to their
secondary metabolism and accumulate in plant organs like leaves, fruits, roots, and stems.
They are essential to plant life as they provide defense against harmful microorganisms and
make plants unpalatable to predators [16,17]. They also present different color palettes, that
may influence, as has been mentioned before, our taste and flavor perception (Figure 4).
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Adequate consumption of phenolic compounds may offer health benefits [19]. The
consumption of fruit-based beverages, fermented or not, and rich in phenolic compounds
and presenting a lovely color, has also been related to healthy diets, such as the Mediter-
ranean diet, and to the prevention of chronic diseases since they present antioxidant
properties [19]. After the consumption of a fruit beverage rich in phenolic compounds,
only a select number of phenolic compounds is absorbed into the circulatory system via
the small intestine [20]. The absorptive process is dependent on molecular complexity, size,
charge, food matrix, and the presence of other drugs [21]. A huge amount of the ingested
phenolics is metabolized by the gut microbiota, generating small molecules (phenolic
acids or lactone structures) that may be absorbed and exercise physiological effects [22–24].
Evidence suggests that these metabolites have health benefits for humans [25]. Phenolic
compounds act as reducing or metal-chelating agents, hydrogen donors, and singlet oxygen
quenchers [26]. Moreover, phenolic compounds can prevent disease through mechanisms
that differ from the antioxidant function, such as cellular signaling, gene expression, and
modulation of enzymatic activity [27]. Furthermore, the consumption of diets rich in
phenolic compounds may also modulate human gut microbiota [28].

However, which beverages can be considered beneficial to health by consumers? Do
they associate the colors of food and beverages with the presence of beneficial compounds?
Most of the research on the psychological influence of color on judgments of taste/flavor
intensity has been conducted with beverages because it is easier to manipulate the level
of color in solutions than in solid foods [28] and there is a motivation to produce red fruit
beverages like grape juice or grape nectar for their important nutritional properties [29,30].
Red coloring in beverages and foods also appears to be a particularly good inducer of
sweetness. It seems that humans may have internalized the environmental association
between sweetness and redness in ripe fruits [31].

Therefore, taking all this into account, in this review, we aim to overview the potential
use of phenolic compounds, natural or man-made, as ingredients of joyful and functional
beverages.

2. The Traditional Mediterranean Diet

Before the mid-1960s, the common diet pattern in countries in the Mediterranean Sea
basin, such as Italy and Greece, was recognized as a “Mediterranean diet” [32]. However,
providing an accurate definition of this type of diet is not easy, as it varies with the cultural,
social, and religious habits of each country, and with time [33,34].

Recognized as Intangible Cultural Heritage by the United Nations Educational,
Scientific and Cultural Organization (UNESCO) in 2013 (UN), the Mediterranean diet
is traditionally recognized for its varied palette of colors, rich in aromas and memories, but
mainly because it is an extremely healthy cuisine given its complete nutritional composition
of essential macronutrients and micronutrients [35–37]. Indeed, several studies report that
the inhabitants of the Mediterranean region with a Mediterranean dietary pattern had a
low incidence of lifestyle diseases, namely, cardiovascular disease, when compared to the
American population [32,38–41].
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Consequently, what is so special about the Mediterranean diet? It should be noted
that this diet pattern has evolved, as mentioned by Radd-Vagenas et al. [33], who defined
the historical timeline of Mediterranean diets: ancient, “traditional”, and modern. Thus,
considered the cradle of civilization, the Mediterranean basin was influenced by ancient
civilizations, and the food and food patterns of the time were shaped by the culture
of each people, the historical period, the economy, and the climatic conditions, among
other factors [42]. Two important influences should be mentioned in the model of ancient
Mediterranean cuisine: the influence of Arabic/Islamic culture, as it includes a greater
variety of fruits and vegetables (pomegranate, almonds, spinach, eggplant, citrus fruits),
barley, wheat, rice, and spices; as well as Cristóvão Colombo’s voyages to America, from
which various vegetables, tomatoes, potatoes, corn, and pepper emerged [36,43].

However, a healthy diet would always be based on meats (in moderation), fish, fruits,
vegetables, cereals, without forgetting the role of drinks, where the base would be water,
but, in moderate quantities, it would also include the consumption of wine [43]. Figure 5
shows the food and beverage groups consumed in the Mediterranean dietary pattern.
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The “traditional” Mediterranean diet can be referred to as belonging to a time before
the globalization of ultra-processed foods and the modern era of industrial agriculture [44].
It is based on plants that grow in the Mediterranean region, including olives [45–47].

In the different patterns of the Mediterranean diet, olive oil is a common factor, either
for its beneficial properties or for being associated with the seasoning of various raw dishes,
such as salads that allow the consumption of large quantities of vegetables and legumes,
or for its use in cooked food. The use of spices and herbs is recommended, avoiding the
excessive use of salt. Thus, the basic Mediterranean diet includes the daily consumption
of vegetables, fruit, beans, bread, cereals, potatoes, nuts, seeds, dairy products, and olive
oil, and the weekly consumption of fish, shellfish, poultry, and eggs and, once a week
or less, meat. Regarding drinks, water is the base that should be consumed daily. The
consumption of tea (infusion of Camellia sinensis) and infusions of aromatic herbs (sage,
siderites, lemon, verbena, chamomile, mint) is recommended. Infusions of several herbs
present a huge source of phenolic compounds, as can be seen in Table 1. For instance, lemon
balm (Melissa officinalis) presents a total phenolic concentration of 133 mg GAE/g DW
and it can be used to ease the negative mood effects of laboratory-induced psychological
stress [48].
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Table 1. Total phenolic content expressed in mg of gallic acid equivalents per g of dry weight (mg GAE/DW), and total
flavonoid content in milligrams of chlorogenic acid equivalents per gram of leaf dry weight (mg CAE/g DW) of herbal
infusions. Adapted from Herrera et al. [49].

Herbal Infusions Total Phenolic Content
(mg GAE/DW)

Total Flavonoid Content
(mg CAE/g DW)

Lemon Balm 133.3 ± 6.9 127.6 ± 2.7
Linden 33.9 ± 3.2 11.8 ± 0.1

Passionflower 14.9 ± 1.2 2.0 ± 0.3
St. John’s Wort 72.9 ± 2.5 45.7 ± 2.4

Valerian 9.8 ± 0.3 2.8 ± 0.5
Black Tea 21.5 ± 0.4 5.1 ± 0.0
Green Tea 61.0 ± 1.3 2.9 ± 0.2
Red Tea 30.0 ± 1.6 14.5 ± 0.6
Boldo 62.1 ± 0.2 51.0 ± 3.2

Chamomile 6.0 ± 0.4 3.7 ± 0.1
Fennel 19.9 ± 0.8 6.4 ± 0.6

Green Anise 15.9 ± 0.4 9.0 ± 0.2
Pennyroyal 16.2 ± 0.7 14.0 ± 0.7

Senna 6.8 ± 0.1 3.5 ± 0.1
Hawthorn 29.2 ± 1.0 17.8 ± 0.5
Horsetail 29.9 ± 1.1 2.0 ± 0.1
Olive Tree 26.7 ± 0.9 18.4 ± 2.2
Rosemary 47.4 ± 1.3 41.5 ± 0.9

Thyme 40.3 ± 0.7 35.9 ± 1.6

Other beverages, like coffee, and fermented beverages, such as wine, should be
consumed in moderation, and, particularly wine, preferably with meals [45,50]. Thus,
the Mediterranean diet is a plant-based diet particularly rich in phytochemicals named
polyphenols and flavonoids (Table 2) [51–54], and also full of color, from the yellow-green
of olive oil to the dark red of fruit, fruit juices, and wine, as can be seen in Table 3 that
exemplifies a one-day summer menu based on the “traditional” Mediterranean diet.

Table 2. Different classes of flavonoids and dietary sources. Adapted from [53,54].

Flavonoid Name Dietary Source

Flavone
Chrysin Fruit skins

Apigenin Parsley, celery

Flavanone Naringin, naringenin, taxifolin, eriodictyol,
hesperidin, and isosakuranetin Citrus, grapefruit, lemons, and oranges

Flavonol

Kaempferol Leek, broccoli, endives, grapefruit, black tea

Quercetin Onion, lettuce, broccoli, tomato, tea, berries, apples,
olive oil, cranberry

Rutin Buckwheat, citrus, red pepper, red wine, tomato skin

Flavononol

Engeletin and astilbin White grape skin

Genistin Soybean

Taxifolin Fruits

Isoflavone Genistein, daidzin, and daidzein Soybean

Flavanol

(+)-Catechin,
(+)-Gallocatechin,
(−)-Epicatechin,

(−)-Epigallocatechin, (−)-Epicatechin gallate,
(−)-Epigallocatechin gallate

Tea
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Table 2. Cont.

Flavonoid Name Dietary Source

Anthocyanidin
Epigenidin Stored fruits

Cyanidin Cherry, raspberry, strawberry, grapes

Delphinium and pelargonidin Dark fruits

Table 3. One-day menu sample of the Mediterranean diet. Adapted from Radd-Vagenas et al. [33].

Meal Foods

Breakfast
Bread topped with grated fresh tomato, crumbled feta,
dried oregano, and drizzled with extra virgin olive oil

Herbal tea or boiled Greek coffee
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Many of the polyphenol-rich elements of the Mediterranean diet are fruits, where 
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Lunch (main meal)
Mediterranean penne with courgettes and eggplant,

mozzarella cheese, olives, basil leaves. Seasoned with
olive oil, and accompanied with red wine
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Many of the polyphenol-rich elements of the Mediterranean diet are fruits, where the
total phenol concentration may range between 158.8 (µmol/g) in cranberry to 7.5 (µmol/g)
in grapefruit (Table 4). Several of these fruits can be eaten in their natural form, or in the
form of multi-fruit juices which present a high total phenol antioxidant index (PAOXI).

Table 4. Total phenol content and total phenol antioxidant index (PAOXI) of fruits. Adapted from [53,55].

Fruit Total Phenols (µmol/g) (Dry Weight) Total PAOXI × 10−3 (a)

(Dry Weight)

Apple 34.1 110
Avocado 12.7 60.5
Banana 42.3 108

Blueberry 62.0 273
Cantaloupe 8.1 32.4

Cherry 52.3 523
Cranberry 158.8 212

Grape (white) 52.3 262
Grape (red) 63.7 351
Grapefruit 7.5 39.5

Lemon 19.6 67.6
Melon (honeydew) 11.4 36.8

Nectarine 12.3 64.7
Orange 18.9 55.6
Peach 27.9 60.7
Pear 41.4 81.2
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Table 4. Cont.

Fruit Total Phenols (µmol/g) (Dry Weight) Total PAOXI × 10−3 (a)

(Dry Weight)

Pineapple 11.9 44.1
Plum 58.2 116

Strawberry 72.3 603
Watermelon 19.5 44.3

(a) Ratio of phenol concentration (µmol/kg) to the IC50 value (µM).

Despite having observed a change in eating habits in countries that were the basis for
the Mediterranean diet, due to economic development, high rates of urbanization, and the
influence of American fast-food culture [33,52], nowadays, more and more of the world’s
population tries to practice a healthy diet, but with a great concern for the sustainability of
the planet. Thus, the Mediterranean diet, favoring the consumption of fresh food, produced
locally and according to a sustained production system, and consumed in a pleasant and
familiar environment with associated physical activity, is associated with a healthy lifestyle.

3. Classification of Phenolic Antioxidants

Phenolic compounds are classified as primary antioxidants [53] and originate from one
of the main classes of secondary metabolites in plants. They have antioxidant properties
through several mechanisms: (i) the ability to remove free radicals and inhibit the formation
of reactive species during the normal course of metabolism; (ii) preventing the occurrence
of damage to lipids, proteins, and nucleic acids; and (iii) preventing consequent cell damage
and death [56]. Thus, they are commonly associated with preventing the development of
cardiovascular diseases, neurodegenerative diseases, autoimmune diseases, diabetes, and
cancer [57–62].

Depending on their origin, phenolic antioxidants can be classified as natural or artifi-
cial. Figure 6 shows the classification of phenolic antioxidants.
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Antioxidants used in foods and beverages are intended to prevent their deterioration
and to increase shelf life. However, the appearance and characteristics of each food or
drink, such as color and sensory proprieties, must be kept unchanged [63]. Furthermore,
they must be easy to apply and economical. The safety of food additives is verified through
the application of standard methodologies by regulatory authorities, namely, the European
Food Safety Authority (EFSA) or the United States Food and Drug Administration (FDA),
which validate the use of substances and in which concentrations [64].

3.1. Natural Phenolic Antioxidants in Beverages

Natural antioxidants can be obtained from plants (fruits, legumes, and vegetables),
mushrooms, and algae, and are classified as phenolic compounds, vitamins, and
carotenoids [65–67].

In recent years, there has been a growing preference for natural phenolic antioxi-
dants over artificial ones, fundamentally due to the increasing demand by consumers for
functional foods and beverages with the addition of natural additives, which maintain
their nutritional properties and flavor [68]. Besides, this trend results, according to the
same authors, from the preference currently given to natural phenolic antioxidants in food
stabilization, and the restrictions applied by the responsible entities on the use of synthetic
phenolic antioxidants [69,70].

Natural phenolic antioxidants have a great diversity of structures, in which the basic
monomer of polyphenols is the phenolic ring [71]. They are divided into several classes, the
most representative of which are flavonoids and phenolic acids. For their part, flavonoids
are further divided into flavones, flavanones, flavonols, flavanols, isoflavones, and phenolic
acids and are generally classified into hydroxybenzoic and hydroxycinnamic acids [72].

Stilbenes are a group of phenolic compounds that share a similar chemical structure
to flavonoids (Figure 6). Trans-resveratrol is one of the most recognized stilbenes, present
mostly in glycosylated forms. Red wine, as well as the red grapes that originate this fer-
mented drink, are rich in resveratrol. Several studies show that moderate consumption of
red wine leads to a reduction in the development of cardiovascular diseases and atheroscle-
rotic plaques, and provides neuroprotective, antidiabetic, anti-inflammatory, antioxidant,
anticarcinogenic, and antiviral activity [73–75].

When analyzing different types of wines, namely, whites, rosés, and reds,
Paixão et al. [76] showed that red wine had significantly higher phenolic levels than
the rosé and white wines, and consequently exhibited the highest antioxidant power.
According to Fiori et al. [77], the highest concentration of resveratrol is higher in red wine
than in white wine because it is present in the skin and seeds of grapes. Thus, the different
phenolic composition of wines is related to the grape variety, as well as the edaphoclimatic
conditions of the region where the grapes are produced, cultural practices, the stage of
ripeness [78,79], maceration [80,81], yeasts used in the vinification process [82], and other
winemaking conditions [83].

Cordova and Sumpio [84] also concluded that red wine has more health-promoting
activity than beer or spirits due to its richer content of phenolic compounds, hence the
increased interest in the nutraceutical value of wines.

Additionally, herbal teas and infusions are rich in natural antioxidants, mainly flavonoids:
theaflavins, bis-flavanols, and fulvic acids. Their consumption has increased because
they are recognized as having anticariogenic properties and antimicrobial and anticancer
activity [85,86]. McCarthy et al. [87] studied the antioxidant potential of plant extracts and
compared them with synthetic antioxidants and vitamin E, incorporating them in pork.
The catechins present in tea were shown to be more effective in terms of their antioxidant
power, compared to butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT),
and antioxidant activity was evaluated through the thiobarbituric acid reactive substance
assay (TBARS assay—reactive species of thiobarbituric acid).
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The market for natural antioxidants is growing and new products have appeared on
the market with a healthy image, namely, smoothies, functional drinks, and yogurts with
green tea, grape seed, lemon balm, and aloe vera, among others [68].

It is important to note that there are natural antioxidants that have lower antioxidant
activity than their synthetic equivalents, which can lead to the use of a higher dosage, caus-
ing toxicity reactions [88]. Thus, the intensification of toxicity studies of these compounds
is necessary to know the limits of their use.

3.2. Synthetic Phenolic Antioxidants in Beverages

Several synthetic phenolic antioxidants (SPAs) are widely used in industrial and
commercial products, but only a few can legally be added to food products [89]. Thus, with
a common molecular structure in which the phenolic rings are replaced by alkyls hindered
in the ortho position [70], butylated hydroxyanisole (BHA), butylated hydroxytoluene
(BHT), propyl gallate (PG), and tertiary-butylhydroquinone (TBHQ) are commonly used
as food antioxidants [90]. However, BHA and BHT are the antioxidants most used as
additives in food products [91,92].

The poor stability of natural antioxidants has increased the number of SPAs that are
preferred for use in food and beverages to prevent and delay lipid oxidation reactions,
preventing the formation of foreign flavors and undesirable chemical compounds, such as
aldehydes, ketones, and organic acids, and prolong the shelf life of products [93].

SPAs can be used alone or in combination. Thus, BHA is commonly found in dry
cereals, derived from potatoes, in cooked foods (boiled or fried and desserts), and in
drinks [90,94]. In food supplements, condiments, spices, chewing gum, and oils, BHT can
be used alone or in combination with BHA or TBHQ [95]. As a preservative, TBHQ is
used in edible animal fats, meat products, and unsaturated vegetable oils [96]. Propyl
gallate has been used in the food industry as a stabilizer in fatty foods and as an additive
in mayonnaise, fats, edible fats, and baked goods [97].

The presence of a wide range of undesirable compounds in foods and beverages
has made the area of food safety increasingly relevant, to provide the population with
the necessary high-quality food. Therefore, the growing concern about using safe and
environmentally friendly food products has recently led to the realization of several studies
to find out if the use of SPAs in food and beverages is safe for health. Their conclusions
are contradictory. In some studies, SPAs revealed antimutagenic and antitumor prop-
erties [98–102] but, in others, allergic reactions, including asthma and hives [103], toxic
effects in some animal tissues [104], liver toxicity, endocrine-disrupting effects, and even
carcinogenicity [93,105–107] were reported, questioning their use [70,108].

This issue generated concern on the part of the governments of the European Union
and most countries to create legislation that regulates the use of SPAs, either individually
or in mixtures, as the market for combined natural or synthetic phenolic antioxidants is
expected to have a growth rate of around 5% by 2023 [109]. In the European Union, the use
of certain SPAs has been restricted and has even been banned in soft drinks [89].

4. Phenolic Antioxidants and Human Health

Although, in the present day, the main world health concern is COVID-19, the global
pandemic caused by the SARS-COV-2 virus, other diseases also kill millions of people
every year. Globally, the number of deaths due to cardiovascular diseases (CVDs) between
1990 and 2017 increased from 12.3 to 17.79 million (Figure 7A) [110]. The World Health
Organization (WHO) estimates that 60% of all CVDs occur now in developing nations
(Figure 7B) [110], where a recent increase in the incidence of CVDs has been driven by
higher obesity rates. The global economic burden of these diseases is projected to rise
from an estimated USD 863 billion in 2010 to an estimated USD 1044 billion by 2030 [111].
This increase is expected to be most acutely felt in nations such as India, Egypt, and the
republics of the former Soviet Union (Figure 7C) [110].
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Longevity is considered by the United Nations as one of the biggest achievements
of this century, and a major social transformation [112]. Evidence supports that diets
rich in plant-based foods can be associated with a lessened risk of cardiovascular disease
(CVD) [113], thus promoting longevity. The current nutritional guidelines for the pre-
vention of CVDs include a diet high in fruits, vegetables, whole grains, nuts, legumes,
and non-tropical vegetable oils, and are based on the Mediterranean diet, which is rich in
phenolic compounds [114]. Various phenolic compounds may exercise beneficial effects by
reducing risk factors for the onset of CVDs and age-related disease (ARD) that involves
the so-called “inflamm-aging” process [115,116]. The association of phenolic compounds
with the reduced incidence of CVDs was studied by Lutz et al. [117] who state that these
compounds can promote a healthy aging process, retarding or even inhibiting the risk
factors involved in CVDs, mainly high cholesterol levels, high blood pressure, diabetes,
urinary isoprostanes, low-density lipoprotein (LDL) oxidation, platelet aggregation, and
inflammatory status, among others [118–121]. All these health-related issues contribute to
atherothrombosis and the consequent occurrence of CVDs [122]. Table 5 summarizes some of
the main beverages that possess polyphenolic compounds, their structures, and bioactivities.
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Table 5. Alcoholic and nonalcoholic beverages, their main phenolic compounds present and indicated bioactivities.

Beverages Main Phenolics Indicated Bioactivities Ref.

Tea and infusions
(Camelia sinensis and other

plants)
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droxybenzene, chlorogenic acid, caf-
feic acid, gallic acid, and protocate-

chuic acid. 

Chlorogenic acid has potential 
cardiovascular benefits related to 
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class of chemical known as

“phytoestrogens”.
Their high antioxidant content

makes them preventative agents
against ovarian, breast, stomach,

prostate, and lung cancer.

[53,126–128]
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Catechol is the predominant
volatile phenolic compound found
in coffee (after roasting), followed

by 4-ethylguaiacol, 4-ethyl catechol,
pyrogallol, quinol, and 4-vinyl

catechol.
Catechin, rutin, ferulic acid,

o-dihydroxybenzene, chlorogenic
acid, caffeic acid, gallic acid, and

protocatechuic acid.

Chlorogenic acid has potential
cardiovascular benefits related to
the lowering of blood pressure,

endothelial function improvement,
low-density lipoprotein cholesterol

oxidation, and nitric oxide
bioavailability prevention of

metabolic syndrome, including
vascular endothelial function

impairment, obesity, and diabetes.

[53,129–131]

Cocoa drinks
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Cancer is also a worldwide menace; it is the second leading cause of death in devel-
oped countries (Figure 7A) and is increasing in developing countries. Humanity has been 
trying to find better and cheaper treatments with fewer side effects, to reduce the inci-
dence of the disease and its consequent mortality [140]. 

Phenolic compounds have been described as exhibiting anticancer activity in vitro 
and in vivo [53,141–144] (Table 5). Their efficacy varies from one compound to another, 
which is due to the variations in their structures as well as their molecular targets [145]. 
Structure vs. activity relationship studies have identified the involvement of aromatic 
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that molecules with a larger number of hydroxylic groups displayed better anticancer ac-
tivity compared to others with no hydroxylic groups or compounds with –OCH3 fractions 

Epicatechin, gallocatechin, and
epigallocatechin. Phenolics,

procyanins, anthocyanins, and
flavone and flavonol glycosides

such as luteolin-7-O-glucoside and
quercetin-3-O-arabinoside.

Consumption of cocoa reduces the
risk of cardiovascular disease.
Extracts prepared from cocoa
powder and cocoa beans were

shown to exhibit antihyperglycemic
effects.

[132–135]
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Table 5. Cont.

Beverages Main Phenolics Indicated Bioactivities Ref.

Beer
(Composition of phenolic

compounds depends on the
brand and country of origin)

(2)
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Gallic acid, protocatechuic acid,
(+)-catechin, vanillic acid, caffeic

acid, syringic acid, (−)-epicatechin,
p-coumaric acid, and ferulic acid.
The major free phenolic acids in

beers are m-, p- and o-coumaric and
ferulic.

Sinapic, vanillic, chlorogenic,
homovanillic, p-hydroxybenzoic,
2,6- and 3,5-dihydroxybenzoic,

syringic, gallic, protocatechuic, and
caffeic acids.

Positive effect on plasma lipid
profile and plasma antioxidant

capacity.
Increase bile volume and bile acid

concentrations.

[136,137]

Wine
(Depends on the grape variety,

the winemaking process,
wine-fermenting yeast strain,

among others)
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The most common flavonoids in
wine are flavonols (quercetin,
kaempferol, and myricetin),
flavan-3-ols (catechin and
epicatechin), tannins, and

anthocyanins (cyanin).
Nonflavonoids comprise stilbenes,

hydroxycinnamic acids, and
benzoic acids.

Decrease the levels of lipid
peroxidation and a lower the

incidence of certain types of cancer.
The moderate consumption of red
wine has a relatively higher benefit
in the prevention of atherosclerosis
and coronary heart disease (CHD).

Inhibit low-density lipoprotein
(LDL) oxidation, increase

antioxidative capacity, and
modulate vascular function by
inducing vasodilation through
increased production of nitric

oxide (NO).

[82,138,139]

(1) Almond (Prunus dulcis), cashew (Anacardium occidentale), coconut (Cocos nucifera), hazelnut (Corylus), peanut (Arachis hypogaea), sesame
(Sesamum indicum), soy (Glycine max), tiger nut (Cyperus esculentus), oat (Avena sativa), rice (Oryza sativa), hemp (Cannabis sativa), and walnut
(Juglans). (2) Vanillic, ferulic, and p-coumaric acids were the dominant free phenolic acids in Spanish, German, and Danish brands.

Cancer is also a worldwide menace; it is the second leading cause of death in devel-
oped countries (Figure 7A) and is increasing in developing countries. Humanity has been
trying to find better and cheaper treatments with fewer side effects, to reduce the incidence
of the disease and its consequent mortality [140].

Phenolic compounds have been described as exhibiting anticancer activity in vitro
and in vivo [53,141–144] (Table 5). Their efficacy varies from one compound to another,
which is due to the variations in their structures as well as their molecular targets [145].
Structure vs. activity relationship studies have identified the involvement of aromatic rings
and hydroxylic groups in antitumor activity [146,147]. Additionally, reports suggest that
molecules with a larger number of hydroxylic groups displayed better anticancer activity
compared to others with no hydroxylic groups or compounds with –OCH3 fractions [145].
In addition, studies comparing the efficacy of cinnamic and benzoic acids in inhibiting
cancer cell growth showed that cinnamic acids that contain an unsaturated propionic acid
side chain are superior anticancer agents [146,147]. Therefore, benzoic and cinnamic acid
derivatives possessing hydroxyl substitutions could be used naturally or in pharmaceutical
formulas to prevent cancer cell proliferation [145].

The mechanisms of action for the antitumor activity of phenolic compounds
include stopping the proliferation of cancer cells [148]; inducing tumor cellular
apoptosis [53,86,123,124,149] (Table 5); and preventing tumor cell migration and invasion—
so-called metastasis [53,129–131,150].

Another concern, in terms of wellbeing, especially in the 21st century, as life ex-
pectancy, according to the WHO, is projected to reach 73 years by 2025 [151], is neurode-
generative diseases such as Alzheimer’s and Parkinson’s. Many thousands of people born
at the end of the 20th century will live through the 21st century and see the advent of the
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22nd century. People will live longer, but will they really have “quality of life”? Evidence
supports that oxidative stress is involved in the pathophysiology of neurodegenerative dis-
eases. Oxidative stress can induce neuronal damages and modulate intracellular signaling,
ultimately leading to neuronal death by apoptosis or necrosis [152].

The pathogenesis of diseases such as Alzheimer’s or Parkinson’s is multifactorial,
with a complex combination of genetic and nongenetic components [53,125,152]. Most
of these cases are nongenetic or sporadic. According to the World Health Report [152],
inflammation, glutamatergic toxicity, dysfunction of mitochondrial activity and the ubiq-
uitin/proteasome system, activation of apoptosis pathways, elevation of iron and nitric
oxide, and alteration of the homeostasis of antioxidants/oxidation are the main mecha-
nisms involved in neurodegenerative pathologies. Green tea, which is particularly rich in
flavonoids [86], including catechins and their derivatives, could have a beneficial role in
reducing the risk of Parkinson’s disease [53,153]. The catechol-like structure of catechins
competitively inhibits uptake by the presynaptic or vesicular transporters of the metabo-
lite product of 1-methyl-4-phenylpyridinium ions (MPP+), also presenting a catechol-like
structure. This competition protects dopaminergic neurons against MPTP/MPP+-induced
injury [154].

Alzheimer’s disease pathology progresses gradually via anatomically connected brain
regions. The progressive pathology is due to the direct transfer of amyloid-β1-42 oligomers
(oAβ) between connected neurons [155]. Concerning Alzheimer’s disease, there are several
in vitro studies demonstrating that green tea extract may protect neurons from amyloid
β-induced damage [156,157].

Oxidative stress or inflammation can also be the cause of chronic diseases such as
diabetes, insulin resistance, urinary tract infections, chronic obstructive pulmonary dis-
ease, and rheumatoid arthritis [53,158,159]. These chronic diseases, like arthritis (also
considered an autoimmune disease with unknown etiology), may accelerate cardiovascular
complications [147].

Phenolic compounds have been described as able to promote a decrease in hyper-
glycemia, improve acute insulin secretion and insulin sensitivity [160], prevent rheumatoid
arthritis [161], and have antiadhesive activity against uropathogenic bacteria, preventing
urinary tract infections [162].

So, all the health menaces described above have a huge impact, not only on personal
health, but also in terms of people’s productivity, wellbeing, and, ultimately, quality of life
and happiness.

5. Digestion, Catabolism, and Bioaccessibility of Beverage Phenolic Compounds

The absorption, transportation, bioavailability, and bioactivity of polyphenols and
related metabolites after food or beverage intake have been research topics of increasing
interest in recent decades. The absorption and metabolism of polyphenols in the digestive
tract regulate their biological properties and bioavailability, and only those released from
the food/beverage matrix are digested in the small and large intestine [163]. Polyphenols
occur in beverages mainly as large polymers (esters, glycosides) which cannot be absorbed
in these forms and require hydrolysis by digestive enzymes or intestinal microbiota. Only 5–
10% of the phenolic compounds from different fruits are bioaccessible in the small intestine,
while 90% of phenolic compounds reach the large intestine, where they are catabolized by
gut microbiota [164,165].

Gut microbiota convert complex polyphenols into low molecular weight compounds
that can be absorbed [24] and thus are accountable for the beneficial effects of polyphenol
consumption [166,167]. Additionally, clinical studies indicate that polyphenols are also
able to express prebiotic properties, by modulating the growth of beneficial bacteria such
as Bifidobacterium and Lactobacillus [167,168]. New products containing probiotic strains as
well as polyphenol compounds as antioxidants have been launched in the market, particu-
larly beverages based on fruits, vegetables, cereals, and soybeans [169,170]. Additionally,
nanoencapsulation-based approaches can be used to develop beverages, which may com-
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bine the benefits of natural products with the known biological properties of phenolic
compounds, without resulting in a loss of sensory or nutritional quality and increasing
bioaccessibility [171].

However, as stated by Teng and Chen [172], bioaccessibility values of polyphenolic
compounds should be strongly reconsidered, considering the recently identified circulating
and excreted metabolites, keeping in mind the colonic metabolic products which contribute
largely to their absorption, making them able to travel around the human body in the
circulatory system or reach body tissues to elicit bioactive effects.

6. Final Remarks

Phenolic compounds may affect the sensory characteristics of food with impact on
color, flavor, and astringency. This impact is important and needs to be evaluated so that
health-promoting compounds are also pleasant and generally consumed. Moreover, more
projects and the implementation of more research, especially for human trials, are needed
to confirm the efficacy of polyphenols at the gut level.

The Mediterranean diet based on dietary patterns in the countries of the Mediter-
ranean basin is considered healthy because it is centered on the consumption of fruits,
vegetables, cereals, olive oil, fish, eggs, and meats (in moderation). Fruit juices, tea, herbal
infusions, coffee, nondairy beverages, beer, and red wine are included in the diet, directly
or as a by-product of vegetal origin that is processed, possibly fermented, and also may
contain probiotic microorganisms valuable for gut microbiota equilibrium and polyphenol
bioavailability and absorption.

The demand for this type of diet by consumers has increased, as it is associated with
the prevention of cardiovascular disease, cancer, and neurodegenerative diseases, and
longevity. The pharmaceutical industry has been discovering medicines that diminish
some of the symptoms of these diseases. Many are still incurable, and prevention is still
the best action. Prevention requires a change in lifestyle habits, especially in food and
beverage consumption. Strong and already confirmed evidence suggests that a diet of food
and beverages rich in polyphenols may help to prevent and control the abovementioned
health issues, reducing multimorbidity and leading to a healthier and happier life.
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