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Abstract: The consumption of fermented foods posing health-promoting attributes is a rising global
trend. In this manner, fermented dairy products represent a significant subcategory of functional
foods with established positive health benefits. Likewise, kefir—a fermented milk product manu-
factured from kefir grains—has been reported by many studies to be a probiotic drink with great
potential in health promotion. Existing research data link regular kefir consumption with a wide
range of health-promoting attributes, and more recent findings support the link between kefir’s
probiotic strains and its bio-functional metabolites in the enhancement of the immune system, pro-
viding significant antiviral effects. Although it has been consumed for thousands of years, kefir
has recently gained popularity in relation to novel biotechnological applications, with different
fermentation substrates being tested as non-dairy functional beverages. The present review focuses
on the microbiological composition of kefir and highlights novel applications associated with its
fermentation capacity. Future prospects relating to kefir’s capacity for disease prevention are also
addressed and discussed.

Keywords: kefir; functional beverage; probiotics; lactic acid bacteria; yeasts; bioactive metabolites;
health aspects; antiviral effects

1. Historical Pathway of Fermented Milk in Human Nutrition

Archaeological evidence indicates that the bioprocess of food fermentation was dis-
covered accidentally thousands of years ago [1–3]. The scientific announcement regarding
the importance of microorganisms in food fermentation came more recently, made by Van
Leeuwenhoek and Hooke in 1665 [4]. Subsequently, microbes have been applied for food
production as one of the most economic methods of food processing and storage. Many
different food substrates can be applied to fermentation processes, including milk, meat,
seafoods, cereal grains, fruits, vegetables, root crops, and other miscellaneous food com-
pounds. The medicinal and nutritional properties of fermented foods have recently been
promoted as more scientific evidence highlights microbial transformation as an approach
towards improving food functionality [1,5–7]. Likewise, the role of fermented milk in
human nutrition has been well documented, as the virtues of these products have been
known to mankind since the time of ancient civilizations [8,9]. However, the scientific
community gave impetus to these beliefs almost a century ago, when Élie Metchnikoff
suggested the consumption of fermented milk with viable bacteria as a path to prolong
life [9,10]. Specifically, Metchnikoff supported that the desirable bacteria in Bulgarian
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yogurt could suppress undesirable or disease-causing microorganisms, promoting human
health. This observation showed the way for exploring the potential of beneficial bacteria
and cultured products in the alleviation of human and animal disorders [1,10]. Likewise,
more recent studies have confirmed the ability of probiotic bacteria and their bioactive
metabolites to act effectively towards flattening the curve of the COVID-19 pandemic as
they exhibit immunomodulatory and antiviral properties [11–14].

There is evidence that fermented milk products can be successfully formulated with
probiotic bacteria as key ingredients in developing functional food products that promote
health and wellness [1]. The bioprocess of the fermentation raw milk used in the mid-
dle ages involved unpredictable and slow souring of milk, achieved through incubation
with naturally occurring microorganisms [9]. It is believed that fermented milk products
appeared accidently as milk was stored at room temperature and naturally soured, and
there was no knowledge of any exogenous microflora [9,15]. On the other hand, modern
bioprocessing involves the manufacturing of various fermented milk products, produced
using selected starter cultures [1,16]. Subsequently, novel fermented milk products with
enhanced health aspects have overtaken the market through the incorporation of beneficial
microbial cultures [1,17]. It is of paramount importance that the microbiota of fermented
foods must be kept alive until consumption for the delivery of their health benefits [1].
The main fermented milk products that have overtaken the market may be classified into
three different categories: (i) moderately fermented sour types of milk with a pleasant
aroma, e.g., cultured milk; (ii) sour and highly sour types of fermented milk, e.g., curds and
yoghurt; and (iii) fermented milk enhanced with alcohol or acetic acid in small quantities,
e.g., kumiss and kefir [8,9].

Kefir is a fermented milk beverage that has been consumed for thousands of years and
has a significant place among functional foods [9,18]. Kefir originates from the northern
slopes of the Caucasus Mountains and is believed to date back at least 1000 years [18]. It is
believed that kefir grains traditionally passed from generation to generation among the
Caucasus tribes and were considered as a source of family wealth [19]. The tribe folk of
this region possibly developed kefir through sheer accident and subsequently consumed
the nutritious beverage over the subsequent years [19]. Kefir is an acidic, low-alcohol
probiotic beverage obtained from the fermentation of milk at ambient temperatures [20].
It is metabolized by a complex mixture of bacteria (including species belonging to Lacto-
bacillus, Lactococcus, Leuconostoc, and Acetobacter genera) and yeasts [18]. In general, we
can emphasize the fact that kefir differs from other fermented products as it is produced
from kefir grains, which contain a complex symbiotic association (lactic acid- and/or acetic
acid-producing bacteria, and lactose-fermenting and non-fermenting yeast), and their
microbial ecology depends on the origin and cultivation method of the grains [18,19,21].

2. Health-Promoting Effects of Kefir

Nowadays, consumers are opting for foods with functional properties that may en-
hance their well-being. These perceptions of consumers towards healthy foods have
emerged from the concept of “functional foods” [7]. Public interest towards fermented
milk products and beverages containing probiotics has risen over the years along with
the increasing demand for safe and quality health-food products, minimizing the demand
for expensive food supplements [17]. Following consumer demand, studies have been
established aiming to strengthen the fundamental scientific knowledge on kefir and kefir
grains and further exploring the possibilities for the production of new consumer-friendly
nutritious products [1,18,20]. Moreover, several studies have suggested that beneficial
properties can be associated with the regular consumption of kefir. The list of reported
health benefits is of high importance, as they include improved digestion, tolerance to
lactose, antioxidant activity, antibacterial effects, gut microbiome modulation, control of
plasma glucose, alleviation of the effects of obesity, the improvement of cholesterol levels,
anti-inflammatory effects, reduced cardiac hypertrophy, and reduced kidney hypertrophy,
as well as anti-mutagenic, anti-oxidant, and anti-allergenic activity [19,21,22]. Moreover,
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kefir has been reported to provide significant antimicrobial characteristics against vari-
ous foodborne pathogens, whereas more recently kefir was proven to act as a defence
mechanism, sealing the immune system against viral pathogens [1,12,13,21].

2.1. Nutritional Characteristics of Kefir

Kefir is produced traditionally through the fermentation of milk using kefir grains
and normally consists of at least 2.7% protein, 0.6% lactic acid, and less than 10% fat,
depending on the milk [23]. Kefir beverages can be produced from full-fat, semi-skimmed,
and non-fat milk, with low-fat kefir products gaining constant popularity. Kefir was mainly
produced via microbial fermentation of cow’s milk but currently reports indicate that it
can also be prepared using milk from other cattle, such as goats, sheep, buffalo, camels, or
even donkeys [19,21]. Small nutritional differences may occur in the final kefir beverage
derived from different cattle. In general, the fermentation of milk from any cow results in
a slightly acidic, very-low-alcohol milk beverage, which has a distinct flavour, is slightly
effervescent, and which can be obtained at ambient temperature [24]. The high nutritional
value of kefir beverages occurs as a result of its rich chemical composition that includes
proteins, prebiotic oligosaccharides, exopolysaccharides, minerals (Ca, Co, Cu, Fe, Mg, Mo,
and Zn), vitamins, fats, and other bioactive metabolites such as bacteriocins [25,26]. In
addition, kefir shows an enhanced amino acid profile, being rich in serine, valine, lysine,
alanine, phenylalanine, threonine, methionine, tryptophan, and isoleucine in comparison
to unfermented milk [21]. Another important aspect is that kefir includes more digestible
proteins (e.g., caseins) compared to unfermented milk, whereas hydrolyzation of lactose
by β-galactosidase enzymes makes kefir an acceptable product for lactose-intolerant in-
dividuals [21,27]. Moreover according to recent studies, the nutritional value of kefir can
be enhanced when two different kinds of milk are applied for fermentation, and this tech-
nique has been suggested to promote the sensory properties of kefir [21]. Kefir is produced
through the fermentative-activity of active “kefir grains” that contain inherent microflora
within a polysaccharide matrix of semi-hard granules known as “Kefiran” [18,28]. Kefiran
consists of repeated hexasaccharide units and is mainly composed of 85–90% moisture and
10% dry mass. The dry mass includes 57% carbohydrates, 33% proteins, 4% fat, and 6%
ash [23,29]. Kefir grains are small, white-to-cream in color, and gelatinous, and particles
are usually irregularly shaped (Figure 1). They can be applied as an inoculum or starter
culture for milk fermentation [30]. Nowadays, kefir grains are constantly applied in the
fermentation of fruits or vegetables, in which grains tend to be colored according to their
fermentation substrate [19].
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Kefir grains include a wide range of microflora, mainly bacterial (lactic acid, acetic
acid) and yeast strains, which are involved in the milk fermentation bioprocess, being
responsible for the product’s final quality [6]. The distinctive flavor of the final product has
an acidic taste, mainly due to the abundance of lactic acid. The flavor and aroma mainly
depend on the microbial group (lactic acid bacteria, acetic acid bacteria, and yeasts) that
valorizes the fermentation substrate (milk), providing its primary fermentation metabolites
(Figure 1). The abundant lactic acid bacteria contained in kefir grains utilize milk lactose
as a fermentable sugar and metabolize it into glucose and galactose. Subsequently, the
bacteria metabolize glucose through the homofermentative pathway [25]. In all cases,
lactic acid is produced as the primary metabolite, providing a distinctive acidic flavour
to the final product (Figure 1). In the cases where acetic acid bacteria are favored during
fermentation (e.g., in aerobic conditions), the quality of the final product tends to exhibit
a tarter flavor and a slight biting odor due to the accumulation of acetic acid (Figure 1)
in these kefir beverages [9,18]. Generally, the final quality of kefir beverages is attributed
to the accumulation of primary fermentation components, such as lactic acid, acetic acid,
CO2, ethanol, and secondary metabolites such as acetaldehyde, acetoin, diacetyl, and
exopolysaccharides [31].

2.2. Kefir Microbial Diversity and Beneficial Value

Kefir starter cultures are created by growing kefir grains in a strong specific associ-
ation [20]. The microbiota present in kefir and kefir grains include numerous microbial
species, lactic acid and acetic acid bacterial groups, yeasts and filamentous fungi, develop-
ing in complex symbiotic associations [23]. Among the bacterial species, lactic acid bacteria
predominate over acetic acid bacteria and Bifidobacteria. The predominant Lactobacillus
species provide significant antimicrobial properties to kefir beverages [1,12,20]. Likewise,
it has been reported that the kefir biofilms and their polysaccharide compounds can also
be considered as antimicrobial agents [32]. It is not yet clear whether different varieties of
kefir originate from a single original starter culture or not, as microbiological studies from
products obtained from different locations indicate that microbial populations may differ
significantly [20]. The microbial composition of kefir also varies according to the origin
of the kefir grains, different cultivation temperatures, different production techniques,
and differing types and compositions of the fermentation medium, and even the storage
conditions can alter the microbial composition of the final product [20,21].

Another important aspect is understanding the structure and stability of the microbial
community of kefir, which is important for the successful production of functional bever-
ages. In kefir products, lactic acid bacteria are mainly responsible for the conversion of
lactose to lactic acid, resulting in a pH drop and thus aiding product preservation through-
out storage [33]. In addition, lactose-fermenting yeasts convert lactose to ethanol and
CO2 [34]. Other microbial constituents of kefir beverages include non-lactose-fermenting
yeasts and acetic acid bacteria [20]. All species co-exist within a synergistic system, and
yeasts produce vitamins, amino acids, and other essential growth factors that are important
for bacteria [23]. Likewise, the metabolic products of these bacteria can be used as an
energy source for yeasts [35]. The microbial diversity of kefir beverages, as described in
the literature, varies greatly (Table 1) and the identification of microbiota present in kefir
is directly related to the quality of the final product [36]. More importantly, differences in
kefir microflora may influence the ability of traditional kefir to exert positive effects on
hosts’ metabolic effects [37].
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Table 1. Variety of microbial species isolated from kefir.

Microbial Species Reference Microbial Species Reference

Lactobacilli Lactococci

Furfurilactobacillus rossiae [36,38] Lactococcus cremoris [39]

Lactobacillus acidophilus [36,38,40,41] Lactococcus garvieae [36]

Lactobacillus amylovorus [36,38,40] Lactococcus lactis subsp. lactis [30,33,41–43]

Lactobacillus apis [31,38,44] Lactococcus lactis subsp. cremoris [33,41,45]

Lactobacillus bulgaricus [38,40] Streptococci

Lacticaseibacillus casei [36,38,40] Streptococcus durans [39]

Lactobacillus crispatus [36,38,40,41] Streptococcus faecalis [39]

Lactobacillus delbrueckii subsp. [36,38] Streptococcus thermophilus [30,39]

Lactobacillus fomicalis [38,40] Acetic acid bacteria

Lactobacillus gallinarum [36,38,40] Acetobacter aceti [46]

Lactobacillus gasseri [38,40] Acetobacter fabarum [30]

Lactobacillus gigeriorum [44] Acetobacter genera [30]

Lactobacillus helveticus [35,38,40,45] Acetobacter lovaniensis [30,42]

Lactobacillus intestinalis [38,40] Acetobacter orientalis [30,42]

Lactobacillus jensenii [38,41] Acetobacter orleanensis [44]

Lactobacillus kalixensis [38,40] Acetobacter pasteurianus [44,47]

Lactobacillus kefiranofaciens subsp.
kefiranofaciens [30,31,33,38,40,41,43,44,48,49] Acetobacter syzygii [35,43,47]

Lactobacillus kefiranofaciens subsp.
kefirgranum [38,50] Gluconobacter japonicus [35]

Lentilactobacillus kefiri [30,31,38,41,44,50,51] Gluconobacter morbifer [44]

Lactobacillus kitasatonis [38,40] Yeast

Lactobacillus mesenteroides [38,45] Kazachstania aquatica [41]

Lentilactobacillus otakiensis [30,38] Dekkera anomala [30]

Lentilactobacillus parabuchneri [38,50] Hanseniaspora uvarum [52]

Lactobacillus paracasei subsp. paracasei [35,38,47,53] Issatchenkia orientalis [52]

Lentilactobacillus parakefiri [35,38] Kazachstania aerobia [30]

Lactiplantibacillus pentosus [36,38] Kazachstania exigua [42]

Lactiplantibacillus plantarum subsp.
plantarum [35,38,47,54,55] Kazachstania servazzii [30]

Limosilactobacillus reuteri [36,38] Kazachstania solicola [30]

Lacticaseibacillus rhamnosus [36,38] Kazachstania turicensis [30,41]

Lactobacillus rodentium [38,40] Kazachstania unispora [30,41,43,45]

Latilactobacillus sakei subsp. sakei [36,38] Kluyveromyces lactis [45,56]

Ligilactobacillus salivarius [36,38] Kluyveromyces marxianus [41–43,56]

Liquorilactobacillus satsumensis [38,57] Pichia fermentans [43]

Lentilactobacillus sunkii [30,38] Pichia membranifaciens [52]

Lactobacillus ultunensis [38,40,44] Pichia kudriavzevii [52]

Levilactobacillus brevis [36,38,58] Saccharomyces cariocanus [30]

Liquorilactobacillus uvarum [35,38] Saccharomyces cerevisiae [30,43,47,52,56]

Lentilactobacillus buchneri subsp. [30,38] Saccharomyces servazzii [41]

Other bacteria Zygosaccharomyces fermentati [52]

Pediococcus halophilus [36] Other bacteria

Pediococcus lolii [36] Enterococcus sp. [30]

Pediococcus pentosaceus [36] Leuconostoc mesenteroides [33,52]

Lysinibacillus sphaericus [52] Leuconostoc pseudomesenteroides [43]
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The microbial diversity of kefir is still controversial, since in each product the species
may vary significantly (Table 1). It is important to note is that most of the microorganisms
detected in kefir beverages provide probiotic potential. The probiotic quality of kefir
beverages depends on the stability of the microbial population; therefore, an active inocu-
lum for a diverse microflora is important for the successful production of this functional
food [1,21]. Numerous bacterial species have been isolated from kefir beverages, including
lactobacilli, such as Lactobacillus acidophilus, Levilactobacillus brevis, Lactobacillus kefir, and
Lacticaseibacillus casei; lactococci, including Lactococcus lactis ssp. lactis, Lactococcus lactis
ssp. cremoris; Streptococcus thermophilus; Leuconostoc mesenteroides; Leuconostoc cremoris;
and a variety of yeast species, such as Saccharomyces; Kazachstania; and Kluyveromyces [59].
Notably, the most detected yeast strains are lactose-fermenting strains such as S. cerevisiae,
whereas yeast strains more rarely detected in kefir, such as Kazachstania unispora and Pichia
fermentans, cannot provide the appropriate enzymes to ferment lactose [43]. These strains
accumulate in kefir, fermenting monosaccharide hydrocarbons (glucose and galactose),
which are hydrolyzed beforehand by other lactose fermenting strains with a synergetic
effect. This plethora of microbial strains occurring in kefir and kefir grains results in a
beverage with a very low hydrocarbon content, as lactose, glucose, and galactose are
fermented to organic acids [43]. The accumulated organic acids may act as antimicrobial
agents, whereas various bacterial strains present in kefir can produce other antagonistic
substances, such as bacteriocins. Bacteriocins have been documented to interfere with the
adherence of pathogenic bacteria and potentially contribute to the immune responses of
gut health and they are currently being promoted as next-generation antibiotics [12,60].

2.3. Kefir Beverages as Protective Dietary Supplements against Viral Infections

An emerging need has arisen as the current COVID-19 pandemic, caused by SARS-
CoV-2, has affected millions people across the globe, with humanity still struggling to
provide a cure [61]. As a result, the scientific community has turned to many different path-
ways to boost the immune system and minimize the effects of the pandemic. A significant
pathway involved in sealing the immune system against many different pathogens has
been the consumption of functional foods, especially probiotics [12]. Kefir is known to be
an optimum product, retaining the viability of microbial strains and providing probiotic
characteristics [1,18]. Probiotic strains, contained in adequate amounts in kefir beverages,
have been proposed as effective agents which boost the immune system and may contribute
as a biological defence weapon to flatten the curve of the COVID-19 pandemic [12,62].
Specifically, various probiotic strains have been proposed as significant dietary supple-
ments against viral infections, as they provide immunomodulating compounds such as
lipoteichoic acid, peptidoglycans, and nucleic acids, as well as favoring the development
of bacteriocins, lactic acid, and hydrogen peroxide as antiviral agents [12,60].

In the fermentation bioprocess of milk by kefir microorganisms, preliminary compo-
nents and secondary metabolites are synthesized, including organic acids, antimicrobial
peptides, polysaccharides, and CO2, as well as bacteriocins. Many of these bioactive
metabolites have already been proven to suppress the growth of spoilage and pathogenic
microorganisms, while acting as natural preservatives during food storage [63]. Another
significant outcome provided by these bioactive metabolites is their immunomodulatory
and antiviral effects [64]. Particularly, bioactive peptides have been reported to suppress
viral activity, boosting the consumer’s immune system via the disruption of viral adhe-
sion [12,60,64]. Likewise, bacteriocins produced by probiotic bacteria can be explored as
inhibitors of key targets identified for the screening of metabolites for anti-COVID-19 ther-
apeutics [60,65]. For instance, nisin is a well-known bacteriocin that was initially identified
in fermented milk and belongs to the group of peptide antimicrobials collectively called
type-A (I) lantibiotics [13,66]. Nisin is currently used as a natural GRAS food preservative
due to its antimicrobial characteristics and is applied in many different food products, such
as cheese, fermented beverages, dairy desserts, milk, and meat [66]. In a recent study, nisin
produced by strains of Lactococcus lactis showed a significantly effective interaction with
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the human angiotensin converting enzyme 2 (hACE2), which can help with the prevention
of binding with the SARS-CoV-2 spike protein receptor [13]. Likewise, another recent
study showed that bacteriocins from probiotic strains, in particular glycocin F, produced
from Lactococcus lactis and lactococcine G produced from Lactiplantibacillus plantarum subsp.
plantarum (previously known as Lactobacillus plantarum), could provide high affinities in
binding SARS-CoV-2 proteins and thus act as anti-COVID agents [65]. As a result, bioactive
compounds included in kefir beverages show immense potential as health promoting
attributes and further exploration of their immune boosting and antiviral effects is needed.

3. Commercial Kefir Production

Kefir is traditionally produced from cows’ milk but it can also be prepared from
milk obtained from other species, such as goats, sheep or buffalo, whereas other sources,
such as soy, coconut, rice, or almond milk, can also be applied for the production of kefir-
like beverages [67]. In general, the production process of milk-based kefir is divided in
two main categories: (1) traditional/homemade kefir production, and (2) industrial kefir
production (Figure 2).
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Several methods exist for the manufacturing of kefir beverages. Modern techniques
have been established targeting the production of beverages with the same characteris-
tics as those of traditional kefir. For the industrial production of kefir, fresh raw milk
must be applied to heat treatment, targeting microbiological safety and shelf-life [68]. The
combinations of time and temperature applied in the heat treatment of fresh raw milk
range between low-temperature, long-time pasteurization (e.g., 85 ◦C for 30 min, 90 ◦C
for 15 min, 90–95 ◦C for 2 to 3 min, or 63 ◦C for 30 min) to ultra-high-temperature (UHT)
sterilization (e.g., about 135–154 ◦C for a couple of seconds) [68]. Subsequently, the pas-
teurization of milk for kefir production is usually applied at 90 ◦C for 2 min, with the
aim of ensuring sustainable production and maintenance of the milk’s nutritional value,
although traditional manufacturing techniques suggested no heat treatment [69]. The
application of raw milk in fermentation is currently avoided in industrial production, as
evidence has shown that pasteurization is an incontrovertible microbial safeguard for milk
and milk products. Moreover, low-temperature, short-time pasteurization slightly alters
the nutritive and organoleptic characteristics of milk [69] and as a result is currently pro-
moted in industrial kefir production (Figure 2). After milk pasteurization, the fermentation
bioprocess is initiated with the addition of the starter culture, either in the form of kefir
grains previously recovered from previous batches of milk fermentation, or as an activated
selected microbial population, mainly applied in large-scale production processes [9,29].
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Milk at the optimum temperature (20–25 ◦C) is inoculated with active kefir grains at an
inoculum which may vary between 2–10% w/v. An inoculum between 3–5% w/v is usually
preferred as a strong and sustainable starter for the industrial production of kefir’s [28,70].
In large-scale production, the selected starter is inoculated in the milk at 20 ◦C for approx.
24 h. In all cases, the fermentation of milk is completed with the formation of a stable
coagulate when pH reaches 4.6–4.0 [29,71]. After fermentation, grains are removed by
straining, whereas in the case of large-scale production, the fermented milk is directly
packed and stored (at 4 ◦C).

Quality Production Management

The microflora of kefir may vary according to their origin, the applied conditions of
fermentation, and the storage and elaboration processes [20]. The exact ratio between the
various species of lactic acid bacteria, yeasts, acetic acid bacteria, and other microflora may
depend on factors such as fermentation time, temperature, the degree of agitation, and
the type of milk or alternative non-dairy substrate of fermentation [20,46]. For example,
agitation during fermentation can affect the microbial composition of kefir, favoring the
development of homofermentative lactococci and yeasts, as oxygen is enhanced in the
fermentation bioprocess [33]. Another aspect that can affect the microbial composition of
kefir is the substrate of fermentation. Sugary kefir, for example, favors the development
of yeasts, LAB, and acetic acid bacteria, whereas temperature might also alter the culture
variety [71,72]. In all cases, following fermentation, kefir grains increase in biomass by
approximately 5%, with new florets forming in the process [31,35]. Kefir beverages pro-
duced under acidic conditions show a predominance of smaller peptides, suggesting a
higher proteolysis level, a characteristic which also influences the nutritional value of the
final product [71]. It has been well established that the wide microbial diversity found in
kefir can promote its adaptation to different substrates more easily compared to fermenta-
tion using single-species starter cultures [18,34]. It is noteworthy that some commercially
produced beverages that are labeled as ‘kefir beverages’ are lacking in microbial diversity
compared to traditional kefir products [71]. Another factor worth mentioning is that lacto-
bacilli, lactococci, and leuconostoc species may occur in both commercial and traditional
kefir beverages, whereas, on the other hand, most commercial kefir beverages lack acetic
acid bacteria [18,20]. Acetic acid bacteria are mainly present in traditional kefir beverages
and usually confer beneficial effects in addition to their possible contribution in the manu-
facturing of a wide range of novel products [18,37,71]. Traditional kefir contains a wide
variety of yeast strains, whereas in commercial kefir the yeast population is significantly
lower and sometimes only Saccharomyces cerevisiae is detected. Likewise, traditional kefir
shows a greater variety in the total microflora, providing additional health attributes in
contrast to commercial kefir. This outcome highlights the substantial consideration needed
in the selection of the commercial kefir starter culture [37,71].

Traditional kefir production results in the production of smaller volumes of final
products compared to commercial kefir incubation at ambient temperatures for approxi-
mately 24 h [31]. Several batches can be manufactured through traditional kefir production,
although this results in a rather shorter shelf-life (2–3 days) compared to industrially man-
ufactured kefir. The sensory properties of traditional kefir show some fluctuations, due
to the conditions of handling and storage of fermented beverages, which in many cases
cannot be considered equivalent to industrial production (Table 2). Specifically, sensorial
variations occur in traditional kefir mainly depending on the origin of the starter culture
applied as the inoculum [9,29,72]. In general, all kefir products are characterized as slightly
acidic due to the lactic acid produced via lactose fermentation. Furthermore, all bever-
ages are mildly carbonated due to the presence of CO2, with small amounts of alcohol
resulting from yeast accumulation [73]. Other metabolites also included in kefir beverages
are bioactive peptides, exopolysaccharides, antibiotics, and bacteriocins [73]. The formed
exopolysaccharides of kefir grains are actually hetero-polysaccharides, with glucose and
galactose units, and an increase in weight is observed during fermentation due to biofilm
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formation, occurring along with the growth of the microbial biomass [29]. This matrix is
produced by the lactic acid microflora, which mainly colonize in the form of grains, and its
presence in the fermentation medium can subsequently affect the rheological characteristics
of the final product (Table 2) [18,31,74]. The concentration of exopolysaccharides is affected
by the fermentation temperature and their presence in the beverage has been linked with
various health benefits of kefir, such as immunomodulatory, anti-mutagenic, anti-ulcer,
anti-allergic, and anti-tumor properties, and it may also act as a prebiotic [75].

Table 2. Effect of different microbial groups on sensory characteristics of kefir beverages.

Microbial Groups Effect on Kefir Beverage

Mesophilous lactic acid Streptococci (Streptococcus lactis,
Streptococcus cremoris) Development of acidification and coagulate formation.

Lactic acid bacteria
(Lactobacillus kefiranofaciens subsp.

kefiranofaciens,
Lentilactobacillus kefiri,

Lactiplantibacillus plantarum subsp. plantarum,
Lactobacillus helveticus )

Lactococci
(Lactococcus lactis, Streptococcus diacetylactis, Leuconostoc

dextranicum)

Development of sour taste and lower pH.
Stabilization of kefiran structure in kefir grains.

Affects the rheological characteristics of the final product.
Production of volatile and other compounds with positive

effects on texture and flavor.

Yeasts
(Saccharomyces cerevisiae, Saccharomyces

unisporus, Kluyveromyces marxianus)

Development of a slight alcoholic flavor to the final product.
Provide a mildly carbonated effect due to CO2 formation.

Acetic acid bacteria No significant effect.
Excessive growth can cause viscous consistency.

In traditional production, kefir grains are re-applied for fermentation in several
batches. The re-use of kefir grains results in lower proteolytic activity and a poor re-
producibility in the kefir’s phosphor-peptide profile [9,71]. These quality variations are not
acceptable in industrial production, and led to the development of manufacturing methods
with precise control in bioprocessing. Specifically, in order to standardize kefir beverages
for marketable production and to facilitate large-scale production, industrial brands use
starter cultures consisting of pure strain cultures [29]. This method enables better control
of the microorganisms involved and ensures consistent quality in all batches. In addition,
the shelf life of the kefir can be extended for up to 10–15 days with refrigerated storage
(4 ◦C) and the modification and improvement in beverages can be facilitated in terms of
health-related and nutritional aspects [1,9,29].

4. Modern Biotechnological Processes and Applications

Kefir is considered to be a product with great potential in functional food innovations
since it contains a large variety of beneficial microorganisms, along with their bioactive
compounds. Dairy kefir products confer a wide spectrum of important health benefits,
including physiological, prophylactic, and therapeutic properties [76]. These numerous
positive health aspects of kefir have increased the interest of scientists in novel non-dairy
substrates for the application of kefir grains. Moreover, the microbial diversity of kefirs can
contribute to many different fermentation bioprocesses, depending on the fermentation
substrate (Figure 1). As a result, scientific research has recently focused on alternative ways
to instill kefir’s beneficial effects through its adaptation onto non-dairy substrates such as
fruits, vegetables, and molasses [18,46].

Water kefir or sugar kefir is a traditional fermented beverage, prepared by adding kefir
grains (the inoculum) to a mixture of water, sugar, and sometimes dried or fresh fruits [77].
Traditionally, water kefir is produced by introducing kefir grains into a vessel with water
and sugar; subsequently, the vessel is closed and the mixture is left to inoculate at room
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temperature for 48–96 h. Sucrose is the main carbohydrate in water kefir fermentation,
used as an essential energy source for grain biomass production [20]. The addition of dried
or fresh fruit or fruit juices in water kefir fermentation enhances the mixture with different
carbohydrates, mainly depending on the chemical composition of the substrate [18]. The
names of non-dairy kefir beverages may vary according to the substrate of fermentation
and the country of origin. For example, ‘tapache’ is a sugar kefir beverage obtained through
the fermentation of pineapple, brown sugar, and cinnamon with kefir grains [78]. Another
grape-based kefir beverage is ‘kefir duva’, which is produced through grape must fermenta-
tion [79]. In general, in sugar kefir fermentation, final products have an acidic taste and are
refreshing, slightly carbonated and lowly alcoholic; sensory properties obtained from the
symbiosis between yeast, lactic acid bacteria, and acetic acid bacteria. Sugar kefir beverages
can also be enhanced with cereals (oat, maize, and barley), highlighting the ability of cereal
ingredients to boost probiotic strains and provide products of enhanced functionality [80].
These results demonstrate the potential industrialization of novel functional probiotic
beverages with characteristics similar to traditional sugar kefir beverages.

Fruits and vegetables are strongly recommended by many nutritionists and have been
proposed in recent studies as substrates for the adaptation of kefir grains [18,27]. Fruit and
fruit juices contain natural sugars and as a result, no sugar supplements are needed when
fruits are applied as substrates for fermentation. Vegetable and fruit juices also have a high
moisture content and contain carbohydrates, proteins, amino acids, vitamins, and minerals
and thus they are considered a suitable medium for microbial growth and the production of
fermented beverages, such as kefir, wine, and other products [18,81,82]. Recent studies have
reported the successful development of novel non-dairy kefir beverages from fruits and
vegetables, such as apples, grapes, strawberries, kiwi, cocoa, pomegranates, prickly pears,
and vegetable juices (carrots, beans, fennels, melons, onions, and tomatoes) [18,27,83].

Milk-like substitutes, such as soy milk, coconut, walnut, rice, oat, almond, hazelnut,
sesame, tiger nut, hemp, peanut, and cocoa pulp, have great potential as candidates for non-
dairy kefir beverage production [84]. However, these substrates need to be supplemented
with sugars to stimulate the microbiota of kefir grains as they tend to weaken the inoculum.
Finally, recent studies have demonstrated the potential of kefir microbial cultures in the
fabrication of novel added-value food products, such as feta-type cheeses [85], whey-based
alcoholic beverages [86], vinegars [18,47], potable alcohol, and baker’s yeast [34]. All
products include variable microbial strains and highlight microbial transformation as an
approach for enhancing bioactive compounds, improving food functionality.

5. Future Prospects towards Health-Promoting Effects

Several scientific studies support the health benefits associated with the consumption
of kefir, and its global consumption is constantly rising [87,88]. Furthermore, the recent
COVID-19 viral outbreak calls for non-conventional antiviral agents aiming to reduce
the risk of infections and promote patient recovery [64]. Scientific research data support
the claim that the regular consumption of kefir can be associated with a wide range of
health-promoting affects (Figure 3), including anti-carcinogenic [87], anti-oxidant [89],
anti-inflammatory [90], antifibrotic [91], anti-microbial [92], and anti-diabetic [93] effects,
as well as improved digestion [94] and lactose tolerance [95], and more recent findings
support the link between kefir’s probiotic strains and bio-functional metabolites and an
enhanced immune system and antiviral activities [65,96].
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Boosting and stimulating the immune system is one of the most effective strategies
to prevent infections caused by many different pathogens, including viruses [1,12]. It
has been well-established that probiotic microflora in fermented milk beverages can exert
their beneficial effects through two mechanisms—as a direct effect of the live probiotic
culture, or through their metabolites [5,64,97]. Due to these numerous health-promoting
and disease-preventing effects, kefir is among the most important functional products
available. The inhibitory activities of kefir against foodborne pathogens occur as a result of
its ability to modulate the intestinal flora by enhancing the number of probiotic bacterial
strains [1,23,32,65]. Consumption of kefir can provide the consumer with health-promoting
effects produced by probiotics such as lactic acid, acetic acid, and antimicrobial proteins
with bacteriostatic effects against various pathogens [23,32,65]. In addition, kefir’s signifi-
cant content of bio-functional metabolites emphasizes the emerging need to further explore
these immune-boosting and antiviral constituents [12,64,65]. In view of these benefits,
a demand is emerging for systematic clinical trials to further understand the impact of
the regular consumption of fermented functional beverages as a part of the diet or as a
food supplement.
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