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Abstract: The databases of Iran’s electricity market have been storing large sizes of data. Retail buyers
and retailers will operate in Iran’s electricity market in the foreseeable future when smart grids are
implemented thoroughly across Iran. As a result, there will be very much larger data of the electricity
market in the future than ever before. If certain methods are devised to perform quick search in
such large sizes of stored data, it will be possible to improve the forecasting accuracy of important
variables in Iran’s electricity market. In this paper, available methods were employed to develop a
new technique of Wavelet-Neural Networks-Particle Swarm Optimization-Simulation-Optimization
(WT-NNPSO-SO) with the purpose of searching in Big Data stored in the electricity market and
improving the accuracy of short-term forecasting of electricity supply and demand. The electricity
market data exploration approach was based on the simulation-optimization algorithms. It was
combined with the Wavelet-Neural Networks-Particle Swarm Optimization (Wavelet-NNPSO)
method to improve the forecasting accuracy with the assumption Length of Training Data (LOTD)
increased. In comparison with previous techniques, the runtime of the proposed technique was
improved in larger sizes of data due to the use of metaheuristic algorithms. The findings were dealt
with in the Results section.

Keywords: electricity market; electricity supply and demand; Big Data; Monte Carlo method; PSO;
Wavelet-NNPSO; smart grid

1. Introduction

In energy planning, variables such as wind power, solar radiation, CO2 emissions, electricity
prices, etc., are predicted [1]. One of the most important variables of energy planning that needs to be
predicted is load demand forecasting. In this way, the electricity market is a system for buying and
selling electricity. Such a market is established in the form of supply and demand to determine the
price of electricity. Generation, distribution, and transfer management systems were integrated in the
old structure of the electric power industry. However, such systems operate independently now in the
new structure. Accordingly, the electricity market serves as an interface between the aforesaid systems.
In the competitive electricity market, the market manager is mainly responsible for determining the
electricity price for the future periods. Given the process of creating smart grids where retailers and
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retailers will be present, the volume of data generation is greater than ever, and the speed and precision
of data analysis is more important. The electricity supply and demand are among the most important
variables determining the electricity price for the future. The electricity market manager can predict the
electricity supply and demand for the upcoming periods by considering data obtained from the stored
parameters of the electricity market. The sizes of the electricity market data, stored in short intervals,
developed a concept named Big Data characterized by four vastness features, discussed in Section 2.
Machine learning is an analytical approach to Big Data problems. Therefore, machine-learning
methods were used in this paper to search in Big Data of the electricity market with the purpose of
developing forecasting techniques. The importance of electricity demand forecasting has been pointed
out by many studies of the electricity market, Such forecasting are categorized as very short-term,
short-term, mid-term, and long-term classes. The proceedings [2–5] pointed out the electricity
forecasting methods for very short-term intervals (shorter than an hour). The proceedings [6–10]
introduced the forecasting methods for mid-term intervals (ranging from one month to one year),
and the proceedings [11–16] pointed out the long-term intervals (longer than one year). In this paper,
a new technique was introduced for the forecasting of short-term demands (ranging from one hour
to one month). In another division, the short-term forecasting papers are divided into two groups,
based on either time series or neural networks. References [17–22] include the papers on the use of
time series in the short-term forecasting of electricity demand. Such forecasting was not discussed
in this paper. Instead, neural networks were employed along with other methods for forecasting.
In this category, articles are presented like BPNN (Li et al. [23]), WTBPNN (Changhao et al. [24]),
GNBPNN (Irani et al. [25]), NNPSO (Zhaoyu et al. [26]), WT-ANFIS (Karthika et al. [27]), ADE-BPNN
(Wang et al. [28]), Wavelet-PSO-ANFIS,) Catalao et al. [29]), and WT-PSO-BPNN (Mandel et al. [30])
whose goal is to arrive at the highest accuracy in forecasting. Some other research are found
in [10,31–50]. Figure 1 shows the development of the new technique.

In this paper, it is assumed that if the electricity market manager can search in a large size of
previous data by using intelligent methods, it will be possible to improve the forecasting accuracy of
electrical load supply and demand. It will also be possible to reduce the data analysis time. There are
various Big Data analysis methods, introduced thoroughly in [47]. Accordingly, machine-learning
algorithms are also used for Big Data analysis. In this paper, available strategies were developed
for forecasting target variables based on neural networks. Then a new strategy was introduced for
preprocessing Big Data to select appropriate initial solutions as the inputs of the neural network. In fact,
the preprocessing strategy results from the proper search conducted on a big size of previous data.
As a result, the neural network weighting time decreased, and the accuracy increased. In other words,
the metaheuristic PSO was used to generate the values of previous data, closest to the current input
data, through searching in Big Data. Then the predicted values of supply and demand were calculated
along with the Monte Carlo fitness function to improve data. After that, the data were entered into
a neural network to weight the input parameters of the neural network. In this study, the three-step
Haar wavelet transform was employed for high-accuracy forecasting in order to separate high and low
frequencies of real input data of electrical load supply and demand. Therefore, the Wavelet-Neural
Networks-Particle Swarm Optimization-Simulation-Optimization (WT-NNPSO-SO) technique was
formed. In fact, it is a developed version of previous techniques. It was proposed for forecasting
the electrical load demand or other variables such as the wind power. This technique maintains
the improved in accuracy and speed by increasing the length of training data (LOTD). It is also
appropriate for search in Big Data stored previously in databases. In this paper, the data analysis speed
was considerably important. It was pointed out in the Results section (because it will be necessary
to predict variables in the shortest possible intervals in smart grids in the electricity market in the
foreseeable future). In addition to load forecasting, the proposed method predicts the electricity load
and supply values with the same technique. In the following, the article is divided into sections titled:
2. Iran’s Electricity Market’s Big Data; 3. Components of the Algorithm; 4. The Wavelet-NNPSO
Algorithm; 5. Numerical Results and Discussion; and 6. Conclusion and Suggestions.
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Figure 1. The background to the proposed technique. 
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Figure 1. The background to the proposed technique.

2. Iran’s Electricity Market’s Big Data

2.1. Current Situation

Since the establishment of Iran’s electricity market (IEM) in Iran (2002), databases of the electricity
market have been storing data at the same time as when electricity is bought and sold. Such data are
based on the activities of sellers and buyers in a certain field. The electricity market manager acts as
an interface to receive data from buyers and sellers with the purpose of predicting and approving
the fair price of electricity for the following day after electric load supply and demand forecasting.
By 2017, There were over 25 parameters stored in databases of the electricity market for electricity
price forecasting. The stored data indicate the actions of buyers and sellers, summarized in Table 1.

Table 1. Stored parameters of IEM databases.

Parameter Description Comments Data Storage
Intervals Domain (D)

Size of Stored
Data for Total GB

Calculation

P1

Average electricity
consumption at the

peak hour

This index was calculated
for 39 power distribution

companies separately. This
parameter shows the mean.

Every Minute [25,000, 40,000] 63.67

P2

Average electricity
consumption at the
peak hour last year

This index was calculated
for 39 power distribution

companies separately. This
parameter shows the mean.

Every Minute [25,000, 40,000] 64.43
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Table 1. Cont.

P3 Total power exports

This index was stored for
201 power plants separately.

This parameter indicates
the mean.

Every Minute [100, 2000] 378.87

P4 Total power imports

This index was stored for
201 power plants separately.

This parameter shows
the mean.

Every Minute [10, 1000] 345.66

P5 Total power exchange

This index was stored for
201 power plants separately.

This parameter shows
the mean.

Every Minute [100, 3000] 378.9

P6 Air temperature - Every Minute [−15, 42] 12.45

P7
Cost of using network

equipment

This index was calculated
for 39 power distribution

and 16 power transfer
companies separately. This
parameter shows the mean.

Every Minute [2500, 4500] 87.78

P8

Cost of energy
consumed by the

network

This index was calculated
for 39 power distribution

and 16 power transfer
companies separately. This

parameter indicates
the mean.

Every Minute [2500, 5600] 74.43

P9
Cost of overseas

exchange

This index was stored for
201 power plants separately.

This parameter shows
the mean.

Every Minute [3000, 4000] 346.88

P10

Cost of energy
provided for buyers in

the market

This index was calculated
for 39 power distribution

companies separately. This
parameter indicates

the mean.

Every Minute [150,000,
200,000] 56.67

P11
Buyers’ share in the
use of services (Rial)

This index was calculated
for 39 power distribution

and 16 power transfer
companies separately. This
parameter shows the mean.

Every Minute [20,000, 40,000] 78.67

P12

Cost of buying the
active power

consumption (Rial)

This index was calculated
for 39 power distribution

companies separately. This
parameter shows the mean.

Every Minute [1500, 4000] 57.76

P13

Buyers’ share in the
cost of transfer services

(Rial)

This index was calculated
for 39 power distribution

companies separately. This
parameter indicates

the mean.

Every Minute [20,000, 40,000] 62.32

P15 Share of readiness

This index was stored for
201 power plants separately.

This parameter indicates
the mean.

Every Minute [100, 150] 344.43
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Table 1. Cont.

P16
Delayed sums of

power plants

This index was stored for
201 power plants separately.

This parameter indicates
the mean.

Every Minute [1500, 2500] 340.43

P17
Productivity coefficient

of the power plant

This index was stored for
201 power plants separately.

This parameter shows
the mean.

Every Minute [0.3, 1] 360.8

P18 Rates of extra services

This index was calculated
for 39 power plants and 16
power transfer companies
separately. This parameter

shows the mean.

Every Minute [2000, 6000] 79.93

P19 Sales proposition steps

This index was stored for
201 power plants separately.

This parameter shows
the mean.

Every Minute [7000, 22,000] 340.9

P20
Modified coefficients

of consumers

This index was calculated
for 39 power distribution

companies separately. This
parameter indicates

the mean.

Every Minute [0.3, 0.9] 67.77

P21

Productivity
coefficients of power

plants

This index was stored for
201 power plants separately.

This parameter indicates
the mean.

Every Minute [0.3, 0.98] 305.63

P22 Average thermal value

This index was stored for
201 power plants separately.

This parameter shows
the mean.

Every Minute [20,000, 40,000] 345.32

P23
Coefficient of
readiness cost

This index was stored for
201 power plants separately.

This parameter shows
the mean.

Every Minute [0.3, 1] 305.81

P24 Noncooperation fine

This index was calculated
for 39 power distribution

and 16 power transfer
companies separately. This

parameter indicates
the mean.

Every Minute [100, 500] 51.61

P25
Sums of

noncooperation

This index was calculated
for 39 power distribution

and 16 power transfer
companies separately. This
parameter shows the mean.

Every Minute [2000, 4500] 50.77

The total size of generated data has been 10,158 GB since the establishment of the electricity market
(up to 2017). It is predicted that 21,116 GB of data will be generated until 2022 (without considering
the implementation of the smart grid). Moreover, the data generation rate of Iran’s electricity market
is so high that the data of every parameter are stored in every minute. Regarding Big Data, validity
and variety are important in addition to the size and rate of data generation. According to the data
verification at different levels of power supply chain compared with previously real and estimated
data on average, the generated data indicated uncertainty. Data uncertainty is a feature of Big Data [51].
In the next step, the data of electricity market and varied data are searched. Such a variety includes
nominal, ordinal, and numeral data in addition to dates and time. Figure 2 indicates the four features.



Data 2018, 3, 43 6 of 26

Data 2018, 3, x FOR PEER REVIEW  5 of 26 

 

P22 Average thermal value 

This index was stored for 201 

power plants separately. This 

parameter shows the mean. 

Every 

Minute 

[20,000, 

40,000] 
345.32 

P23 
Coefficient of readiness 

cost 

This index was stored for 201 

power plants separately. This 

parameter shows the mean. 

Every 

Minute 
[0.3, 1] 305.81 

P24 Noncooperation fine 

This index was calculated for 39 

power distribution and 16 

power transfer companies 

separately. This parameter 

indicates the mean. 

Every 

Minute 
[100, 500] 51.61 

P25 
Sums of 

noncooperation 

This index was calculated for 39 

power distribution and 16 

power transfer companies 

separately. This parameter 

shows the mean. 

Every 

Minute 

[2000, 

4500] 
50.77 

The total size of generated data has been 10,158 GB since the establishment of the electricity 

market (up to 2017). It is predicted that 21,116 GB of data will be generated until 2022 (without 

considering the implementation of the smart grid). Moreover, the data generation rate of Iran’s 

electricity market is so high that the data of every parameter are stored in every minute. Regarding 

Big Data, validity and variety are important in addition to the size and rate of data generation. 

According to the data verification at different levels of power supply chain compared with previously 

real and estimated data on average, the generated data indicated uncertainty. Data uncertainty is a 

feature of Big Data [51]. In the next step, the data of electricity market and varied data are searched. 

Such a variety includes nominal, ordinal, and numeral data in addition to dates and time. Figure 2 

indicates the four features. 

 

(a) 

Data 2018, 3, x FOR PEER REVIEW  6 of 26 

 

 

(b) 

 
 

(c) (d) 

Figure 2. The 4 Vs in IEM: (a) volume; (b) velocity; (c) variety; and (d) veracity. 

2.2. State of the Future 

Given the changes in the electricity market to create smart grids and welcome retail buyers and 

retailers in the market, data generation rate has greatly increased so much that data will be recorded 

instantly [14]. Therefore, if the smart grid is implemented thoroughly across Iran (from 2018 to 2025) 

to gradually cover over 33,689,000 home and industrial electricity subscribers, it is predicted that 2.5 

terabytes of data will be generated daily. As a result, there will be unbelievably numerous sources of 

data generation. In fact, every home or building will turn into a data generation source in the market 

(Figure 3) [52]. Therefore, Iran’s electricity market will include a very great amount of data, and the 

daily-generated data of the smart grid may amount to the monthly-generated data of the ordinary 

market. Thus, the structures of data storage and analysis should be prepared for great developments 

of data generation in the foreseeable future. Certain methods should also be proposed to exploit the 

potential of previous Big Data, indicating the performance of relevant actors and different states of 

the market with the purpose of predicting the important variables more accurately. 

..

Nominal

Ordinal

Time

Distance

Ratio

Date

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Electricity Plant Electricity

Transmission

Company

Electricity Distribution

Company

Veracity

Figure 2. The 4 Vs in IEM: (a) volume; (b) velocity; (c) variety; and (d) veracity.

2.2. State of the Future

Given the changes in the electricity market to create smart grids and welcome retail buyers and
retailers in the market, data generation rate has greatly increased so much that data will be recorded
instantly [14]. Therefore, if the smart grid is implemented thoroughly across Iran (from 2018 to 2025)
to gradually cover over 33,689,000 home and industrial electricity subscribers, it is predicted that
2.5 terabytes of data will be generated daily. As a result, there will be unbelievably numerous sources
of data generation. In fact, every home or building will turn into a data generation source in the market
(Figure 3) [52]. Therefore, Iran’s electricity market will include a very great amount of data, and the
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daily-generated data of the smart grid may amount to the monthly-generated data of the ordinary
market. Thus, the structures of data storage and analysis should be prepared for great developments
of data generation in the foreseeable future. Certain methods should also be proposed to exploit the
potential of previous Big Data, indicating the performance of relevant actors and different states of the
market with the purpose of predicting the important variables more accurately.Data 2018, 3, x FOR PEER REVIEW  7 of 26 

 

Data
Data Data Data 

(in future) 

ISO

Electricity 

plants

Electricity 

transmission 

Company

Electricity 

distribution 

companies

Electricity 

subscribers

E
le

ct
ri

ci
ty

 

E
le

ct
ri

ci
ty

 

E
le

ct
ri

ci
ty

 

 

 

Figure 3. Data size comparison at the time of implementing the global smart grid in IEM. 

3. Components of the Algorithm 

3.1. Wavelet 

A wavelet is a series of mathematical functions used to decompose a continuous signal into 

frequency components. The resolution of each component is equal to its scale. The decomposition 

wavelet transform is a function based on wavelet functions. Wavelets (also known as daughter 

wavelets) are the samples transferred and scaled from a function (a mother wavelet) [24]. They are 

characterized by finite lengths and highly mortal oscillations. The following figure shows a few 

mother wavelets. The continuous wavelet transform converts a continuous function of time into the 

time-frequency space. The bases of the new space are wavelet functions. In mathematics, a continuous 

wavelet transform is defined as a continuous function like x(t), the squared version of which is 

integrable (a > 0, 𝑅 ϵ 𝑏). Equation (1) shows such a wavelet: 

𝐶𝑊𝑇𝑥  (𝑎. 𝑏) =  
1

√|𝑎|
 ∫ 𝑥(𝑡)

∞

−∞

 𝛹∗(𝑡) 𝑥(𝑡)   𝑑𝑡       (1) 

Figure 3. Data size comparison at the time of implementing the global smart grid in IEM.

3. Components of the Algorithm

3.1. Wavelet

A wavelet is a series of mathematical functions used to decompose a continuous signal into
frequency components. The resolution of each component is equal to its scale. The decomposition
wavelet transform is a function based on wavelet functions. Wavelets (also known as daughter
wavelets) are the samples transferred and scaled from a function (a mother wavelet) [24]. They are
characterized by finite lengths and highly mortal oscillations. The following figure shows a few
mother wavelets. The continuous wavelet transform converts a continuous function of time into the
time-frequency space. The bases of the new space are wavelet functions. In mathematics, a continuous
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wavelet transform is defined as a continuous function like x(t), the squared version of which is
integrable (a > 0, R ε b). Equation (1) shows such a wavelet:

CWTx (a.b) =
1√
|a|

∞∫
−∞

x(t) Ψ∗(t) x(t)dt (1)

In this equation, Ψ is a continuous function in time and frequency, t shows the signal length of
x(t). The transfer and scale parameters include the continuous values of m and n, for which a = 2m and
a = 2n. It is known as the mother wavelet, defined as Equation (2):

Ψa.b(t) =
1√
a

(
t− b

a

)
(2)

In a discrete wavelet transform, a signal is passed through a series of overpass filters for
high-frequency analysis and a series of underpass filters for low-frequency analysis. A signal is
divided into two parts, one of which results from the passage of signal through the overpass filter
including high-frequency information (such as noise). It is called the details. The other part results
from the passage of signal through an underpass filter including low-frequency information and the
identity properties of the signal. The second part is called generalities and shown as Equation (3):

DWTx (m.n) = 2−(
m
2 )

T−1

∑
t=0

∞∫
−∞

x(t) Ψ

(
t− n2m

2m

)
dt (3)

The Haar wavelet is a specific series of functions known as the first wavelet. There are several
methods of wavelet transforms, the simplest of which is the Haar wavelet. In this paper, it was used in
three steps. There are also other methods such as db2 and db4, used in other papers. The Haar mother
wavelet is defined as Equation (4):

Ψ(t) =


1 0 ≤ t < 1

2
0 otherwise

−1 1
2 ≤ t < 1

(4)

The comparing function is shown by Equation (5):

Ψ(t) =

{
1 0 ≤ t < 1
0 otherwise

(5)

The decomposition steps are shown in Figure 4. Equation (6) indicates the stepwise
decomposition equations.
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D = A1 + D1

= D1 + D2 + A2

= D1 + D2 + D3 + A3

(6)

After applying the neural network to the set of problem inputs, As and Ds were combined with
each other to calculate and predict supply (S) and demand (D). Figure 5 shows the combination these
components. In other words, they result from the inversed version of Equation (6).
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3.2. Neural Network Particle Swarm Optimization (NNPSO)

The Back-propagation neural network (BPNN) is a kind of multilayer neural network with a
nonlinear transfer function and Widrow-Hoff learning rules. The input and target vectors are used
to train this type of the network for estimating a function, finding a relationship between inputs
and outputs, and classifying inputs. A BP network has a bias to estimate every function with the
limited number of discontinuities. BP is a standard algorithm characterized by reduced gradient.
In BP, network weights move in the opposite direction of the efficiency function gradient. The term
back-propagation refers to the behavior of a BP network in gradient calculation for multilayer nonlinear
networks. There are different algorithms operating based on the standard BP algorithm such as the
conjugate gradient algorithm and Newton’s method. The most common BP network architecture is
the feed forward network [23]. Figure 6 shows a simple neuron with R inputs:
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The tansig function can be used to generate inputs ranging between −1 and 1. If the last layer of
a multilayer network has sigmoid neurons, the output is limited to a shorter range. However, if linear
neurons are used, the output can have any value.

The feed forward networks often have one or several hidden layers of sigmoid neurons by using a
linear terminal layer. The presence of several layers of neurons and a nonlinear tansig function enables
the network to learn about linear and nonlinear relationships between inputs and outputs. The linear



Data 2018, 3, 43 10 of 26

output layer enables the network to have inputs outside the expected range. However, if the output
exists in the expected range, the logsig function is used in the linear layer. In the example of this article,
Figure 7 indicates the structure of a feed forward network with tansig functions and two layers of
40 neurons. Table 2 indicates the implementation parameters of the neural network.Data 2018, 3, x FOR PEER REVIEW  10 of 26 
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Table 2. BPNN parameters.

Parameter Value

Number of neurons in hidden layer 40
Learning coefficient 0.9

Momentum 0.2
Activation functions in hidden layer TANSIG
Activation functions in output layer TANSIG

Length of training data 180, 360, 720, 1440
Training function TRAINLM

Number of epochs 1000

In this technique, PSO is used to train the neural network. The PSO is a global minimization
method which can be employed to deal with certain problems, to which solutions include a point
or surface of the n-dimensional space. In such a space, there are certain assumptions with an
initially-allocated speed [26]. There are also communication channels between particles. Then the
particles flow across the solution space, and results are calculated on the basis of a qualification
criterion in every interval. With the passage of time, particles move towards the other particles with
higher qualification criteria in the same communication group (Figure 8).
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The position and initial velocity of particles can be calculated through Equations (7) and (8),
respectively. The velocity, weight (w), and position of particles can be obtained from Equations (9),
(10), and (11) in every iteration. Table 3 indicates the input parameters required to implement the PSO
algorithm in neural network training.

xi
0 = xmin + rand ( xmax − xmin) (7)

vi
0 =

xmin + rand (xmax − xmin)

∆t
(8)

vi
t+1 = w vi

t+φ1rand1 (pt
i − xi

t/∆t)+φ2rand2 (pg
t − xi

t/∆t) (9)

w = ( w1 − w2 )
itermax − iter

itermax
+ w2 (10)

xi
t+1 = xi

t + vi
t+1 ∆t (11)

where xi
0 is the current position of the particle, xmin and xmax are, respectively, the minimum and

maximum coordinates of the particle i, vi
0 is the initial velocity of particle i, vi

t+1 is the velocity of
particle i at t + 1, φ1 and φ2 are the coefficients of motion tendency adjustment towards global optimal
or best solution obtained by particle i, pi is the best position experienced by particle i, pg

t is the best
position experienced by all particles until t; and xi

t is the position of particle i at t.

Table 3. PSO parameters.

Parameter Value

Swarm size 60
Initial weight w1 0.9
Final weight w2 0.4

φ1, φ2 2, 2
Max. number of iterations 1000

3.3. Simulation-Optimization

3.3.1. Monte Carlo Simulation

The Monte Carlo method is a computational algorithm using the random sampling to obtain
results. The Monte Carlo methods are usually employed to simulate physical, mathematical,
and economic systems. Such methods are often used when a mathematical or physical system is
being simulated. Since they rely on iterative computations and random or false-random numbers,
the Monte Carlo methods are often adjusted in a way that they can be executed by computers. In this
study, the Monte Carlo simulation was used to select previous Big Data at random and compute the
objective function and values of supply and demand generated in every step of the PSO algorithm.
Table 4 shows the simulation parameters of this method.

Table 4. Monte Carlo simulation parameters.

Parameter Description Value

n Number of simulations 1000
l The size of each simulation 100

DP1 Average electricity consumption at the peak hour Domain [25,000, 40,000]
DP2 Average electricity consumption at the peak hour last year Domain [10, 1000]
DP3 Total power imports Domain [25,000, 40,000]
DP4 Total power exchange Domain [100, 2000]
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3.3.2. PSO

The PSO was introduced in Section 3.2. This algorithm will also be used in the simulation-optimization
conducted on previous Big Data. Table 5 indicates the input parameters of PSO used for preprocessing data.

Table 5. Execution parameters of PSO.

Parameter Value

Swarm size 100
Initial weight w1 0.9
Final weight w2 0.4

φ1, φ2 2, 2
Max. number of iterations 1000

α, β 0.6, 0.4

3.3.3. Simulation-Optimization (SO) Algorithm

First, it is necessary to point out that the problem of generating solutions close to the current
solution is classified as the knapsack or rucksack problem. Such problems are solved by using
metaheuristic algorithms because they are considered hard problems [53]. Now the knapsack problem
is described briefly.

Known as the knapsack or rucksack problem, it is combinatorial optimization problem.
Assume that a group of objects is available with specific versions or values. Every object is allocated a
certain number so that the weights of selected objects are smaller or equal to a predetermined limit;
however, values are maximized.

Assume that there are n objects, numbered from 1 to n. The value of ith object is vi, and its weight
is wi. It is usually assumed that weights and values are nonnegative. For a simpler presentation, it can
be assumed that objects are sorted in an ascending order of weights without damaging the problem
generality. The maximum weight that can be carried in a knapsack is W.

The most famous type of such a problem is the 0 and 1 knapsack problem. In other words, there is
zero of every object (not selected) or one of every object (selected). The 0 and 1 knapsack problem can
be stated mathematically:

Maximize the value of ∑n
i=1 vi xi in a way that ∑n

i=1 wi xi ≤W , xi ∈ {0 , 1}.

The bounded knapsack problem is another version in which the number of objects is a real and
nonnegative value. It is equal to ci at the most. In mathematical terms, ∑n

i=1 vi xi should be maximized
in a way that ∑n

i=1 wi xi ≤ W , xi ∈ [0, ci]. In this study, the values of input parameters were
selected with the assumption that their values and weights were equal. The values were selected in the
minimum-to-maximum range of every parameter. However, a variance yi was used in the objective
function to prevent the convergence of all solutions to a specific group of values:

vi = 1 , wi = 1 , Min(Pi) ≤ xi ≤ Max(Pi) ∀i

The goal of executing simulation-optimization on the big data of the electricity market was to
find the initial solutions with the least variation from the current parameters (zcurrent = (z1. · · · .zm)).
Given the fact that it is not possible to form a specific model between the time and values of input
parameters, simulation was used to calculate the values of the objective function and predict supply
and demand based on random points selected for the new points generated by the PSO. The hybrid of
simulation and optimization can analyze Big Data of the electricity market at a high speed. Therefore,
the sets of initial solutions can be added into the wavelet-PSO-NNs model (Figure 9).
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In this algorithm, the initial population is generated first by the PSO. New populations are
generated in accordance with the steps described in Section 3.3.2. The Monte Carlo simulation method
was used to calculate the value of the fitness function. According to Section 3.3.1, a set of random
populations is generated first based on time. Then the values of objective function, supply, and demand
are calculated by considering the difference between the current solution (zcurrent = (z1. · · · .zm)) and
random solutions selected in the P step of PSO (yp = (y1, y2, ..., ym)). Figure 10 shows the necessary
equations. Then the value of fitness function and predicted values of supply and demand were given
back to the PSO to resume simulation. The algorithm would be terminated, if the maximum number
of iterations were achieved (Table 5). The steps are taken separately for supply and demand values.
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4. The Wavelet-NNPSO Algorithm

The goal of this model is to combine the SO method with the Wavelet-NNPSO (WT-NNPSO)
algorithm to search in the previous Big Data and to select the best initial solutions used as the inputs
of the WT-NNPSO for more accurate forecasting of supply and demand variables. Figure 11 shows the
steps in the implementation of this algorithm
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Step 1. The data are analyzed by the SO algorithm (Section 3.3). The best selected solutions are in
the closest status to current parameters. This algorithm is able to search in the previous Big Data of
the electricity market. Such an extensive search is conducted in a limited interval because it is smart.
This algorithm is run until the termination condition is met. After that, the predicted values of S and D
are entered into Step 2.

Step 2. In this step, the time series of the previous step are decomposed by the Haar wavelet
transform. The decomposition is done through equations introduced in Section 3.1.

Step 3. Based on the data analyzed in Step 2, certain weights are determined for parameters
through neural networks and PSO. This step is kept on until the number of algorithm execution reaches
1000 (the number of epochs). Then the algorithm is terminated.

Step 4. In this step, the wavelet is combined so that the values of supply and demand can be
predicted. The output values are the best values predicted for supply and demand (St

Forcast and
Dt

Forcast).

5. Numerical Results and Discussion

5.1. An Instance of the New Technique

The results of predicting supply and demand were obtained from coding and implementing the
algorithm in Matlab R16a® (USA, California)(‘nftool’, ‘wavemenue’). Figure 12 shows the inputs and
components decomposed in the Haar wavelet for the first future interval and LOTD = 720.



Data 2018, 3, 43 16 of 26

Data 2018, 3, x FOR PEER REVIEW  16 of 26 

 

Raw Data

SO outputs  ( STEP 1 )

Figure 12. Cont.



Data 2018, 3, 43 17 of 26

Data 2018, 3, x FOR PEER REVIEW  17 of 26 

 

SO outputs with Haar Walvelet (3 level )  ( STEP 2 )

Figure 12. Cont.



Data 2018, 3, 43 18 of 26

Data 2018, 3, x FOR PEER REVIEW  18 of 26 

 

P1 31806

P2 30914

P3 872 

P4 174

Results 

for Step 3
D Forecast 4680.4

A1
Forecast 4627.9

D1
Forecast 452.55

D2
Forecast -188.23

D3
Forecast -212.18

D Actual 3683 MSE1(D)
0.271

P1 31806

P2 30914

P3 872 

P4 174

Results 

for Step 3
D Forecast 3568.4

A1
Forecast 4274.4

D1
Forecast -499.52

D2
Forecast -342.73

D3
Forecast 136.29

D Actual 3683 MSE1(D)
0.031

P1 31806

P2 30914

P3 872 

P4 174

Results 

for Step 3
D Forecast 3614.7

A1
Forecast 4622.6

D1
Forecast

-456.94

D2
Forecast

-340.85

D3
Forecast -210.04

D Actual 3683 MSE100(D)
0.018

.

.

.

.

.

.

MSET(D)
0.089

.

.

.

.

.

.

.

.

.

.

.

.

P1 31806

P2 30914

P3 872 

P4 174

Results 

for Step 3
S Forecast 5694.5

A1
Forecast 4635.9

D1
Forecast 1784.4

D2
Forecast -11.140

D3
Forecast -714.319

S Actual 4183 MSE1(S)
0.361

P1 31806

P2 30914

P3 872 

P4 174

Results 

for Step 3
S Forecast 3816.4

A1
Forecast 4737.1

D1
Forecast 1093.5

D2
Forecast -1306.0

D3
Forecast

-708.186

S Actual 4183 MSE1(S)
0.087

P1 31806

P2 30914

P3 872 

P4 174

Results 

for Step 3
S Forecast 3972.0

A1
Forecast 4678.3

D1
Forecast

1070.5

D2
Forecast

-1233

D3
Forecast -543.78

S Actual 4183 MSE100(S)
0.05

.

.

.

.

.

.

MSET(S)
0.182

.

.

.

.

.

.

.

.

.

.

.

.

 

Figure 12. The results of executing algorithm for predicting the first future interval with LOTD = 720. 

5.2. Analyzing the Accuracy and Speed of the New Technique 

5.2.1. The Implementation Accuracy 

In this paper, the mean squared error (MSE) was used to compute and compare errors. RMSE is 

calculated to predict supply, demand, and the average summation of supply and demand. Equations 

(12)–(14) show how RMSE is calculated: 
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5.2. Analyzing the Accuracy and Speed of the New Technique

5.2.1. The Implementation Accuracy

In this paper, the mean squared error (MSE) was used to compute and compare errors. RMSE is
calculated to predict supply, demand, and the average summation of supply and demand. Equations
(12)–(14) show how RMSE is calculated:

MSES =
1
N

√√√√ T

∑
t=1

(
St Actual − StForcast

St Actual

)2

(12)

MSED =
1
N

√√√√ T

∑
t=1

(
Dt Actual − DtForcast

Dt Actual

)2

(13)

MSET = (MSES + MSED)/2 (14)

Here St
Actual and Dt

Actual show the actual values of supply and demand at t, respectively.
Such data were obtained through coding new techniques in Matlab R16a® (Natick, MA, USA).
The forecasting errors of the new technique were compared with those of the older ones, in which
wavelet transforms or metaheuristic algorithms were not used. The new and old techniques were
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different in LOTD. Tables 6–9 show the root median squared error obtained from 100 executions of the
new technique. The results include forecasting for one to four future intervals.

Table 6. Error comparison for different models in the first future interval (LOTD = 180, 360, 720, 1440).

LOTD Error
Model

BPNN WT+BPNN NNPSO WT+NNPSO WT-NNPSO+SO

180
MSED 0.196 0.149 0.117 0.089 0.084
MSES 0.302 0.262 0.135 0.244 0.141
MSET 0.248 0.206 0.126 0.167 0.113

360
MSED 0.196 0.149 0.117 0.089 0.089
MSES 0.409 0.186 0.141 0.153 0.111
MSET 0.303 0.168 0.129 0.121 0.1

720
MSED 0.196 0.072 0.042 0.064 0.089
MSES 0.482 0.246 0.362 0.255 0.182
MSET 0.339 0.159 0.202 0.16 0.136

1440
MSED 0.178 0.071 0.05 0.074 0.101
MSES 0.409 0.259 0.323 0.226 0.176
MSET 0.294 0.165 0.187 0.15 0.139

Table 7. Error comparison for different models in the second future interval (LOTD = 180, 360, 720, 1440).

LOTD Error
Model

BPNN WT-BPNN NNPSO WT-NNPSO WT-NNPSO-SO

180
MSED 0.281 0.228 0.193 0.159 0.15
MSES 0.294 0.232 0.159 0.227 0.168
MSET 0.288 0.23 0.176 0.193 0.159

360
MSED 0.282 0.188 0.186 0.174 0.144
MSES 0.331 0.18 0.172 0.137 0.119
MSET 0.307 0.184 0.179 0.156 0.117

720
MSED 0.282 0.17 0.105 0.12 0.143
MSES 0.483 0.265 0.374 0.261 0.203
MSET 0.383 0.218 0.239 0.191 0.173

1440
MSED 0.18 0.137 0.097 0.116 0.167
MSES 0.385 0.243 0.337 0.242 0.155
MSET 0.283 0.19 0.217 0.179 0.161

Table 8. Error comparison for different models in the third future interval (LOTD = 180, 360, 720, 1440).

LOTD Error
Model

BPNN WT+BPNN NNPSO WT+NNPSO WT+NNPSO+SO

180
MSED 0.047 0.117 0.026 0.053 0.035
MSES 0.416 0.228 0.113 0.222 0.13
MSET 0.232 0.173 0.07 0.138 0.083

360
MSED 0.041 0.044 0.026 0.041 0.035
MSES 0.5 0.249 0.104 0.181 0.137
MSET 0.271 0.147 0.065 0.111 0.086

720
MSED 0.251 0.051 0.088 0.073 0.032
MSES 0.5 0.256 0.342 0.228 0.195
MSET 0.376 0.154 0.215 0.151 0.114

1440
MSED 0.204 0.061 0.082 0.079 0.042
MSES 0.5 0.259 0.298 0.226 0.218
MSET 0.352 0.16 0.19 0.153 0.13
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Table 9. Error comparison for different models in the fourth future interval (LOTD = 180, 360, 720, 1440).

LOTD Error
Model

BPNN WT+BPNN NNPSO WT+NNPSO WT+NNPSO+SO

180
MSED 0.053 0.091 0.06 0.081 0.065
MSES 0.354 0.246 0.115 0.234 0.163
MSET 0.204 0.169 0.088 0.158 0.114

360
MSED 0.056 0.06 0.062 0.069 0.061
MSES 0.469 0.206 0.124 0.145 0.119
MSET 0.263 0.133 0.093 0.107 0.09

720
MSED 0.28 0.072 0.113 0.107 0.032
MSES 0.48 0.246 0.353 0.244 0.156
MSET 0.38 0.159 0.233 0.176 0.094

1440
MSED 0.23 0.093 0.114 0.115 0.05
MSES 0.47 0.268 0.311 0.203 0.23
MSET 0.35 0.181 0.213 0.159 0.14

Figure 13 indicates the boxplot of the forecasting in the first future interval for different LOTDs
and other methods.Data 2018, 3, x FOR PEER REVIEW  21 of 26 
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According to Figure 14, the new technique resulted in the best predicted values for the first
to fourth future intervals. On average, the values were 0.028, 0.045, 0.035, and 0.040, respectively,
for different LOTDs. Such a comparison can be drawn in more LOTDs or parameters. According to
the results, it is predicted that the new technique will maintain performance in higher LOTDs.

5.2.2. The Speed of the New Technique

The implementation speed will become more important when the smart grid is thoroughly
established in the electricity market. In addition to increasing the accuracy, the newly proposed
method will take less time to find a solution, something which really matters to the electricity market
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manager due to the increase speed of electricity price forecasting. Figure 15 shows the implementation
speed of the new technique and other methods in constant termination conditions (0.3≤MSE and max.
iteration = 300) for supply and demand on average. Accordingly, the new technique improved the
implementation time in comparison with WT+NNPSO. In other words, the forecasting time reduced
by 90.66 s for different LOTDs on average. Such a reduction was observed at the same time as an
increase in accuracy, discussed in Section 5.2.1.
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Figure 16 also shows by increasing the data under investigation, improved speed, and accuracy
of the algorithm are preserved. The diameter of the circle represents MSET.
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5.2.3. Summary of Results

Comparing the speed and accuracy of the new algorithm and available algorithms shows that by
increasing the amount of data under investigation, the accuracy of the new algorithm is maintained
while simultaneously the slope of the execution time of the new algorithm is lower than the existing
algorithms. These results show that the big data analysis of the electricity market has good results with
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the new algorithm in future. With the introduction of a global network of smart grids, the electricity
market manager needs to use pre-processing algorithms more than ever before.

6. Conclusions and Suggestions

According to the results of a case study conducted on the database of Iran’s electricity market,
there have been great sizes of Big Data stored since 2002. The future changes of Iran’s electricity
structure indicate that there will be very much greater data in the market than ever before after
establishing smart grids thoroughly across Iran in the presence of retail buyers and retailers. In this
problem, it was assumed that the use of previous big stored data would be effective in the better
forecasting of important variables, i.e., supply and demand. Therefore, neural network techniques were
developed along with one of the simulation-optimization algorithms (PSO-Monte Carlo) to improve
the ability of current techniques to predict big variables of the electricity market and reduce the
implementation time in the presence of such variables. According to the results, there is appropriate
information in the big sizes of data stored in the electricity market. The forecasting of important
variables can be improved by conducting appropriate search in data. However, it is necessary to
employ metaheuristic algorithms due to the big sizes of data. Given the lack of a specific model
for establishing relationships between current parameters and data storage time, simulations were
conducted to obtain the objective function and predict the values of supply and demand. It is suggested
that other Big Data analysis methods, one of which is machine learning, should be developed and used
in short-term electrical load forecasting techniques. It is also suggested that the proposed technique be
combined with the fuzzy logic. In general, due to the restructuring of the electricity market in the world,
it is recommended to use methods that have high speed and precision in prediction. Furthermore,
some suggestions are made for future studies:

1. Using other intelligent meta-heuristic methods for selecting the input data of neural networks
(making data selection more intelligent).

2. Employing the fuzzy logic in the newly proposed model.
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BPNN Back-propagation neural networks
GBLT Gradient-based learning techniques
IEM Iranian electricity market
ISO Independent system operator
LOTD Length of training data
NN Neural network
MH Meta-heuristic
MSE Mean squared error
STLF Short term load forecasting
PSO Particle Swarm Optimization
WT Wavelet transform
WT+NNPSO Wavelet-PSO-NNs
WT+NNPSO+SO Wavelet-PSO-NNs-Simulation-Optimization
Ψ Mother Wavelet
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