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Abstract: The paper describes a new non-iterative linear supervised learning predictor. It is based on
the use of Ito decomposition and the neural-like structure of the successive geometric transformations
model (SGTM). Ito decomposition (Kolmogorov–Gabor polynomial) is used to extend the inputs of the
SGTM neural-like structure. This provides high approximation properties for solving various tasks.
The search for the coefficients of this polynomial is carried out using the fast, non-iterative training
algorithm of the SGTM linear neural-like structure. The developed method provides high speed and
increased generalization properties. The simulation of the developed method’s work for solving
the medical insurance costs prediction task showed a significant increase in accuracy compared
with existing methods (common SGTM neural-like structure, multilayer perceptron, Support Vector
Machine, adaptive boosting, linear regression). Given the above, the developed method can be used
to process large amounts of data from a variety of industries (medicine, materials science, economics,
etc.) to improve the accuracy and speed of their processing.

Keywords: healthcare; medical insurance; prediction task; neural-like structures; Ito decomposition;
Successive Geometric Transformations Model; non-iterative training algorithm

1. Introduction

Health insurance is one of the main directions of modern healthcare system development [1,2].
The prediction of individual health insurance costs is one of the most important tasks in this direction.
The application of commonly used regression methods [3] does not provide satisfactory results in
solving this task. In the big data era, the problem is deepened by the need for accurate and quick
operation of such methods [4,5].

The existence of a large number of data leads to the possibility of using artificial intelligence to
solve this task. The use of computational intelligence will allow for the hidden dependencies in the
data set to be taken into account [6]. In most cases, it can increase the accuracy of individual health
insurance costs prediction.
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Existing neural network tools [7,8] demonstrate a sufficient accuracy of their work. However,
they do not always provide the satisfactory speed of training procedures. The use of multilayer
perceptron [9] for processing large amounts of data necessitates the use of large volumes of memory.
In addition, this tool does not always provide satisfactory generalization properties [10]. The main
drawback of the RBF networks for solving this task is that they provide only a local approximation of
the nonlinear response surface [10]. Moreover, this method is characterized by a “curse of dimension”,
which imposes a number of restrictions on its use for the processing of large amounts of data [11].
In the works of [12,13], the backpropagation algorithm is used to implement the training procedure.
The large numbers of the epochs of this algorithm, as well as a large amount of input data, cause large
time delays during its use.

Deep learning methods are associated with large time delays for training, long-term debugging
procedures, and the need to interpret the output signals of each hidden layer. They are designed
primarily for image processing tasks [14].

The training procedures of the known machine learning algorithms are fast [15]; however, these
methods are inferior to the accuracy of the prediction results [16].

That is why it is necessary to develop new or improve existing individual insurance
costs prediction methods and tools that would provide high prediction accuracy with sufficient
training speed.

2. Data Description

2.1. Data Analysis

To solve the regression task, the medical insurance cost prediction dataset (Dataset: https://www.
kaggle.com/mirichoi0218/insurance. Dataset License: Open Database) was selected from Kaggle [17].
It contains 1338 observations of the personal medical insurance cost. Each vector includes six input
attributes and one output (Table 1). The task is to predict individual costs for health insurance.

Table 1. Original dataset.

#
Insurance
Contractor

Age

Insurance
Contractor

Gender

Body Mass
Index,
kg/m2

Number of
Dependents Smoking

Beneficiary’s
Residential
Area in the

United States

Individual
Insurance

Costs

1 19 female 27.9 0 yes southwest 16,884.924
2 18 male 33.77 1 no southeast 1725.5523
3 28 male 33 3 no southeast 4449.462
4 33 male 22.705 0 no northwest 21,984.4706
5 32 male 28.88 0 no northwest 3866.8552
6 31 female 25.74 0 no northeast 3756.6216

. . . . . . . . . . . . . . . . . . . . . . . .
i 60 female 27.9 0 yes southwest 16,884.924

. . . . . . . . . . . . . . . . . . . . . . . .
n 61 female 29.07 0 yes northwest 29,141.3603

We will consider all independent variables in more detail:

• Insurance contractor age (Age). The minimal age of the insurance contractor is 18 years, maximum is
64 years, and the average age of the entire sample is 39.2 years. Insurance contractor age included
574 young insurance contractors (18–35), 548 senior insurance contractors (35–55), and 216 elder
insurance contractors (>55).

• Body mass index (BMI). This is the ratio of the person’s height to their weight (kg/m2). Minimal
BMI is 15.96, the maximum is 53.12, and the average is 30.66. It is higher than normal.

• The number of dependents (Children). This is the number of children covered by medical insurance.
This indicator ranges from 1 to 5, and the average is 1095.

https://www.kaggle.com/mirichoi0218/insurance
https://www.kaggle.com/mirichoi0218/insurance
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• Smoking (Smoker). The dataset contains 1064 smokers and 274 non-smokers.
• Beneficiary’s residential area in the United States (Area). This column displays four regions of the

United States, where the number of observations for each of them is northeast: 324, northwest:
325, southeast: 364, and southwest: 325.

The individual insurance costs (IIC) is an output variable.

2.2. Data Preparation

We will make a series of transformations of the input data in order to represent them from a text
in a numerical form (binary system coding). In particular, we will add five new columns as follows:
Each column of the Insurance contractor gender and Smoking will turn into two; namely, male (M)
and female (F), and smoker and non-smoker, respectively. The column Beneficiary’s residential area in
the United States will be transformed into four different ones, each of which will be located in one
of the four U.S. regions: Area 1 is Southwest, Area 2 is Southeast, Area 3 is Northwest, and Area 4
is Northeast. Thus, a new data sample was obtained. The vectors of each of the 1338 observations
contain 11 input numeric attributes. They are given in Table 2.

Table 2. Prepared Dataset. F—female; M—male; BMI—body mass index; ICC—individual
insurance costs.

# Age F M BMI,
kg/m2 Children Smoker Non-Smoker Area 1 Area 2 Area 3 Area 4 IIC

1 19 1 0 27.9 0 1 0 1 0 0 0 16,884.924
2 18 0 1 33.77 1 0 1 0 1 0 0 1725.5523
3 28 0 1 33 3 0 1 0 1 0 0 4449.462
4 33 0 1 22.705 0 0 1 0 0 1 0 21,984.471
5 32 0 1 28.88 0 0 1 0 0 0 1 3866.8552
6 31 1 0 25.74 0 0 1 0 0 1 0 3756.6216

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i 60 1 0 27.9 0 1 0 1 0 0 0 16,884.924

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n 61 0 0 29.07 0 1 0 0 0 1 0 29,141.360

Figure 1 shows the scatter plot of the dataset from Table 2 using Orange Software, version 3.13.0. [18].
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Figure 1. Dataset visualization using Orange Software, version 3.13.0. The x-axis represents the
insurance contractor’s age, and the y-axis is the size of the medical insurance costs. The circles mark women,
and the crosses mark men. The blue circles mark the woman-non-smoker, and the red circles mark
the woman-smoker. The blue crosses mark the male-smoker, the red crosses mark the male non-smoker.
The size of the figures reflects the value of the body mass index. The larger index, the larger shape of the
corresponding figure. Shapes and colors were chosen randomly.
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3. Predictor Based on the Ito Decomposition and Neural-Like Structure of the Successive
Geometric Transformations Model (SGTM)

This paper proposes a new method focused on high-speed realization and universal application
for regression and classification tasks.

3.1. Linear Neural-Like Structure of the Successive Geometric Transformations Model

The authors of [19] have described the topology and the training algorithm of the new
non-iterative neural-like structure for solving various tasks. It is based on the successive geometric
transformations model (SGTM), and can work in supervised and unsupervised modes. The topology
of this linear computational intelligence tool is demonstrated in Figure 2. Its feature is ordered as
lateral connections between adjacent neurons of the hidden layer. The procedures of training and
functioning of this instrument are of the same type.

The greedy non-iterative training algorithm ensures the repetition of the solution and allows
using the common SGTM neural-like structure for processing large amounts of data effectively.
Detailed mathematical descriptions and flowcharts of the training and operation procedures of the
common SGTM neural-like structure are given in the work of [20].
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transformations model (SGTM).

3.2. The Ito Decomposition

The accuracy of the approximation task for nonlinear dependencies is one of the important tasks
for processing large amounts of data. Existing machine learning methods do not always provide an
opportunity for their use to obtain sufficiently precise results for solving this task.

According to the Weierstrass theorem, any continuous function in the given interval can be
arbitrarily precisely described by a series of polynomials [21]. Another mathematical proof of the
approximation of any continuous function is the universal approximation theorem (the expansion of
the Weierstrass theorem).
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The Ito decomposition (Kolmogorov–Gabor polynomial) is widely used for the development of
various nonlinear approximation models [22–26]. The general view of the second degree polynomial
can be written as follows [6]:

Y(x1, . . . , xn) = ai +
n

∑
i=1

aixi +
n

∑
i=1

n

∑
j=i

ai,jxixj (1)

Under the conditions of processing of large amounts of multiparametric data, the searching of
the polynomial’s coefficients is a non-trivial task. Existing methods, in particular, the least squares
method and singular decomposition, do not provide sufficient speed [6]. That is why the application
of the Kolmogorov–Gabor polynomial for the elaboration of the big data processing models requires
the development of new, more efficient algorithms for the searching of its coefficients.

3.3. The Composition of the Non-Iterative Supervised Learning Predictor Using Ito Decomposition

The proposed linear non-iterative prediction method is based on combining the use of
the Ito decomposition (Kolmogorov–Gabor polynomial) and SGTM neural-like structure [6].
Input (dependent) parameters according to the method are represented as members of this polynomial.
The SGTM neural-like structure is used to find the Kolmogorov–Gabor polynomial’s coefficients.
The benefits of such process are fast training, as well as the repetition of the solution. Figure 3
demonstrates the topology of the proposed non-iterative neural-like predictor, which contains two
blocks [6].
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The input data is converted in the first block (preprocessing) (1). The number of input layer’s
neurons of the proposed method when choosing a second-degree polynomial can be calculated
according to the following formula [6]:

m = n +
n(n + 1)

2
, (2)

where n is the number of initial inputs from Table 1 (n = 11)
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As the result of the fast, non-iterative training, the coefficients of the Kolmogorov–Gabor member
are calculated in the hidden layer of the proposed model’s second block (Figure 3). Then, they are used
to solve the task [6].

4. Modelling and Results

The simulation of the proposed method was carried out using the author’s software (console
application). The main parameters of the computer on which the experiments were carried out are as
follows: memory: 8 Gb Intel® Core(TM) i5-6200U CPU, 2.40 GHz.

The parameters of the proposed method (SGTM + Ito decomposition) are as follows: 77 neurons in
the input and hidden layers, 1 output. The second-degree Kolmogorov–Gabor polynomial was chosen
for modeling. The mean absolute percentage error (MAPE) for the proposed method was 30.82%.

The mathematical basis for the direct dissemination networks application with the one hidden
layer to the solution of approximation tasks is the universal approximation theorem. According to
the theorem, the accuracy of the best approximation is obtained with a large number of neurons in
the hidden layer [27]. However, in this case, according to the authors of [28], there is a possibility
of overfitting.

A necessary estimation of the proposed method’s work is the indicator of the model’s complexity
ratio to the accuracy of its work [24,29]. The complexity of the model, in this case, is influenced by
two parameters; namely, the degree of the Kolmogorov–Gabor polynomial (which is why the second
degree polynomial has been chosen) and the number of hidden layer’s neurons of the SGTM linear
neural-like structure. The conducted experimental studies have demonstrated that the number of
the polynomial’s coefficients, which are formed in a hidden layer, make a very small contribution to
obtaining the exact result. However, their calculation greatly increases the duration of the method.
That is why the research was conducted in order to determine the optimal complexity model for the
proposed method. The results of this experiment are listed in Appendix A, Table A1.

Figure 4a demonstrates the ratio of the neurons number in the hidden layer of the proposed
method to the accuracy of the work (MAPE) on the interval 25–50 neurons with a step of 5. As can
be seen from Figure 4, the optimal result of the method is 35 neurons in the hidden layer. All other
indicators in Appendix A, Table A1 demonstrate the same result. Figure 4b confirms the obtained
result regarding the duration of the training procedure.
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The training procedure for the optimized version of the method is much shorter than training of
the proposed method without optimal parameters selection. In addition, by reducing the number of
neurons in the hidden layer from 77 to 35, it was possible to neutralize the effect of noise components.
The topology of the optimized version of the method is demonstrated in Figure 5.
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Table 3 provides quantitative indicators for evaluating the work of the developed method
and its optimized version in terms of both training and testing modes according to the following
indicators [30,31]:

• Mean absolute percentage error (MAPE);
• Sum square error (SSE);
• Symmetric mean absolute percentage error (SMAPE);
• Root mean square error (RMSE);
• Mean absolute error (MAE).

Table 3. Modeling results based on mean absolute percentage error (MAPE), sum square error (SSE),
symmetric mean absolute percentage error (SMAPE), root mean square error (RMSE), and mean
absolute error (MAE) in training and test modes. SGTM—successive geometric transformations model.

Method/Indicator MAPE SSE SMAPE RMSE MAE

Training errors

Proposed model (SGTM + Ito decomposition) 28.4187 151,771 0.1047 4639.78 2767.61

Proposed model with optimal parameters 27.0794 153,613 0.10531 4696.1 2783.14

Test errors

Proposed model (SGTM + Ito decomposition) 30,823 82,676 0.1158 5050.3 3099.7

Proposed model with optimal parameters 28,203 82,337 0.1149 5029.5 3077.6

As can be seen from the table, the optimal parameters selection of the proposed method (according
to all five indicators) allowed the following:
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• to increase the generalization properties of the method (the difference between the MAPE
indicators in the training and testing modes is 2.40% and 1.12%, respectively, for the developed
and optimized methods);

• to increase the accuracy of the optimized method by 1.34%.

In addition, it was possible to reduce the duration of the training procedure by 0.22 s. In terms of
big data processing, all of the above are significant advantages.

5. Comparison and Discussion

The results of the developed method (optimize version) were compared with the results of the
known methods [6], which are demonstrated in Figure 6.
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Figure 6. Mean absolute error (MAE) in training and testing modes for developed and existing methods.
On the x-axis, the mean absolute error value for all considered methods is illustrated.

Figure 6 demonstrates the training and testing errors for all methods. As can be seen from the
figure, the common SGTM neural-like structure provides the lowest error value of the regression task
among all known methods. However, the use of Ito decomposition can significantly improve the
accuracy of the method in both modes of operation by 1.5 and 1.3 times, respectively. This is because
the linear non-iterative SGTM neural-like structure provides an exact search for the coefficients of
the Kolmogorov–Gabor polynomial. In addition, reducing the number of hidden layer’s neurons
allows discarding components (members of a polynomial) that do not affect the result. In this way, an
effective approximation procedure with great accuracy is carried out.

An important role in applying the computational intelligence methods for solving the practical
tasks of processing large data arrays is played an important role for the duration of the training
procedure. That is why in this work, the comparison of the training procedure duration for all
considered methods is given. Figure 7 demonstrates the results of this investigation.
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Figure 7. The training time for all methods.

As can be seen from Figure 7, the multi-layered perceptron demonstrates the longest training
time. The linear common SGTM neural-like structure provides one of the best results and is inferior
only to linear regression. However, the latter method demonstrates poor results in accuracy (Figure 7).
The developed method demonstrates 10 times faster training compared with multi-layer perceptron
and less than 8 times slower training compared with the common SGTM neural-like structure.
Obviously, the working time of the developed method has increased, as the dimension of the input
space due to the use of Ito decomposition in accordance to equation (2) has significantly increased.
However, the developed method demonstrates the best results both in the accuracy of work and in
relation to the generalization properties of the chosen instrument of computational intelligence.

Figure 8 illustrates the visualization of the work for all investigated methods in the form of scatter
plots. Figure 8f confirms the best results of the developed method among those considered as to the
accuracy of its work.
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Figure 8. Visualization of the methods’ results. On the x-axis, the real values of insurance medical costs
are given, and on the y-axis are values obtained by one of the methods: (a) support vector regression
with RBF kernel, (b) linear regression, (c) adaptive boosting, (d) multilayer perceptron, (e) linear
common SGTM neural-like structure, or (f) proposed method.

This approach can be used for solving different task in Service Science area [32,33].

6. Conclusions

The authors describe the new developed non-iterative computational intelligence tool for solving
the regression task in this paper. It combines the Ito decomposition and the neural-like structure of the
successive geometric transformations model. The simulation was conducted to solve the individual
medical cost prediction task. The effectiveness of the proposed tool is confirmed by comparing its work
with existing predictors. The precision of the developed predictor shows the highest values based on
five indicators: MAPE, SSE, SMAPE, RMSE, and MAE, in training and testing modes. In addition, a
comparison between the training procedure duration of the developed tool with that of the existing
ones was made. It demonstrates the satisfactory results of the experiment given the significant increase
in the dimensions of the input data (from 11 to 77 input characteristics).
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Based on the above, we can distinguish the following advantages of the developed predictor:

— the quick, non-iterative training procedure;
— the increase of generalization properties;
— the significant increase in the prediction accuracy.

All these advantages give grounds to assert about the possibility of using the proposed instrument
for solving the regression task in various fields, under conditions of both large and small data samples.

Further work will be conducted in the direction of the applying of the higher order’s Ito
decomposition. Such an approach shall be effective by replacing the primary inputs of the task
with the principal components, and by discarding the principal components with small variance
values. The SGTM neural-like structure gives the fastest solution for obtaining the values that are very
close to the principal components of each input vector.
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Appendix A

Table A1. Training and testing errors of the developed method’s results when changing the number of neurons in the hidden layer: Mean Absolute Percentage Error
(MAPE), Sum Square Error (SSE), Symmetric Mean Absolute Percentage Error (SMAPE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE).

Observation/Indicator Training Errors Test Errors

Hidden Layer’s
Neurons Number Training Time MAPE SSE SMAPE RMSE MAE MAPE SSE SMAPE RMSE MAE

5 0.0328 98.0907 250,153.1643 0.2277 7647.4054 6017.2457 90.4530 122,496.0430 0.2134 7482.6368 5799.5606
10 0.0640 29.6955 199,827.0208 0.1463 6108.8903 3866.1687 30.6628 100,543.3525 0.1511 6141.6628 4033.6993
15 0.0774 36.0616 192,268.2087 0.1466 5877.8106 3873.7426 36.6546 96,848.9924 0.1486 5915.9938 3947.6894
20 0.0940 36.1080 191,597.2658 0.1466 5857.2993 3875.0551 36.3794 95,882.4545 0.1484 5856.9531 3937.6843
25 0.1231 37.2211 188,909.5383 0.1454 5775.1331 3842.2482 38.8044 95,367.0315 0.1483 5825.4686 3948.9449
30 0.1342 27.6548 156,156.1666 0.1085 4773.8333 2867.1614 29.0845 83,439.0789 0.1190 5096.8530 3185.9151
35 0.1476 27.0794 153,613.4998 0.1053 4696.1017 2783.1433 28.2033 82,337.1565 0.1149 5029.5423 3077.6321
40 0.1780 27.6964 152,671.6923 0.1053 4667.3098 2783.8583 30.0943 82,309.9318 0.1158 5027.8793 3103.5243
45 0.2000 27.8937 152,665.2744 0.1054 4667.1136 2786.0303 30.3035 82,387.0573 0.1161 5032.5905 3111.7831
50 0.2079 28.5096 152,568.5949 0.1054 4664.1580 2785.5579 30.6519 82,189.3916 0.1159 5020.5162 3107.0487
55 0.2719 28.5293 152,511.9680 0.1053 4662.4269 2783.5739 30.9454 82,394.3576 0.1162 5033.0364 3112.8836
60 0.2870 28.6878 152,374.2804 0.1053 4658.2177 2784.8075 30.6126 82,389.5643 0.1155 5032.7436 3092.6906
65 0.3159 28.6454 152,239.3691 0.1051 4654.0933 2779.0867 30.7230 82,638.1576 0.1158 5047.9289 3098.5853
70 0.3534 28.5060 151,938.2782 0.1049 4644.8887 2774.0156 30.9568 82,804.6760 0.1161 5058.1006 3105.5370
75 0.3537 28.3622 151,865.9138 0.1048 4642.6765 2769.1590 30.9699 82,795.9130 0.1160 5057.5653 3103.7871
77 0.3632 28.4187 151,771.1717 0.1047 4639.7801 2767.6075 30.8230 82,676.2620 0.1158 5050.2565 3099.7172
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