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Abstract: This paper presents the results of research concerning the evaluation of stability of
information technology of gene expression profiles processing with the use of gene expression
profiles, which contain different levels of noise components. The information technology is presented
as a structural block-chart, which contains all stages of the studied data processing. The hybrid model
of objective clustering based on the SOTA algorithm and the technology of gene regulatory networks
reconstruction have been investigated to evaluate the stability to the level of the noise components.
The results of the simulation have shown that the hybrid model of the objective clustering has high
level of stability to noise components and vice versa, the technology of gene regulatory networks
reconstruction is rather sensitive to the level of noise component. The obtained results indicate
the importance of gene expression profiles preprocessing at the early stage of the gene regulatory
network reconstruction in order to remove background noise and non-informative genes in terms of
the used criteria.

Keywords: objective clustering; biclustering; gene regulatory networks; reconstruction; validation;
gene expression profiles; noise component; systems stability

1. Introduction

Relevance of the problem is determined by the current works in the field of gene expression
profiles processing for the purpose of gene regulatory networks reconstruction. Gene regulatory
network is a set of genes, which interact with each other and with other elements in the cells to control
the specific cells functions [1-3]. Qualitatively reconstructed gene regulatory network promotes to
better understanding of the genes interaction mechanism in order to develop new methods to early
diagnostics and treatment of complex diseases and for making new effective medicines. In [4-6]
authors provide a comparative study of the main avialible association measures for characterizing
gene regulatory strengthes. They compare different measures in their consistency and specifity of
detecting gene regulatory reletionships. In these works the authors summarize and categorize the
main frameworks and methods currently available for inferring transcriptional regulatory networks
from microarray gene expression profiling data. The gene expression profiles, which are obtained
by DNA microarray experiments [7,8] or by RNA-molecules sequencing technology [9,10] are the
basis for gene regulatory networks reconstruction. High dimension of feature space in all cases
and existence of complex noise components in the case of DNA-microarray technology use are the
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distinctive peculiarities of the studied data. The reconstruction of gene networks based on the whole
dataset of gene expression profiles is very complicated task due to the following aspects: it requests
large computer resources and the complexity of the obtained networks complicates the obtained result
interpretation. Therefore, it is necessary at the early stage of gene regulatory network reconstruction to
process gene expression profiles with the use of current computational and information technologies
of complex data processing. This process includes: data filtering in the case of DNA-microchip
experiment use, non-informative genes reducing in terms of statistical criteria and Shannon entropy
and data clustering and biclustering in order to allocate mutually correlated genes and samples.

In [11,12] authors present the results of research concerning the use of a wavelet filter for
decreasing of the noise power in the studied data. The authors have shown the advantages of this
technology in comparison with the fast Fourier transform. The bicluster analysis is relevant to allocate
the mutually correlated genes and samples nowadays [13-16]. However, it should be noted that
the main disadvantages of this technology implementation are the large quantity of small biclusters,
and large amount of loss of useful information at the stage of biclusters formation. In [17] authors
proposed the information technology of the step by step gene expression profiles processing in order
to reconstruct gene regulatory networks. Practical implementation of this technology involves gene
expression profiles clustering with the use of the DBSCAN clustering algorithm [18] at the first step
and the SOTA clustering algorithm [19,20] at the second step. Further, bicluster analysis should be
implemented on the obtained clusters. According to the authors’ research, the implementation of this
technology allows us to save more useful information due to the paralleling of the investigated data
processing. The objective clustering inductive technology was proposed in [21-23] to determine the
optimal parameters of the appropriate clustering algorithm. The results of the research concerning
evaluation of the stability of the objective clustering inductive technology based on k-means clustering
algorithm with the use of the data containing different levels of noise components were presented
in [24]. However, k-means clustering algorithm is not effective for gene expression profiles clustering.
The issues concerning creation of the method of fuzzy clustering task for multi-variate short time
series with the unevenly distributed observations were investigated in [25]. The proposed method
allows the authors to process the time series in both the batch mode and sequential on-line mode.
However, it should be noted that the authors’ researches are primarily focused on low-dimensional data
processing. High-dimensional data processing is not considered in these works. Moreover, the authors
did not investigate the effectiveness of the proposed methods to process the noise data with different
levels of noise amplitude. Thus, it should be noted that in spite of the achieved successful results
in this subject area the evaluation of the stability of information technology of the gene expression
profiles processing with the use of the gene expression profiles which contain different levels of noise
components has not been sufficiently investigated until present.

The aim of the paper is the evaluation of the stability of both the hybrid model of objective
clustering based on the self-organizing SOTA clustering algorithm and the technology of the gene
regulatory networks reconstruction based on the obtained biclusters to the level of noise components
in the case of gene expression profiles use.

2. Materials and Methods

The structural block-chart of the information technology of the gene expression profiles processing
for the purpose of the gene regulatory networks reconstruction and validation of the obtained models
is presented in Figure 1 [17]. The implementation of this technology involves the following stages:

Stage I. Formation of the gene expression profiles array in the case of DNA microchip
experiments use
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Two technologies are relevant for the formation of the gene expression array nowadays: DNA
microchip technology and mRNA molecules sequencing method. In the case of mRNA molecules
sequencing method use we have the array of gene expression profiles.
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Figure 1. A structural flow chart of the information technology of gene expression profiles processing
for the purpose of gene regulatory network reconstruction.
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Moreover, implementation of this technology allows us to determine gene expression more
exactly in comparison with the use of DNA microchip technology use. However, the use of mRNA
molecules sequencing method is very expensive. Implementation of DNA microchip technology
involves four steps: background correction, normalization, PM-correction and summarization. Each of
the steps involves the use of different methods. The determination of the optimal combination of the
methods in terms of minimum value of Shannon entropy calculated based on James-Stein shrinkage
estimator [26] was performed at this stage.

Stage II. Wavelet filtering of the gene expression profiles

The necessity of this stage is determined by the existence of the background noise, which can
appear during the scanning of the information from the DNA microchips. The wavelet filtering process
was used at this stage. The implementation of this process involves calculation of the approximation
and detail coefficients at the levels of wavelet decomposition from 1 to N. The model, which is
implemented within the framework of the proposed information technology, involves determination
of the wavelet filter optimal parameters on the basis of concurrent evaluation of Shannon entropy for
both the filtered data and allocated noise component. The type of the wavelet and the level of wavelet
decomposition are determined based on the maximum value of Shannon entropy for the allocated
noise component. The optimal value of thresholding coefficient for the detail coefficients processing is
determined on the basis of the minimum value of Shannon entropy for the filtered data. The algorithm
works in such a way that if the value of Shannon entropy for the filtered data increases at the first step
of thresholding coefficient change, the filtering process is stopped. In this case the studied data do not
need any filtering.

Stage III. Gene expression profiles reduction

The aim of this stage is the division of the studied gene expression profiles into informative and
non-informative in terms of complex use of statistical criteria and Shannon entropy. It is assumed
that if the variance and average of absolute value of gene expression profiles are less and the value of
Shannon entropy is greater than the corresponding boundary values, then these profiles are removed
from the studied data as non-informative without significant loss of useful information. The fuzzy
logic system was used to determine the boundary values of the appropriate parameters within the
framework of the proposed technology [17]. After the determination of the boundary values a stepwise
comparison of the variance and the average of absolute value and Shannon entropy of the gene
expression profiles with the appropriate boundary values are performed. If the following conditions
are true:

var < vary,; abs < ansg,,; entr > entryy, @

then this gene is allocated from the data as non-informative. Otherwise, the gene profile is recognized
as informative for the further analysis.

Stage IV. Step-by-step gene expression profiles clustering within the framework of the objective
clustering inductive technology

The implementation of the objective clustering inductive technology involves the division
of the initial dataset into two the equal power subsets (containing the same quantity of pairwise
similar objects). Then, the clustering process is carried out on both subsets concurrently and the
calculation of both the internal and external clustering quality criteria at each step of the appropriate
algorithm operation is performed. At the final step the complex balance criterion is calculated based
on the internal and external criteria. The maximum value of the balance criterion corresponds to the
optimal parameters of the appropriate clustering algorithm operation. The use of DBSCAN clustering



Data 2018, 3, 48 50f 15

algorithm allows us to allocate the genes, which are identified as noise. The densities of these genes
distribution in the feature space are significantly less in comparison with the density of other genes
distribution. These genes are removed from the studied data. At the second step of the clustering
process the gene expression profiles are divided into two clusters with the use of SOTA clustering
algorithm. These subsets are used for the following bicluster analysis.

Stage V. Bicluster analysis of the obtained subsets of gene expression profiles

The allocation of small groups of mutually correlated genes and samples from the studied gene
expression array is carried out during the biclustering process. The comparative analysis of different
bicluster algorithms effectiveness with the use of both the internal and external biclustering quality
criteria is presented in [27]. The tested biclusters and gene expression profiles were used during the
simulation process. The model of the gene expression profiles biclustering based on “ensemble”
biclustering method [28] has been proposed as the result of the research. The implementation of this
model allows us to determine the optimal parameters of “ensemble” biclustering method in terms
of the minimal value of the internal biclustering quality criterion. Then, the biclustering process
is performed with the implementation of the “ensemble” biclustering method using the optimal
parameters of this algorithm operation.

Stage VI. Gene regulatory networks reconstruction and validation of the obtained models

The reconstruction of the gene regulatory networks was performed based on the correlation
inference algorithm with the use of software Cytoscype [29]. The optimal topology of the obtained gene
networks was determined on the basis of the maximum value of the general Harrington desirability
index [30], which contains the topological parameters of networks as the components. The validation
of the obtained models was performed based on the comparison analysis of the existence of the direct
links between the appropriate genes in the basic network (reconstructed on the basos of the complete
set of the studied genes) and in the networks reconstructed based on the obtained biclusters. The basis
of ROC-analysis theory was used to calculate the complex relative validation criterion, which indicates
the quality of the obtained gene networks. The larger value of this criterion corresponds to the larger
level of adequacy of gene networks, reconstructed on the basis of the biclusters to the basic network in
terms of existence of direct links between the appropriate genes in different networks.

2.1. The Evaluation of the Stability of the Objective Clustering Inductive Model Based on the SOTA Algorithm
to the Level of the Noise Component

The objective clustering inductive model based on the self-organizing SOTA clustering algorithm
was investigated to evaluate the stability of the model to the level of the noise component.
Gene expression profiles of 2000 patients who were examined on lung cancer [31] were used in
this case. The length of the studied vectors was equal to the number of the studied samples (96).
The simulation process involved the following steps:

1.  Generation of random values vector. The length of this vector is equal to the length of the studied
gene expression profiles and its amplitude corresponds to the minimum value of the studied data
gene expression (“white noise”).

2. Setup of the vector of coefficients to change the amplitude of the noise component. In the
case of the studied gene expression profiles the values of coefficients were changed within the
range from 0.2 to 4 with step 0.2. These parameters were determined empirically during the
simulation process.

3. Formation of gene expression profiles with the noise by adding of the appropriate noise
components to the studied gene expression profiles.
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4.  Division of the obtained data into two equal power subsets by the use of the algorithm presented
in [21].

5. Gene expression profiles clustering with the use of the method described in detail in [21] using
SOTA clustering algorithm. The value of the sister cell weigh coefficient (scell) was changed within
the small range from 8 x 10~ to 11 x 10~ with the step 2 x 10~°. This range was determined
empirically during the previous simulation process. The value of the variation coefficient was
taken as zero.

6. Calculation of the complex balance criterion (general Harrington desirability index) for each
value of the sister cell weigh coefficient. Creation of the plots of complex balance criterion
versus the weigh coefficient value for both the data without noise and the data with different
levels of noise component. Determination of the SOTA clustering algorithm optimal parameters,
which correspond to the maximum value of the complex balance criterion. Data clustering with
the use of SOTA algorithm with its optimal parameters.

7. Calculation of the external clustering quality criteria, which allows us to compare the clustering
results for both the data without noise and the data with noise component. The following criteria
were used as the external clustering quality criteria in this case:

e Jaccard index: .

= at+b4c

@)

° Kulczynski index:
a a

K= ey Tax@ato)

®)

where a is the number of objects distributed in the same clusters in different clustering; b is the
number of objects in the clusters of the first clustering, which did not coincide with the appropriate
objects in the clusters of the second clustering; c is the number of objects in the clusters of the
second clustering, which did not coincide with the appropriate objects in the clusters of the
first clustering.

8. Analysis of the obtained results.

2.2. Evaluation of the Stability of the Model of Gene Regulatory Networks Reconstruction to the Level of the
Noise Component

In this case the gene expression profiles of data moe430a [32] from database ArrayExpress were
used during the simulation process. This data contains the gene expression profiles of the mesenchymal
cells from the two distinct lineages, neural crest and mesoderm derived. 1000 of the gene expression
profiles from 20 samples were used during the simulation process. The random “white noise” was
added to each of the studied gene expression profiles. An amplitude of the noise components was
determined by the following:

A =k x (max(v) —min(v)), 4)

where v is the vector of gene expression, the length of which is equal to the number of the studied
samples; k is the coefficient, which limits the amplitude of the noise vector. The value of k coefficient
was changed within the range from 0.025 to 0.1 with the step 0.025 during the simulation process. So,
the four database of gene expression profiles with different level of noise were generated as the result
of this process implementation.

The data biclustering was performed with the use of “ensemble” biclustering method according
to the method described in detail in [27]. Finally, the gene regulatory network reconstruction and
validation of the obtained model were carried out. The relative criterion of validation was calculated
for the reconstructed networks based on both the data without noise and data with different levels of
noise component.
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3. Results and Discussion

3.1. Results of the Simulation Concerning the Use of the Objective Clustering Inductive Technology Based on
the SOTA Clustering Algorithm

Figure 2 presents the charts of the complex balance criterion versus the sister cell weigh coefficient
(scell) of SOTA clustering algorithm, which was implemented within the framework of the objective
clustering inductive technology [21-23]. The noised gene expression profiles of the patients who
were examined on lung cancer disease were used in this case. The optimal value of the scell, which
corresponds to the maximum value of general Harrington desirability index was determined during
the simulation process. The results of the simulation have shown that the increase of the amplitude
coefficient of the noise components from 0.2 to 3.2 does not significantly influence the character of the
balance criterion change. Figure 3 shows the charts of the number of objects in the clusters, the values
of Jaccard and Kulczynski indexes and the relative changes of these indexes in percent versus the
amplitude coefficient of the noise component.
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Figure 2. Charts of the complex balance criterion versus the sister cell weigh coefficient (scell) for the
gene expression profiles with the different levels of noise component.

The analysis of the obtained charts allows us to conclude that the character of the objects
distribution within the clusters is changed slightly during the increase of the noise amplitude coefficient.
It is natural since the existence and the increase of the amplitude of the noise components in the studied
data changes the gene expression profiles. In this case the movement of the object between clusters is
possible. The values of Jaccard and Kulczynski indexes decrease monotonically in this case but the
speed of these indexes changes chaotically in the defined range. This character of these parameters
change is observed to value of the amplitude coefficient of noise 3.2. The charts of the appropriate
parameters are changed significantly in the case of larger value of the noise amplitude. The scell optimal
value of SOTA clustering algorithm, which corresponds to the maximum value of the complex balance
criterion is changed chaotically too. This fact indicates the non-stability of the system. The number of
the objects in the clusters and the values of Jaccard and Kulczynski indexes in the case of large values
of the noise amplitude coefficient are changed very slowly.
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Figure 3. Charts of: (a) the quantity of gene expression profiles in different clusters; (b) Jaccard and
Kulcezynski indexes values; (c) the relative changes of Jaccard and Kulczynski indexes versus the
amplitude coefficient of noise component.

As it can be seen from chart Figure 3¢, the speed of these parameters changes in this case tends to
zero. This fact can be explained in the following way. In the case of high level of the noise components
local particularities of the gene expression profiles become smoother and clustering in this case is
carried out by the estimation of the coarse component of the appropriate vector. Therefore, the scell
value in this case is not determinative. The results of the simulation have shown that the clustering
results in the case of the high level of noise components are almost the same and they do not depend
on the scell value. The conducted research has shown also that the objective clustering inductive
technology is effective and efficient in the case of the analysis of the complex data with the local
particularities. The use of this technology to group the gene expression profiles is reasonable in the
case of low level of the noise component.

3.2. Results of the Simulations Concerning the Influence of the Level of noise components to the Quality of the
Reconstructed Gene Networks

Figures 4-7 show the charts of both number of the obtained biclusters and values of the
biclustering quality criteria versus the parameters of the “ensemble” biclustering method (thresholding
coefficient value (thr) and ratio of the number of the rows and columns in biclusters (simthr)) in the case
of bicluster analysis of the gene expression profiles of the data moe430a with different levels of noise
component. The following parameters were determined as the result of the obtained charts analysis:

k = 0.025: thr = 0.33; simthr = 0.29;
k =0.05: thr = 0.35; simthr = 0.11;
k =0.075: thr = 0.26; simthr = 0.07;
k=0.1: thr = 0.48; simthr = 0.33;

Ten largest biclusters from each of the studied data were selected for the further analysis.
The reconstruction of the gene regulatory networks and validation of the obtained models were
performed based on Cytoscape software with the use of correlation inference algorithm [29].
The detailed description of the used information technology for the reconstruction and the validation
of gene networks is presented in [33].
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Figure 4. Results of the simulation to determine the optimal parameters of “ensemble” biclustering
method for the noise coefficient k = 0.025.
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Figure 5. Results of the simulation to determine the optimal parameters of “ensemble” biclustering
method for the noise coefficient k = 0.05.
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Figure 6. Results of the simulation to determine the optimal parameters of “ensemble” biclustering
method for the noise coefficient k = 0.075.
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Figure 7. Results of the simulation to determine the optimal parameters of “ensemble” biclustering
method for the noise coefficient k = 0.1.

Figures 8-11 presents the charts of general Harrington desirability index versus the value of
thresholding coefficient for both the data without noise and the data with the different levels of noise
component. The values of thresholding coefficient, which correspond to the maximum of Harrington
desirability index for both the complete set of the studied gene expression profiles and the data in the
obtained biclusters are presented in Table 1.
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Figure 8. Charts of the general Harrington desirability index versus the value of thresholding coefficient
for the gene networks reconstructed on the basis of the noise data with the noise coefficient k = 0.025.
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Figure 9. Charts of the general Harrington desirability index versus the value of thresholding coefficient
for the gene networks reconstructed on the basis of the noise data with the noise coefficient k = 0.05.
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Figure 10. Charts of the general Harrington desirability index versus the value of thresholding
coefficient for the gene networks reconstructed on the basis of the noise data with the noise coefficient

k = 0.075.
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Figure 11. Charts of the general Harrington desirability index versus the value of thresholding
coefficient for the gene networks reconstructed on the basis of the noise data with the noise coefficient
k=0.1.

Table 1. The values of thresholding coefficient for the gene networks reconstruction based on both the
complete data and the obtained biclusters for the different levels of the noise component.

Noise Coef. FullData BC2 BC8 BC12 BC15 BCl6 BCi8 BC20 BC23 BC25 BC27

0.025 0.52 0.43 0.4 0.52 0.4 0.7 0.7 0.7 0.5 0.5 0.52
Noise Coef. FullData BC7 BC8 BCl11 BCl12 BCl4 BC15 BC17 BC25 BC26 BC28
0.05 0.51 042 071 0.43 0.41 0.44 041 0.4 0.69 0.48 0.43
Noise Coef. FullData BC2 BC4 BC7 BC10 BC12 BCl14 BCl15 BC19 BC28 BC33
0.075 0.52 048 041 0.4 043 0.4 0.52 0.42 0.45 0.51 0.54
Noise Coef. FullData BC8 BC10 BCl11 BCl12 BCl4 BC20 BC23 BC33 BC38 BC40
0.1 0.5 0.58 0.56 0.69 0.44 0.41 0.51 0.7 0.72 0.47 0.49

The results of the validation of the reconstructed gene regulatory networks are presented in
Figure 12. The comparative analysis of the character of the appropriate genes interconnection in
the gene networks reconstructed based on both the complete data and the obtained biclusters with
the calculation of the errors of both the first and second types was performed at this stage. Then,
the relative validation criterion was calculated according to the method described in details in [33].
A higher value of this criterion corresponds to a higher level of adequacy of the networks reconstructed
based on the obtained biclusters to the network reconstructed based on the complete data in terms of
the direct links coincidence between the appropriate genes in different networks.

The analysis of the obtained charts allows us to conclude that the existence of the noise components
decreases the level of adequacy of the gene networks, reconstructed based on the biclusters to the
network reconstructed on the basis of the complete data. The average of the relative validation
criterion for the obtained models of gene networks are significantly less than the appropriate value
of this criterion in the case of gene networks reconstruction based on the gene expression profiles
without noise [33]. Moreover, the analysis of the charts in Figure 12 has shown that the increase of
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the noise level in the data decreases the average of the relative validation criterion. This fact indicates
the necessity of qualitative preprocessing of the gene expression profiles at the early stage of gene
regulatory networks reconstruction.

a) Ratio of validation criterion for b) Ratio of validation criterion for
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Figure 12. Results of the validation of the gene networks, reconstructed on the basis of the gene
expression profiles with the different level of the noise component.

4. Conclusions

The conducted research has shown what gene expression profiles preprocessing in order to
decrease the noise components is important and significant. Two stages of the proposed information
technology of the gene expression profiles processing for the purpose of gene regulatory networks
reconstruction and validation of the obtained models have been investigated to evaluate their
sensitivity to the level of the noise component. The first stage is the objective clustering inductive
model on the basis of the SOTA clustering algorithm. The second stage is the information technology
of the gene regulatory networks reconstruction based on the selected biclusters and validation of
the obtained models. The results of the research concerning the evaluation of the stability of the
objective clustering inductive technology based on the SOTA clustering algorithm have shown that
this technology is not sensitive to noise in the case of low level of amplitude of the noise component.
However, in the case of high level of the noise amplitude the variation of the algorithm parameters
does not change the clustering results. This fact indicates the effectiveness of the proposed technology
to clustering data, which contain some quantity of noise. The results of the simulation concerning the
evaluation of the stability of the information technology of the gene regulatory network reconstruction
to the level of the noise components has shown, what this technology is very sensitive to the noise
component. A slight increase of the noise amplitude promotes to the decrease of the level of adequacy
of the networks reconstructed based on the gene expression profiles of the obtained biclusters in
relation to the network reconstructed on the basis of the complete set of the studied data in terms of
the direct links coincidence between the appropriate genes in different networks.

The following perspectives of the author’s research is the investigation of different algorithms
of the gene regulatory networks reconstruction, estimation of their effectiveness, development of the
validation methods for the reconstructed networks and the simulation of the reconstructed network
with the use of Bayes and Petri networks.
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