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Abstract: Methods of machine learning and data mining are becoming the cornerstone in information
technologies with real-time image and video recognition methods getting more and more attention.
While computational system architectures are getting larger and more complex, their learning
methods call for changes, as training datasets often reach tens and hundreds of thousands of samples,
therefore increasing the learning time of such systems. It is possible to reduce computational costs
by tuning the system structure to allow fast, high accuracy learning algorithms to be applied. This
paper proposes a system based on extended multidimensional neo-fuzzy units and its learning
algorithm designed for data streams processing tasks. The proposed learning algorithm, based on
the information entropy criterion, has significantly improved the system approximating capabilities.
Experiments have confirmed the efficiency of the proposed system in solving real-time video stream
recognition tasks.

Keywords: extended multidimensional neo-fuzzy system; pattern recognition; entropy-information
criterion; extended neo-fuzzy units

1. Introduction

Classification and clustering relate to the main tasks in data stream analysis. They mean the
distribution of objects between groups with not known properties in advance. In video analytics, there
is a task that arises often; when it needs to find the specified objects the video sequence and track their
movement in the frame. Another problem is the object state changes detection, which remains within
the frame for a long time. Video streams are characterized by a non-Gaussian nature. Many methods
of clustering and classification have been developed for their analysis. Among these methods, a large
group consists of methods based on the use of ANNs. A classic approach can be found in [1]. Modern
classification and clustering systems often use SVM, which provide high accuracy [2–5]. Solutions
were also obtained for weighted fuzzy support vector regression [6], radial basis networks [7].

Specifically, Deep Neural Networks (DNN) [8–11] have been given in terms of classification
accuracy. This line of research turned out to be very promising, convolutional neural networks
(CNN) and deep learning are widely used in the pattern recognition tasks, especially for image, audio
and video streams classifying and clustering. For recognition of Chinese characters, a convolutional
network with the RNN Framework is proposed in [12]. The Levenberg–Marquardt network [13] is used
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in the diagnostic task for medical photos. Deep recurrent architecture was at the heart of the system for
remote sensing image classification [14]. However, DNNs are not prone to certain shortcomings, with a
low speed of multiepoch learning being the major limitation, leading to their inefficiency in a subclass
Data Stream Mining tasks, when information is fed to the system in a sequential mode (quite large
volume of training sets that are not always available). Furthermore, in real-world tasks, image clusters
are often mutually overlapped, which calls for L. Zadeh’s fuzzy logic classification methods. In this
case, hybrid systems of computational intelligence [15,16] come in handy, since they both possess the
learning capabilities of ANN and DNN and, being a fuzzy systems, are capable of distinguishing
overlapping classes. The training speed of such systems calls for attention which requires the use of
non-standard neurons, architectures and teaching methods.

In [17], the mixed fuzzy clustering algorithm for health care problems where time series analysis
is necessary was proposed. Another hybrid structure discussed in [18] is the deep TSK classifier which
uses interpreted linguistic rules for a fuzzy inference system.

The high training speed of the hybrid systems requires the use of non-standard neurons,
architectures and teaching methods.

In this paper, we consider an approach to constructing a hybrid system that performs the
multidimensional data classification using neo-fuzzy neurons. The structure was developed for the
problem of emotion estimation by images and video streams. Therefore, Section 2 describes previous
works that are relevant to this task. Section 3 describes in detail the architecture of classification system.
Section 4 is devoted to the learning algorithm of the neo-fuzzy structure. Section 5 discusses the results
of experiments, and the conclusions are presented in Section 6.

2. Related Work

Many important practical tasks in the video analytics, such as health care and life support,
crowd analytics, surveillance, man-machine interface and so on, are now associated with systems
capable to recognize the emotional status [19]. Researches in this area are connected with primary
data gathering methods on video and audio streams [20,21] and with methods for human emotions
online classification, clustering and recognition [22–24]. Artificial neural networks are particularly
effective in analyzing nonlinear processes in real-time; so, many researchers use them to identify
human facial expressions. In [25,26], the use of genetic algorithms is considered; in [27] the use of
cascaded continuous regression; in [28] the use of shallow neural networks. Reference [6] describes
a fuzzy system for emotional intent classifying, while [29] describes the affect estimation by audio
stream using ensemble of ordinal classifiers. Many works have been devoted to the recognition of
emotions from photos and videos using deep CNN, for example [30,31].

The proposed system is based on the neo-fuzzy approach [32–34], which provides high
approximating properties and, therefore, can be applied in solving a number of real practical
tasks [35,36]. It is also important to note that a neo-fuzzy system learning rate can be optimized [37],
which allows using it in real-time Data Stream Mining tasks.

3. The Architecture of the Neo-Fuzzy Classification System

Neo-fuzzy neuron modifications, such as extended neo-fuzzy neurons (ENFN) [38–40] and
neo-fuzzy units (NFU) [41–43] with nonlinear activation (sigmoidal) functions have significantly
improved approximating capabilities. In the system proposed here, we suggest utilizing a hybrid
neo-fuzzy unit, which is a modification of an NFU which replaces the standard nonlinear synapses (NS)
with extended nonlinear synapses (ENS) taking advantage of the neuro-fuzzy Takagi-Sugeno–Kang
arbitrary order system properties.

Figure 1 shows the proposed extended multidimensional neo-fuzzy system (EMNFS) architecture
with two information processing layers.
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Figure 1. The architecture of the proposed extended multidimensional neo-fuzzy system (EMNFS).

The vector signal x(k) = (x1(k), x2(k), . . . , xi(k), . . . , xn(k))
T ∈ Rn of images to be classified is fed

to the inputs of the system, where k = 1, 2, . . . is the index of the current discrete time. The first layer
of the system is formed by extended nonlinear synapses (ENS), where j = 1, 2, . . . , m, m is the number
of possible classes. For each j-th class, n such synapses ENSj1, ENSj2,..., ENSjn, whose output signals
f j1(x1(k)), f j2(x2(k)), . . . , f jn(xn(k)) are fed to the summation blocks Σj, are used. ENSji synapses and
adders Σj form extended neo-fuzzy neurons (ENFN) [38,39]. ENFN output signals are fed to the
second output layer of the system, formed by nonlinear softmax activation functions:

so f tmaxuj =
exp

(
uj
)

m
∑

j=1
exp

(
uj
) , (1)

which are the generalization of traditional sigmoidal activation functions

σ
(
uj
)
=

1
1 + exp

(
−uj

)
for classification systems with many outputs [10]. ENFNj together with functions so f tmaxuj form
extended neo-fuzzy units (ENFU), which are a generalization of neo-fuzzy units introduced in [40,41].
Output signals of the system

yj(k) = so f tmax
(
uj(k)

)
,

m

∑
j=1

yj(k) = 1 (2)

specify the levels of presented input image x(k) fuzzy membership to each of the possible m classes.
As is known [32–34], the standard neo-fuzzy neuron is formed by n nonlinear synapses;

each of them implements the fuzzy derivation of the Takagi–Sugeno–Kang of zero order
(Wang–Mendel reasoning)

if xi is Xli then ϕi(xi) is wli, l = 1, 2, . . . , h

f (xi) =
h
∑

l=1
ϕli(xi) =

h
∑

l=1
wliµli(xi),
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where h is the number of membership functions µli(xi) in the nonlinear synapse, wli adjustable synaptic
weights, i = 1, 2, . . . , n synapse number in the neo-fuzzy neuron.

The extended nonlinear synapse introduced in [38,39] implements the Takagi–Sugeno–Kang
inference of arbitrary order, that is:

if xi is Xli then ϕi(xi) is w0
li + w1

lixi + . . . + wp
lix

p
i , l = 1, 2, . . . , h

fi(xi) =
h
∑

l=1
ϕli(xi) =

h
∑

l=1
µli(xi)

(
w0

li + w1
lixi + w2

lix
2
i + . . . + wp

lix
p
i

)
=

=
h
∑

l=1
w0

liµli(xi) + w1
lixiµli(xi) + w2

lix
2
i µli(xi) + . . . + wp

lix
p
i µli(xi).

By introducing for ENSji a vector of synaptic weights wji =(
w0

j1i, w1
j1i, w2

j1i, . . . , wp
j1i, . . . , w0

jli, . . . , wp
jli . . . , wp

jhi

)T
and fuzzyficated signals µ̃ji(xi) =(

µj1i(xi), xiµj1i(xi), . . . xp
i µj1i(xi), . . . , µjli(xi), xiµjli(xi), . . . xp

i µjli(xi), . . . , xp
i µjhi(xi)

)T
of

dimensionality (p + 1)h× 1, we can write the output of this synapse in the form

f ji(xi) = wT
ji µ̃ji(xi).

Further, it is easy to write the output of each ENFNj as a whole in the form

uj(k) =
n

∑
i=1

f ji

(
x(k)i

)
=

n

∑
i=1

wT
ji µ̃ji

(
x(k)i

)
.

Introducing the vectors of ENFNj synaptic weights wj =
(

wT
j1, wT

j1, . . . , wT
jn

)T
and fuzzyficated

inputs µ̃j(x) =
(

µ̃T
j1(x1), . . . , µ̃T

ji(xi), . . . , , µ̃T
jn(xn)

)T
of the (p + 1)h × n dimensionality, the output

signal ENFNj can be rewritten in compact form:

uj(k) = wT
j µ̃j

(
x(k)

)
∀j = 1, 2, . . . , m.

This signal is then fed to the activation function of the output layer, and a whole resulting system
output form the values of the fuzzy membership levels of the presented image x(k) to the j-th class:

yj(k) = so f tmax
(

wT
j (k− 1)µ̃j

(
x(k)

))
,

where wj(k− 1) are the values of the synaptic weights obtained as a result of learning on previous
(k− 1) images.

4. Learning of the Extended Multidimensional Neo-Fuzzy System in the Pattern Recognition Task

To learn the considered system, it is advisable to use the cross-entropy learning criterion [1,33]

E(k) = −
m

∑
j=1

dj(k) ln yj(k) (3)

and the one-hot coding of the reference signal, when the vector external reference signal
d(k) =

(
d1(k), . . . , dj(k), . . . , dm(k)

)T is formed by zeros and a single unit located in a position
corresponding to the “correct” class.



Data 2018, 3, 63 5 of 10

Minimizing the criterion (3) with the standard gradient procedure leads to the δ-rule setting of
the synaptic weights of each ENFUj in the form

wj(k) = wj(k− 1)− ηj(k)∇wj E(k) = wj(k− 1) + ηj(k)e(k)µ̃j(x(k)) (4)

where ηj(k) is the learning rate parameter of j-th ENFU, e(k) = d(k)− yj(k) a learning error, while the
j-th component of vector reference signal d(k) can take only two values—0 or 1.

Algorithm (4) can be given both filtering and tracking properties, if the parameter ηj(k) is chosen
in accordance with the relation [37]

η−1
j (k) = rj(k) = αrj(k− 1) + ‖µ̃j(x(k))‖2, (5)

where 0 ≤ α ≤ 1 is the forgetting factor. Depending on the value of α, procedures (4),(5) can take
stochastic approximation properties for α = 1 (Goodwin–Ramadge–Caines algorithm) [42] or for α = 0
the procedure takes the form of the optimal Kaczmarz–Widrow–Hoff algorithm [43], which provides
the maximal speed of convergence to optimal solution.

5. Experiments

Among the areas where real-time recognition results are extremely important, we highlight
human–computer interfaces of various kinds. In many situations, the psycho-emotional state of one
person, for example, wakefulness of vehicles drivers and nuclear objects operators are crucial. Just
as in the care of seriously ill or lonely patients, it is sometimes necessary to carry out continuous
monitoring of their condition and timely detection of deviations.

The problem of emotional status recognition is further complicated by the fact that people often
perceive not one, but a whole range of emotions. In this range, individual emotions can be expressed
in varying degrees, forming a certain combination. In communication, people “read” these degrees
of individual emotion expression, and, by their specific weight, they form an idea of the state of the
interlocutor. Thus, the basic emotions can be represented in the form of fuzzy variables, which are
expressed by their membership value, which lies within the limits [0; 1]. Obviously, the automatic
recognition system should then produce the appropriate output signal. The advantage of the approach
proposed in this paper is that the output layer of the extended multidimensional neo-fuzzy system
forms a vector whose elements are in the desired range [1].

To study the designed architecture and learning algorithm an experiment on basic emotions
recognition was performed. The images from PICS and CK+ open databases [44,45] were used as
the objects for recognition. PICS image database consists of single images of individuals in different
emotional states. The CK+ database contains separate frames from video sequences with transitions
between different emotional states of dozens of people. In all the photos, people are photographed
from the front, without tilting the head, in standard lighting, with the same distance from the camera.
87 photos were taken from the base of the CK+, 257 from the PICS base; on the selected images, there
are reflections of pure emotions only.

Using some contour detectors like SURF, BRISK or Shi-Tomasi [46–48], we had obtain feature
points for every selected image. Input data vector contain X and Y coordinates of 35 features, including
such points like, for example:

• eyebrows centers and corners;
• eye centers;
• nose end;
• nose wings;
• mouth center;
• corners of the mouth;
• lips centers;
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• nasolabial folds;
• earlobes;
• chin;
• contours of lower jaw and so on.

The point’s placement can indicate the basic facial actions of the FACS system in the facial
dynamics (Figure 2). Chosen feature points are connected with Facial action units and allow
recognizing investigated emotions.

Data 2018, 3, x FOR PEER REVIEW  6 of 10 

 

• eyebrows centers and corners; 
• eye centers; 
• nose end; 
• nose wings;  
• mouth center; 
• corners of the mouth; 
• lips centers; 
• nasolabial folds; 
• earlobes; 
• chin; 
• contours of lower jaw and so on. 

The point’s placement can indicate the basic facial actions of the FACS system in the facial 
dynamics (Figure 2). Chosen feature points are connected with Facial action units and allow 
recognizing investigated emotions. 

 
Figure 2. Facial features placement for emotion recognition. 

The output vector corresponds to a set of seven simplest emotions (neutral, exasperation; 
distaste; anxiety; grief; astonishment; joy). The number of neo-fuzzy neurons in the first layer varying 
from 3 to 11. 

The learning data contains 344 images, learning repeated from 10 to 10,000 epochs. This paper 
deals with the case when the data for learning is small. To assess whether the proposed architecture 
is able to recognize facial expressions, small sets of photos are used. Each set contained no more than 
100 pictures. 

The network was being learned to recognize emotions by a set of photos grouped for one given 
facial expression. Then, the system was put into fuzzy-reasoning mode. Proposed architecture 
approximating ability was examined on an integrated data set, where photos with different emotions 
were mixed, and their total number was 344. The learning set consists of 60% of all photos, selected 
randomly from 344. To test the model used the remaining 40%. The experiments were carried out 
more than 30 times; before each run, the initial data was smashed so that in different experiments the 
learning and testing data did not coincide. The final results of the experiments are quite close to each 
other, and the difference did not exceed 2–3%. 

Figure 2. Facial features placement for emotion recognition.

The output vector corresponds to a set of seven simplest emotions (neutral, exasperation; distaste;
anxiety; grief; astonishment; joy). The number of neo-fuzzy neurons in the first layer varying from 3
to 11.

The learning data contains 344 images, learning repeated from 10 to 10,000 epochs. This paper
deals with the case when the data for learning is small. To assess whether the proposed architecture is
able to recognize facial expressions, small sets of photos are used. Each set contained no more than
100 pictures.

The network was being learned to recognize emotions by a set of photos grouped for one given
facial expression. Then, the system was put into fuzzy-reasoning mode. Proposed architecture
approximating ability was examined on an integrated data set, where photos with different emotions
were mixed, and their total number was 344. The learning set consists of 60% of all photos, selected
randomly from 344. To test the model used the remaining 40%. The experiments were carried out
more than 30 times; before each run, the initial data was smashed so that in different experiments the
learning and testing data did not coincide. The final results of the experiments are quite close to each
other, and the difference did not exceed 2–3%.

The network learning error is shown in Table 1 as number of unrecognized emotions depending
on the number of learning epochs and the number of neo-fuzzy neurons. The number of membership
functions in every nonlinear synapse in neo-fuzzy neuron was 3.
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Table 1. Data set size and number of unrecognized images.

Emotions

Exasperation Distaste Anxiety Joy Grief Astonishment Neutral

Data set size 49 66 35 45 19 50 80

The number of neo-fuzzy neurons in the first layer is 3

500 learning epochs

The number of unrecognized
emotions in the learning data 32 26 30 28 15 18 55

700 learning epochs

The number of unrecognized
emotions in the learning data 22 18 23 22 10 13 41

1500 learning epochs

The number of unrecognized
emotions in the learning data 15 12 18 15 8 12 32

The number of neo-fuzzy neurons in the first layer is 11

5000 learning epochs

The number of unrecognized
emotions in the learning data 0 1 0 1 0 0 1

7000 learning epochs

The number of unrecognized
emotions in the learning data 0 0 0 1 0 0 0

10000 learning epochs

The number of unrecognized
emotions in the learning data 0 0 0 0 0 0 0

6. Conclusions

This article proposes an extended multidimensional system, based on neo-fuzzy neuron
modifications, specifically, extended multidimensional neo-fuzzy units, with improved
approximating properties.

Experiments have shown that three to five neo-fuzzy neurons in the classification system input
layer provides low accuracy, which cannot be enhanced only by learning epochs number increasing.
At the same time, an increment of a neo-fuzzy neuron number in the input layer dramatically increases
the classification accuracy. The experiments also varied the number of terms in nonlinear synapses
from three to seven and changed the Takagi–Sugeno’s fuzzy inference order. However, this factor did
not have a significant impact on improving the classification accuracy and, therefore, the results of
these experiments are not given in the table.

The proposed system is designed to solve image recognition problems, including overlapping
classes tasks, when information is submitted for processing in an online mode. The proposed learning
algorithm demonstrates both high conversion rate and additional filtering properties. Carried out
experiments proved the proposed system to be efficient in solving emotion recognition tasks as well as
its declared simplicity.
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