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Abstract: This paper addresses the problem of resource distribution control in logistic systems
influenced by uncertain demand. The considered class of logistic topologies comprises two types of
actors—controlled nodes and external sources—interconnected without any structural restrictions.
In this paper, the application of continuous-domain genetic algorithms (GAs) is proposed in order
to support the optimization process of resource reflow in the network channels. GAs allow one
to perform simulation-based optimization and provide desirable operating conditions in the face
of a priori unknown, time-varying demand. The effectiveness of inventory management process
governed under an order-up-to policy involves two different objectives—holding costs and service
level. Using the network analytical model with the inventory management policy implemented in a
centralized way, GAs search a space of candidate solutions to find optimal policy parameters for a
given topology. Numerical experiments confirm the analytical assumptions.

Keywords: supply chain; inventory control; optimization; artificial intelligence; evolutionary
algorithms; uncertain demand

1. Introduction

In recent years, in particular since the turn of the 20th and 21st centuries, a significant development
of the global economy has been noticed. In spite of numerous regional problems that involved diverse
international sanctions in different sectors and the global financial crisis, many industrial branches
have been created as well as other ones have made a noticeable progress [1,2]. One of these branches is
logistics, which incorporates complex processes combining various activities related to production,
transport, and trade [3].

One of the reasons for the global economic growth is a technological development of the personal
computers that allow one to perform sophisticated computations in a relatively short time. Commonly
available computers enable to analyze various data using soft computing methods based on artificial
intelligence ideas [4–6]. Nowadays, both global enterprises and regional companies are collecting
as much data as possible from their clients and users. They are aware of countless opportunities to
utilize any information in the future. Numerous modern fields of computer science, e.g., Internet
of Things, are based on the data analysis and are evolving constantly [7]. Many datasets obtained
from real-life operations may be processed in various ways in order to extract additional information
that is not seemingly noticeable. From the logistics sector point of view, data processing frequently
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leads to providing a high service level. This is an important factor in optimization issues related to
distribution networks, supply chains, delivery scheduling, etc. For instance, the historical demand
data of a given supply system may be used to make predictions of customer behaviors in the future.
Moreover, data processing is a key direction in current transport studies in worldwide companies, like
Google or TomTom. They are discovering their mobile mapping technologies based on geometrical
data collected by mobile systems of LIDARs and cameras placed on the metering cars. Then, these
data enable one to create highly accurate 3D models of roads for autonomous driving purposes, which
are groundbreaking for the prospective logistic solutions [8].

Nonetheless, the research of modern logistic systems is a complicated issue by virtue of
sophisticated analytical models of entity interactions and, consequently, high computational
complexity. Until now, the scientific literature is mostly focused on single-stage systems [9,10],
serial interconnections [11–13], and tree-like organizations [14–16]. This paper explores the goods
distribution process that takes place in the networks with a non-trivial architecture.

Due to the globalization and consequently a rapid extension of existing supply chains,
the optimization issues are more and more crucial for worldwide enterprises. Configurations of
the distribution systems are getting increasingly complex and sophisticated structurally. In order
to face this challenge a variety of resource management policies [17,18] and heuristics [19,20] are
being developed. The main difficulty of their implementation is related to the issue of computational
complexity and, thus, hardware requirements. In this paper, an optimization of resource distribution
taken place in mesh-type logistic networks have been supported using continuous-domain genetic
algorithms (GAs). The goods reflow is managed by an order-up-to inventory policy implemented in a
centralized way.

At first, the network model and the inventory management strategy are proposed analytically.
Afterwards, a continuous-domain GA is adapted to a given class of logistic systems. The optimization
problem under consideration is multidimensional, but its objectives are taken into account to formulate
a multi-criteria dependent function. This function aims to provide a desirable balance between
the reduction of goods storing cost while maintaining the high service level that results in customer
satisfaction. The optimization objectives are determined numerically as input parameters. The network
costs are based on a quantity of goods stored by controlled nodes in each period of time, i.e., one piece
of goods equals one unit of holding costs. The customer satisfaction is measured as a percentage of
fulfilled external demands against all the demands imposed on the network, i.e., fulfillment of all
demands means the full customer satisfaction. The proposed GA with a continuous domain enables
an adjustment of the inventory management policy to the specified priorities of the optimization
objectives. Various numerical examinations have been performed in order to prove efficiency of GAs
in discussed optimization process in non-trivial logistic system configurations.

2. Network Model

2.1. Logistic Structure and Operations

The structure of the considered class of logistic networks is composed of two types of
entities—controlled nodes and external sources—with finite storage capacity. Let us denote N and
M as a quantity of controlled nodes and external sources, respectively. The interconnection system
is established using one-way links between nodes that form a mesh-type structure with neither
simplifications nor restrictions. The network assumptions exclude a presence of separate nodes besides
no node can supply itself. The interconnection of two particular nodes i and j is parameterized by a
pair of attributes (SCij, TDij), where SCij denotes a supplier contribution (SC) and TDij is a lead-time
delay (LT) of replenishment orders. SC determines the part of goods that a controlled node orders
from a given supplier. The distribution environment involves uncertain customer demands imposed
on the network during the whole resource reflow process.
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The model of network interactions assumes the fixed order of operations performed by controlled
nodes in each period of time. Figure 1 illustrates the node operational sequence emphasizing incoming
and outgoing activities. At first, goods from incoming replenishment orders are registered to the
on-hand stocks. Subsequently, the node strives to guarantee a high service level by meeting the
customer demands. At the end, the node will satisfy replenishment signals from neighbors, if there are
available goods at its stock.

Data 2018, 3, x FOR PEER REVIEW  3 of 15 

 

are registered to the on-hand stocks. Subsequently, the node strives to guarantee a high service level 
by meeting the customer demands. At the end, the node will satisfy replenishment signals from 
neighbors, if there are available goods at its stock. 

 

Figure 1. Node routine sequence. 

2.2. Model of Network Dynamics 

The node operational sequence described in the previous section enables to formulate the 
equation of the stock level dynamics at node i as: 

xi t	+	1 	=	xi t 	+	Qi
I t 	– di t  – Qi

O t  (1) 

where: 

• Qi
I t —the amount of goods in incoming replenishment orders received by node i, 

• Qi
O t —the amount of goods in outgoing replenishment orders sent to the neighbours, and 

• di t —the amount of satisfied customer demands. 

Let us denote P as a quantity of all the nodes existing in the network, i.e., P = N + M. The amount 
of incoming goods in replenishment orders received from all the suppliers assigned to node i can be 
calculated by: 

Qi
I t  = δjioi t – φji

P

j	=	1  (2) 

Analogously, the amount of resources sent to the neighboring nodes is expressed by: 

Qi
O t  = δisos t – τiP

N

s	=	1  (3) 

The notations applied in Equations (2) and (3) denote: 

• δji—SC with respect to supplier j, where δji	∈	 0, 1  and ∑ δjij∈Ωi =	1 for Ωi denoting the indices 
set of node i suppliers, 

• oi—the amount of all the resources requested from node i, and 
• φji—the LT of the replenishment order coming from supplier j to node i, φji	∈	 1, …, Γ , with Γ 

denoting the highest values of LT occurring in the network structure. Moreover, φji	=	τjP	+	τji, 
where τjP  is the time of order preparation at supplier j and τji  lists the shipment delivery 
between nodes j and i. All the delays are positive integer values. 

  

Figure 1. Node routine sequence.

2.2. Model of Network Dynamics

The node operational sequence described in the previous section enables to formulate the equation
of the stock level dynamics at node i as:

xi(t + 1) = xi(t) + QI
i (t) − di(t) − QO

i (t) (1)

where:

• QI
i (t)—the amount of goods in incoming replenishment orders received by node i,

• QO
i (t)—the amount of goods in outgoing replenishment orders sent to the neighbours, and

• di(t)—the amount of satisfied customer demands.

Let us denote P as a quantity of all the nodes existing in the network, i.e., P = N + M. The amount
of incoming goods in replenishment orders received from all the suppliers assigned to node i can be
calculated by:

QI
i (t) =

P

∑
j = 1

δjioi
(
t − ϕji

)
(2)

Analogously, the amount of resources sent to the neighboring nodes is expressed by:

QO
i (t) =

N

∑
s = 1

δisos

(
t − τP

i

)
(3)

The notations applied in Equations (2) and (3) denote:

• δji—SC with respect to supplier j, where δji ∈ [0, 1] and ∑
j∈Ωi

δji= 1 for Ωi denoting the indices

set of node i suppliers,
• oi—the amount of all the resources requested from node i, and
• ϕji—the LT of the replenishment order coming from supplier j to node i, ϕji ∈ {1, . . . , Γ}, with

Γ denoting the highest values of LT occurring in the network structure. Moreover, ϕji = τP
j + τ ji,

where τP
j is the time of order preparation at supplier j and τji lists the shipment delivery between

nodes j and i. All the delays are positive integer values.



Data 2018, 3, 68 4 of 14

2.3. State-Space Model

In order to enable an implementation of the analyzed network model in a programming way,
it ought to be transformed into matrix-vector form. Let us group all the node dependencies occurring
in the logistic system. The proposed state-space equation is equal to:

x(t + 1) = x(t) +
Γ

∑
ϕ = 1

Φϕo(t − ϕ)− d(t) (4)

where:

• x(t)—the vector storing information about on-hand stock levels in period t,
• o(t)—the vector storing information about replenishment orders processed in period t,
• d(t)—the vector storing external demand requests processed in period t, and
• Φϕ—the matrix containing information about network interconnections:

Φϕ =



∑
i:Γi1 = ϕ

δi1 e12 · · · e1N

e21 ∑
i:Γi2 = ϕ

δi2 · · · e2N

...
...

. . .
...

eN1 eN2 · · · ∑
i:ΓiN = ϕ

δiN


(5)

where:

• the main diagonal entries denote the incoming replenishment orders with lead-time delay ϕ, and
• the off-diagonal entries are established according to:

eik =

{
−δik, if τP

i = ϕ

0, otherwise,
(6)

for k ∈ {1, . . . , N}.

2.4. Networked Inventory Policy

The resource distribution considered in this paper is governed using an order-up-to policy
implemented in a networked manner. This policy requires, as an input, a vector containing target
inventory levels (TILs) of all the controlled nodes. TIL is a reference stock level, which a particular
node strives to obtain in each distribution period generating replenishment signals for its suppliers.
The amount of resources that should be ordered by node i from the suppliers in period t is equal to:

o(t) = Φ−1

[
xT − x(t) −

Γ

∑
ϕ = 1

Γ

∑
k = ϕ

Φϕo(t − k)

]
(7)

where:

• xT—the vector storing TILs of all the controlled nodes, and
• Φ—the matrix containing the combined information about the network structure:

Φ =
Γ

∑
ϕ = 1

Φϕ (8)

In order to adjust this networked policy to a given logistic topology, it is necessary to define the
initial TIL vector as a baseline. According to analytical description in reference [20], it is convenient to
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consider a constant demands equal to the highest values from the whole distribution process. The TIL
vector based on such a demand assumption will provide full customer satisfaction and allow one to
establish the search space boundaries for each controlled node. Owing to the assumption of constant
demand, higher values of the elements of TIL vector do not have to be taken into account in the
simulations. Let us indicate the vector of the highest values of demands imposed on each controlled
node in the entire goods distribution by dmax and IN as an identity matrix of size N × N. The TIL
vector for a constant demands imposed on each controlled node is equal to:

xT
initial =

(
IN +

Γ

∑
ϕ = 1

ϕΦϕ

)
Φ−1dmax (9)

The elements of xT
initial specify the upper boundaries of TILs search space for optimization

processes discussed further in the numerical section.
More details regarding the policy analytical treatment have been given in [21].

3. Continuous-Domain GA Optimization

The purpose of this paper is to investigate an idea of GA-based assistance in adjusting the analyzed
resource management strategy to mesh-type logistic topologies. This operation is computationally
sophisticated due to the complex network structure and the external demands not known a priori.
In order to find the optimal TIL vector for a given case, it is necessary to search the multidimensional
solutions space, where the initial TIL vector calculated from Equation (9) determines the boundaries.
Due to the number of candidate solutions, an intelligent support for simulation-based optimization
should be applied, because full-search algorithms would not be efficient. This optimization process
aims a proper selection of the optimal TIL vector, which will satisfy predefined distribution priorities,
i.e., a balance between the holding costs and the service level. By virtue of the continuous search
space in the inventory management issue under consideration (TILs belong to the ranges from 0 to
the given upper limits), it is convenient to apply the continuous-domain GAs [22] (Chapter 3). This
variant of GA allows one to avoid transforming a candidate solution into a binary form, typical for GA
applications. Thus, this improvement leads to expedite computations by directly relation between the
problem variables and the obtained results.

3.1. Fitness Function

The proper definition of the fitness function (FF) is a key aspect of the GA operation. It does not
allow finding the optimal solution, but it enables the comparison of multiple individuals, e.g., the entire
population, through calculating how good they are and deciding which of them is a better solution
from the others. The FF gets a particular TIL vector as an input parameter and calculates the FF value
that indicates the importance of this candidate solution in the population. After the optimization the
best TIL vector, i.e., the candidate solution with the greatest FF value, is selected.

In the distribution issue under consideration, the optimization process aims to reduce the costs
related to storing resources in the network while providing high customer satisfaction. Analytical
research and experimental simulations led to formulate the FF that quantifies these partly contradictory
goals as:

f itness(SL, HC, ω, µ) = SLω

(
1 − HC

HCinitial

)µ

(10)

where:

• SL—the service level related to the percentage of satisfied external demands, SL ∈ [0, 1],
• HCinitial—the initial holding cost established according to (9),
• HC—the holding cost obtained for a given TIL vector,
• ω—the coefficient determining the importance of the service level, and
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• µ—the coefficient determining the importance of the cost reduction.

3.2. Selection

Selection probability, based on the FF value, is calculated for each individual in a given population.
One of the classical GAs selection methods—stochastic universal sampling (SUS)—has been applied
in the considered algorithm. As opposed to the majority of selection methods, e.g., roulette wheel
selection, the implemented SUS makes use of two random points in order to divide a given population
into pairs. Consequently, a pair of individuals will be formed in each iteration as opposed to
single-point methods, which relieves the computational time—crucial in the analyzed class of
evolutionary applications. In fact, it allows one to reduce the number of selections twice because the
pair of parents is an output from a single selection operation.

3.3. Crossover

The operation of recombination takes a pair of individuals from the original population (parents)
and combines them into two new individuals (children). As in a biological evolution, the children
inherit features of their parents in a nondeterministic way. In the network optimization issue under
consideration, two source TIL vectors forms by crossing a pair of new vectors. In the implemented
GA, a multi-point method draws two random split points A and B from the range [0, N]. These
points cannot be the same (A 6= B) and are sorted in ascending order. The split points selection is
established for each pair of candidate solutions from the original population. In contrast to basic
crossover methods, e.g., single-point one, multi-point crossover enables the creation of more diverse
children in relation to parents.

3.4. Mutation

The mutation is a real evolution process, which consists in an unpredictable alteration of one or
multiple genes in a particular genotype. In the considered case this phenomenon involves a random
modification of a one or more TIL values in a given xT vector. According to the continuous-domain of
a considered problem, the mutated TIL value for node i may be set only within the boundaries of the
search space, i.e.,

0 ≤ xT
i ≤ xT

i,initial (11)

where xT
i, initial denotes the TIL of node i from the initial vector calculated using Equation (9).

4. Numerical Tests

The performance of the proposed GA in the optimization of logistic systems under consideration
has been evaluated numerically. In order to perform computational experiments a computing engine
for goods distribution simulations has been created and the algorithm described in Section 3 has
been implemented. This program enables one to create network topologies, establish interconnection
schema, and perform simulation-based optimization. The numerical studies presented in this section
take into account three different topologies:

• Small network (N–1)—the structure consists of five nodes—two external sources and three
controlled nodes,

• Medium network (N–2)—the structure consists of nine nodes—five external sources and fifteen
controlled nodes, and

• Large network (N–3)—the structure consists of twenty nodes—five external sources and fifteen
controlled nodes.

In each case, the goods distribution process is analyzed with two different types of external
demand imposed on the network. The first one is generated using the Poisson distribution
parameterized by a rate parameter set as 10. The second one is obtained from the gamma distribution
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with shape and scale coefficients equal to 5 and 10, respectively. The external demands from the
Poisson-based process have a lower average as well as the standard deviation, while the second case
is characterized by significantly intensified fluctuations. Analyzing the topologies discussed in this
section, these values may be averaged as:

• external demands generated using Poisson distribution—the mean and the standard deviation
equal to 10 and 3, respectively. And

• external demands generated using gamma distribution—the mean and the standard deviation
equal to 50 and 23, respectively.

Contrary to [23], the numerical studies presented in this work involve more advanced GA
optimization in terms of the computational complexity. The population comprises 50 candidate
solutions. In order to prevent the evolutionary process from including repeated individuals into the
populations, the mutation probability has been set as 40%.

The priority coefficients are chosen so that a significant holding cost reduction is obtained
while maintaining near full customer satisfaction. For this reason, numerous cases considered lead
to determine the priority coefficients of fitness function equal to ω = 40 and µ = 10, respectively.
The single simulation run lasts 30 periods and the initial inventory levels are set equal to the target
ones, i.e., x(0) = xT

initial. Two stop criteria: the generation limit of 104 and the number of generations
without fitness values improvements of 2 × 103 are enforced.

4.1. Small Network N–1

For the illustrative purposes, the first environment assumes a non-sophisticated network topology.
Let us consider the structure depicted in Figure 2. There are three controlled nodes (1–3) and two
external sources (4–5). The pair of attributes above the connection arrows denote the SC and LT,
respectively. In the considered example, node 3 orders 70% of the required goods from node 1 and
their delivery takes three periods. The rest of required goods is ordered from external source 4 and its
delivery lasts one period.
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4.1.1. Results for Poisson Demand

Poisson distribution is convenient to generate external demands because it generates integer
values, hence, there is no need for rounding to get legitimate order quantities. Figure 3 illustrates the
external demands imposed on all the controlled nodes (1–3) during the simulation interval.

The initial TIL vector assuming the highest values of demands calculated according to Equation
(9) equals [176, 180, 66] units. The GA-based optimization lasts only 57 generations and results in the
selection of xT

optimum = [86, 86, 45] units and the holding cost reduction from the initial 6.8 × 103 to

8.5 × 102, while maintaining full customer satisfaction. Figure 4 proves the lack of excess inventory in
the on-hand stock of the controlled nodes.



Data 2018, 3, 68 8 of 14
Data 2018, 3, x FOR PEER REVIEW  8 of 15 

 

 
Figure 3. External demands generated using Poisson distribution imposed on network N–1. 

 
Figure 4. On-hand stock level after GA-based optimization for the case of Poisson demand. 

4.1.2. Results for Gamma Demand 

In this case, the external demand is generated using gamma distribution with the values rounded 
to the nearest integer. Figure 5 shows the demand requests that the controlled nodes aim to fulfill. 

The baseline TIL vector [1156, 920, 496] units results in the holding cost equals to 4.7 × 104. The 
optimization process in the 728th generation allows one to find the optimal TIL vector [474, 409, 256] 
units, which satisfies the external demands in full. The network costs are reduced to 5.5 × 103. The 
resource flow is illustrated in Figure 6. It indicates that for both slowly and rapidly varying demand, 
the optimization process allows one to reduce the excess resources stored in the node warehouses. 

Figure 3. External demands generated using Poisson distribution imposed on network N–1.

Data 2018, 3, x FOR PEER REVIEW  8 of 15 

 

 
Figure 3. External demands generated using Poisson distribution imposed on network N–1. 

 
Figure 4. On-hand stock level after GA-based optimization for the case of Poisson demand. 

4.1.2. Results for Gamma Demand 

In this case, the external demand is generated using gamma distribution with the values rounded 
to the nearest integer. Figure 5 shows the demand requests that the controlled nodes aim to fulfill. 

The baseline TIL vector [1156, 920, 496] units results in the holding cost equals to 4.7 × 104. The 
optimization process in the 728th generation allows one to find the optimal TIL vector [474, 409, 256] 
units, which satisfies the external demands in full. The network costs are reduced to 5.5 × 103. The 
resource flow is illustrated in Figure 6. It indicates that for both slowly and rapidly varying demand, 
the optimization process allows one to reduce the excess resources stored in the node warehouses. 

Figure 4. On-hand stock level after GA-based optimization for the case of Poisson demand.

4.1.2. Results for Gamma Demand

In this case, the external demand is generated using gamma distribution with the values rounded
to the nearest integer. Figure 5 shows the demand requests that the controlled nodes aim to fulfill.Data 2018, 3, x FOR PEER REVIEW  9 of 15 

 

 
Figure 5. External demands generated using gamma distribution imposed on network N–1. 

 
Figure 6. On-hand stock level after GA-based optimization for the case of gamma demand. 

4.2. Medium Network N–2 

Figure 7 presents the topology of network N–2 and Table A1 lists the interconnection details. 
Due to increased structural complexity of this network and the next one, the visualization of the 
external demand and on-hand stocks using charts is not readable. Instead, the numerical data will be 
presented. 

 
Figure 7. Resource distribution network N–2. 

 

Figure 5. External demands generated using gamma distribution imposed on network N–1.



Data 2018, 3, 68 9 of 14

The baseline TIL vector [1156, 920, 496] units results in the holding cost equals to 4.7 × 104.
The optimization process in the 728th generation allows one to find the optimal TIL vector [474, 409,
256] units, which satisfies the external demands in full. The network costs are reduced to 5.5 × 103.
The resource flow is illustrated in Figure 6. It indicates that for both slowly and rapidly varying demand,
the optimization process allows one to reduce the excess resources stored in the node warehouses.
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4.2. Medium Network N–2

Figure 7 presents the topology of network N–2 and Table A1 lists the interconnection details. Due
to increased structural complexity of this network and the next one, the visualization of the external
demand and on-hand stocks using charts is not readable. Instead, the numerical data will be presented.
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4.2.1. Results for Poisson Demand

The generated demand is in the range [2, 20] units. Using its highest value for each controlled
node, the initial TIL vector is established as [231, 127, 57, 216, 123, 232] units and yields the storage
costs of 1.6 × 104. In this case, the full-search algorithm needs to check over 1013 candidate solutions.
GA-based optimization reduces the costs to less than 103 by finding the optimal solution—xT

optimum =

[101, 37, 35, 98, 59, 99]—in the 13254th generation, i.e., after calculating 6.6 × 105 potential solutions.

4.2.2. Results for Gamma Demand

The gamma distribution-based external demands belong to the range [20, 123] units. The initial
TIL vector determined for this demand is equal to [1491, 743, 360, 1347, 784, 1337] units and results in
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1.13 × 105 holding costs. The optimal TIL vector obtained in 33 generations equals [477, 233, 222, 500,
304, 537] units and decreases the costs to 8 × 103. The full-search method with the granularity of one
unit requires to perform about 5.5 × 1017 simulations to find the best solution.

4.3. Large Network N–3

Figure 8 presents the interconnection structure of network N–3, which is yet more complex than
the previously discussed ones. Table A2 groups the attributes of links between the nodes. The external
demands are imposed on all the controlled nodes.
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4.3.1. Results for Poisson Demand

The baseline setting for the optimization process leads to the holding costs equal to 5.9 × 104 with
TIL vector calculated from (9) as:

xT
initial =

[
789, 333, 126, 74, 97, 368, 90, 84,
245, 357, 196, 122, 114, 86, 455

]
units. (12)

The GA-based optimization needs 5403 generations to approach the optimal solution that reduces
costs related to the inventory storage to 3 × 103. It is not feasible to find the best solution using the



Data 2018, 3, 68 11 of 14

full-search algorithm, as it would involve running 6.2 × 1033 simulations. The optimal TIL vector is
obtained as:

xT
optimum =

[
112, 158, 36, 55, 61, 77, 58, 53

120, 91, 76, 73, 36, 77, 153

]
units. (13)

4.3.2. Results for Gamma Demand

Similarly as in the previous cases, the external demands generated using gamma distribution
are characterized by greater uncertainty than the Poisson-based ones. The initial holding cost for
the vector

xT
initial =

[
4883, 2264, 771, 530, 509, 2221, 622, 546,

1521, 2046, 1163, 702, 683, 545, 2712

]
units (14)

equals 4.2 × 105. In the analyzed case, there are 4.45 × 1045 candidate solutions for the TIL vector to
consider. The GA-based optimization selected the TIL vector that leads to reducing the holding costs
to 1.9 × 104 (less than 5% of the initial state) in just 1394th generation, i.e., it needs to perform less than
7 × 104 simulations. The best TIL vector is

xT
optimum =

[
846, 537, 310, 497, 290, 334, 473, 258,

123, 578, 648, 323, 288, 393, 407

]
units. (15)

Figure 9 presents the course of the fitness function changes as the optimization process evolves
for network N–3. The dashed red line highlights the best solution evaluated using the parallel
full-search algorithm.
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To sum up, the presented numerical studies demonstrate the efficiency of the simulation-based
optimization of logistic networks assisted by a continuous-domain GA algorithm. The external
demands, which in practical settings considered here are not known a prori, lead to large search
space of candidate solutions for any realistic logistic structure. Even with the hardware capabilities of
today’s computers, it is not possible to perform the full-search operation for sophisticated architectures.
The AI method applied in this work permits obtaining a solution close to the best one in a significantly
shorter time.

5. Conclusions

The paper investigates the application of simulation-based optimization in order to improve
the effectiveness of goods reflow in distribution networks with mesh-type architectures. The class
of networks under consideration are influenced by uncertain exogenous demand. The resource
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redistribution is governed using an order-up-to inventory management strategy implemented in a
networked manner. The optimization process based on continuous GA adjusts the policy parameters to
the logistic system under consideration. The GA-based optimization provides a target inventory level
so that a balance between two partially conflicting objectives—holding cost reduction and maintaining
high customer satisfaction—is obtained. The numerical studies, assuming various system scales and
external demands generated using different stochastic distributions, demonstrate the effectiveness of
both the considered policy and GA as tools for AI-assisted optimization of modern logistic systems.
Moreover, the analyzed cases indicate that the bigger the connection complexity, the greater the benefit
of application of GA-based optimization in comparison to the full-search methods.
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formal analysis: P.I.; writing—original draft preparation: Ł.W.; writing—review and editing: P.I.; visualization:
Ł.W.; supervision: P.I.
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Appendix A

Table A1. Attributes of node interconnections in network N–2.

From\To 1 2 3 4 5 6 7 8 9

1 - - 0.7, 1 - 0.7, 3 - - - -
2 - - - - - 0.6, 5 - - -
3 - - - 0.1, 5 - - - - -
4 0.3, 3 0.3, 3 - - - - - - -
5 - 0.3, 4 - - - 0.1, 3 - - -
6 0.4, 2 - - - - - - - -
7 0.3, 5 - 0.1, 3 0.8, 4 0.1, 5 - - - -
8 - 0.4, 1 - 0.1, 4 - 0.3, 4 - - -
9 - - 0.2, 2 - 0.2, 1 - - - -



Data 2018, 3, 68 13 of 14

Table A2. Attributes of node interconnections in network N–3.

From\To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 - 0.7, 4 - - - - - 0.2, 3 0.8, 1 0.4, 2 - - - - 0.3, 5 - - - - -
2 - - - - - - 0.8, 2 - - 0.3, 4 - - - - - - - - - -
3 - - - 0.2, 4 - - - - - - - 0.4, 2 - - 0.1, 4 - - - - -
4 - - - - - - 0.1, 1 - - - - - - - - - - - - -
5 - - - - - - - 0.2, 5 - - - - - - - - - - - -
6 0.6, 4 - - - - - - - - - - - 0.3, 2 - - - - - - -
7 - - - - - - - - - - 0.2, 2 - - - - - - - - -
8 - - - - - - - - 0.1, 5 - - - - - - - - - - -
9 - - - - - 0.4, 2 - - - - - - - 0.8, 5 - - - - - -

10 - - - - - - - - - - 0.6, 1 - 0.2, 2 - - - - - - -
11 0.3, 1 - - - - - - - 0.1, 5 - - - - 0.1, 2 - - - - - -
12 - 0.2, 5 - - - - - - - - - - - - - - - - - -
13 - - 0.5, 1 0.3, 5 - - - - - - - - - - - - - - - -
14 - - - - - - - - - - - - - - - - - - - -
15 - - - 0.5, 1 0.1, 3 0.3, 1 0.1, 1 - - - 0.2, 1 - - - - - - - - -
16 0.1, 3 - 0.2, 1 - - - - 0.6, 1 - - - 0.3, 2 - 0.1, 4 - - - - - -
17 - - - - - 0.3, 1 - - - 0.3, 5 - 0.3, 5 - - 0.6, 3 - - - - -
18 - - - - 0.4, 5 - - - - - - - - - - - - - - -
19 - 0.1, 3 - - - - - - - - - - 0.5, 1 - - - - - - -
20 - - 0.3, 4 - 0.5, 2 - - - - - - - - - - - - - - -
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