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Abstract: Trainable visual navigation systems based on deep learning demonstrate potential
for robustness of onboard camera parameters and challenging environment. However, a deep
model requires substantial computational resources and large labelled training sets for successful
training. Implementation of the autonomous navigation and training-based fast adaptation
to the new environment for a compact drone is a complicated task. The article describes an
original model and training algorithms adapted to the limited volume of labelled training set and
constrained computational resource. This model consists of a convolutional neural network for
visual feature extraction, extreme-learning machine for estimating the position displacement and
boosted information-extreme classifier for obstacle prediction. To perform unsupervised training
of the convolution filters with a growing sparse-coding neural gas algorithm, supervised learning
algorithms to construct the decision rules with simulated annealing search algorithm used for
finetuning are proposed. The use of complex criterion for parameter optimization of the feature
extractor model is considered. The resulting approach performs better trajectory reconstruction than
the well-known ORB-SLAM. In particular, for sequence 7 from the KITTI dataset, the translation
error is reduced by nearly 65.6% under the frame rate 10 frame per second. Besides, testing on the
independent TUM sequence shot outdoors produces a translation error not exceeding 6% and a
rotation error not exceeding 3.68 degrees per 100 m. Testing was carried out on the Raspberry Pi 3+
single-board computer.

Keywords: navigation; visual odometry; convolutional neural network; neural gas; information
criterion; extreme learning

1. Introduction

Autonomous navigation is crucial for search, rescue and remote inspection because teleoperation
by video stream is extremely challenging when moving close to buildings or trees and in an indoor
environment. Besides, the Global Positioning System (GPS) may not be reliable in cases of low satellite
coverage and signal multipath interference [1,2]. Using a compact laser scanner can offer an alternative
solution. However, such a solution is expensive and the laser has low frequency [3]. The vision-based
solution seems particularly suitable to the autonomous navigation in terms of the weight, cost and
information it can provide. With an onboard camera, the drone can both estimate the ego-motion and
obtain the information on the environment simultaneously.
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Visual geometric methods such as direct, semi-direct and feature-based visual odometry are well
known [4,5]. However, geometric methods lack robustness for a number of very common effects, such
as illumination changes, movement of dynamic objects, different camera calibrations, low-textured
environments, noise and motion blur. Data-driven visual odometry using deep learning methods and
low-cost cameras is the most promising approach.

Deep data-driven visual odometry has the potential for high learning capability and robustness
of camera parameters and challenging environments [5,6]. However, deep models typically require
large computational resources for training and inference mode. Besides that, deep models need
large labelled datasets for successful training. Complexity reduction of the model can be achieved
by narrowing the scope of application to a particular domain of use. However, even a tiny deep
model requires significant computational resources and a large labelled training set, which leads to a
significant overhead and slow adaptation to the new condition and environment.

The conventional convolutional neural network, comprised of a convolutional filter-based
multilayer feature extractor and fully connected neural layers forming the decision rules, is an
a very popular model choice for the analysis of image data [7,8]. This being said, conventional
convolutional neural networks have a number of disadvantages, such as their inability to analyze the
processes occurring in time, and high computational complexity of the learning algorithm based on
backpropagation [9]. In addition, making an advance estimate of the required number of neurons
in each convolutional layer is complicated. In contrast, a neural network training approach with
unsupervised learning methods based on growing neural gas and their modifications offers better
prospects [1,10]. Moreover, the convolutional feature extractor combined with sparse coding is
characterized by its ability to operate on small datasets or significant target data imbalance in an
unlabelled dataset, which can be dealt with by the fine-tuning of feature extractor using a criterion
based on efficiency of decision rules [8]. End-to-end fine-tuning in hybrid models is often limited by
many inconsistencies. In this case, fine-tuning can be effectively performed by any trajectory-based
metaheuristic search algorithm. However, the training process speed depends on computation
complexity of model.

The ego-motion estimation task is the most important part of visual navigation process and
it can be formulated as a regression analysis for position displacement prediction. The support
vector machine and extreme learning machine (ELM) are widely used as regression models in hybrid
intelligent systems, especially with constraints on availability of computational resources and the
size of labelled dataset. In this case, ELM is characterized by the most rapid training to obtain the
least-squares solution of regression problem [11]. In order to eliminate overfitting, which occurs when
the number of hidden layer nodes is large, it is relevant to investigate the incremental learning via
successive addition of hidden nodes.

The information-extreme classifier of a high-level feature representation is one of the most
promising approaches to implementing trainable obstacle avoidance capabilities in terms of
computation efficiency and generalizing abilities. The main idea of information-extreme techniques is
to transform input space of primary features into binary Hamming space with radial basis decision
rules. This approach provides high computational efficiency because simple operation of comparison
with thresholds and Hamming distance calculation based on logical XOR operation and non-zero bit
counting are used. However, fast threshold optimization methods for feature encoding have not yet
been proposed. In this case, feature inductions based on decision tree and boosting are two particularly
promising algorithms which can speed up threshold optimization for binary feature encoding [12,13].

In order to implement autonomous navigation and identification of obstacles under the conditions
of constrained computational resources and limited labelled training set, this paper proposes a
multilayer convolutional sparse coding model for feature extraction from spatial-temporal visual data.
In addition, the training algorithms based on unsupervised pretraining and supervised fine-tuning
of feature extractor to maximize supervised learning efficiency of information-extreme classifier and
extreme-learning regression model are also proposed.
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2. Data Description and Data Model Design

To prepare the input mathematical description of the intelligent information system, KITTI
VO/SLAM benchmarks 07 and 09 from Kaggle were used. The datasets contain the image frame
sequence captured by the moving video camera and the corresponding tri-axis ground truth
movement data reported by GPS and LiDaR (dataset: http://www.cvlibs.net/datasets/kitti/raw_
data.php?type=residential, https://vision.in.tum.de/data/datasets/visual-inertial-dataset; dataset
license: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 License, Creative Commons 4.0 Attribution License CC
BY 4.0) [8]. Since this dataset was recorded at a relatively low frame rate (10 frame per second) by
driving in urban areas many dynamic objects and the speed of the driving was up to 90 km/h, some
image pre-processing was necessary. This was achieved by applying the resizing, gray scaling and
un-distorting functions from an open-source robotic operation system [9]. Whilst it required the camera
calibration parameters, high accuracy was not needed. The training and test video sequences from
the KITTI Vision dataset were used. The images were downscaled to 200 × 200 due to memory and
computation resource limitations.

The main adopted methodological principles of data analysis model design are as follows:

- using more than 2 subsequent frames to determine the movement between the two last frames,
which allows for better context detection and increase of the decision accuracy;

- hierarchical feature representation, which allows describing complex features with a smaller
number of parameters;

- avoidance of subsampling for preservation of larger quantity of information (data shifts,
deformation and scale), which is important for regression analysis of camera movement in
time and space, especially in absence of end-to-end learning;

- low-computational-complexity decisions rules, which reduce the time needed for efficiency
evaluation and feature extractor tuning.

The trainable model of the visual navigation should provide obstacle avoidance and control of
UAV’s (unmanned aerial vehicle) own position through odometry. The proposed model of visual
navigation can be trained as an independent system or as an auxiliary parallel error corrector for
geometric methods of visual odometry. In case of auxiliary option, both models must be synchronized.

Figure 1 depicts the schematic of the navigational system for a compact drone. A convolutional
neural network which takes inputs in a form of a multichannel image formed by a series sampling
of successive video frames in grayscale format is used to extract the feature representation of visual
observations. A multilayered structure of Convolutional Neural Network (CNN) is used to form
a high-level feature representation. Convolutional filters in the proposed CNN are subjected to
unsupervised training layer by layer. An information-extreme classifier is then trained in supervised
mode on the samples encoded by the corresponding high-level features. This classifier is then used to
predict obstacles and for output of the corresponding response. The ELM-based regression model uses
the visual features to predict the relative position change between two consecutive frames. From five
consecutive observations, this component predicts position displacement along the x-axis and y-axis,
and orientation (yaw) of the second frame with respect to the first frame.

The 4-layer architecture of the convolutional neural network is shown in Figure 2. The first layer
of the CNN contains standard convolutional filters with different kernels: 5 × 5, 3 × 3 and 1 × 1. The
parameter K2 regulates the number of filters. To keep the size of feature maps formed by multiple-scale
filters unchanged, the technique of padding by zeros is used [8]. Corresponding stride parameters
of scanning a feature map with multiple-scale filters for the second and third layers are 3 and 2,
respectively. The Orthogonal Matching Pursuit (OMP) algorithm and rectifier function,y = max(0, x),
are used for calculating each multi-channel pixel of feature map [10]. To prevent information loss, the
feature map can be doubled using the function y = {max(0, x), max(0,−x)}.

http://www.cvlibs.net/datasets/kitti/raw_data.php?type=residential
http://www.cvlibs.net/datasets/kitti/raw_data.php?type=residential
https://vision.in.tum.de/data/datasets/visual-inertial-dataset
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Figure 1. Model for classical odometry with the proposed model as a parallel error corrector. 
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Figure 2. The architecture of the convolutional sparse coding model for visual feature extraction in the
navigation system.

To train the regression model y = f (x) represented by the single-hidden-layer feedforward
network (SHFN), output variable yj ∈ RM which corresponds to position displacement in terms
of translation vector t and rotation vector θ of the camera y = (y1, y2, . . . , yn)

T = (t , θ)T , a set
of {(xj, yj)

∣∣xj ∈ RN , yj ∈ RM, 1 ≤ j ≤ n} training data consisting of visual features, is used, where
xj = (xj1, xj2, . . . , xjN)

T . The SHFN with R additive hidden nodes and activation function ϕ(x) can
be represented by:

R

∑
r=1

β j ϕ(wT
r xj + br) = oj, 1 ≤ j ≤ n (1)

where wr = (wr1, wr2, . . . , wrN)
T is the weight vector linking the input layer with the rth hidden

node, br is the threshold of the rth hidden node, βr = (βr1, βr2, . . . , βrM) is the weight vector
linking the output layer with the rth hidden node, oj is the output of the network with respect to the
input vector xj, and ϕ(x) is the activation function that can be any bounded non-constant piecewise
continuous functions.
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The network with R hidden nodes can approximate these N samples with zero error when all the
parameters are allowed to be adjusted freely, i.e., there exist βr, wr and br. The above n equations can
be compactly rewritten as the matrix equation Hβ = Y, where

H =

 ϕ(wT
1 x1 + b1) . . . ϕ(wT

Rx1 + bR)

. . . . . . . . .
ϕ(wT

1 xn + b1) . . . ϕ(wT
Rxn + bR)


n×R

(2)

β =

 βM
1

. . .
βM

R


R×M

(3)

Y =

 yM
1

. . .
yM

n


n×M

(4)

Here, H is called the hidden layer output matrix of the SHFN.
The information-extreme classifier under inference mode makes decision on belonging of input

datapoint x with appropriate binary representation b to one class of turn from set {Xo
z
∣∣z = 1, Z} ,

according to the maximum value of membership function µz(b) through the expression argmax
z
{µz(b)}.

In this case, membership function µz(b), the optimal container of which has support vector b∗z and
radius d∗z , is derived from:

µz(b) = exp

(
−

N2

∑
i=1

bi⊕ b∗z,i/d∗z

)
. (5)

Binary encoding of datapoint xj is carried out by concatenation of decision paths from ensemble of
trees T1, ... , Tk. Datapoint xj is classified in the leaf node by trees. Each decision node receives a unique
identifier. If a test is satisfied in a node, then the corresponding bit is asserted. Finally, the encodings
for each tree are combined by concatenation (or more generally by hashing the features ID onto a
smaller-dimensional space) [143,134].

3. Training Algorithm Design

The main adopted methodological principles of machine learning algorithm design are as follows:

- uniting the competitive learning principles with sparse coding to reduce the training data sample
size requirements and improved convergence during the feature extractor pretraining;

- training decision rules on the basis of fast randomized least-squares solvers (Gram–Schmidt
process, and Moore–Penrose pseudoinverse) or decision trees-inspired techniques (random forest,
random subspace, and adaptive boosting);

- metaheuristic optimization for harmonization of hybrid data analysis model components and
improved convergence to the global model efficiency criterion optimum;

- complex criterion of the model efficiency is formed as a multiplicative aggregation of partial
efficiency criteria aimed at the optimal feature extractor configuration which simultaneously
improves all partial criteria.

The aim of the machine learning process of the navigation system is to determine the optimal
vector of parameter g, which maximize the complex criterion as follow:

J =
E

Emax
· εmin

ε
· Cmin

C
, (6)

g∗ = argmax
G
{J(g)} , (7)
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where E—learning effectiveness of recognition of obstacle averaged by the set of classes
learning criterion; ε—regression mean square error for the change of camera coordinates in
space; C—computational complexity criterion of feature extraction algorithms; Emax, εmin, and
Cmin—the maximum possible value of the classifier training efficiency informational criterion, the
minimum allowable values of regression model error and computational complexity of the system’s
algorithms criterion, respectively; G—admissible domain of parameters affecting feature extraction
and decision-making.

It is proposed to carry out unsupervised training of feature extractor using the growing sparse
coding neural gas technique, based on the principles of growing neural gas and sparse coding. In this
case, the dataset for training convolutional filters is formed by cropping the 3-dimensional patches
of input images or feature maps. The shape of each patch is equivalent to corresponding filter shape.
These patches reshape to 1-dimensional vectors, arriving at the input of the algorithm of growing
sparse coding neural gas, and the basic stages of which are given below:

1. the counter of learning vectors t is initialized to be 0;
2. two initial nodes (neurons) wa and wb are assigned by random choice out of the training

dataset. Nodes wa and wb are connected by the edge, the age of which is zero. These nodes are
considered non-fixed;

3. the following vector x, set to the unit length (L2-normalization), is selected;
4. each basis vector w, k = 1, M is set to the unit length (L2-normalization);
5. the measure of similarity of input vector x to basis vectors wsk ∈W is calculated for sorting

− (wT
s0

x)
2 ≤ . . . ≤ −(wT

sk
x)

2 ≤ . . . ≤ −(wT
sM−1

x)
2
, (8)

where ws0 is the nearest node and ws1 is the second nearest node by proximity node;
6. the age of all incidents ws0 is increased by unity;
7. if ws0 is fixed, go to step 9, otherwise, go to step 10;

8. if (wT
s0x)2 ≥ v, go to step 12. Otherwise, a new non-fixed neuron wr is added to the point which

coincides with the input vector wr = x; besides, a new edge that connects wr and ws0 is added,
and then go to step 13;

9. node ws0 and its topological neighbors (the nodes connected with it by the edge) are displaced in
the direction to input vector x according to the Oja’s rule [13] by:

∆ws0 = εbηtwT
s0x(x− wT

s0xws0), (9)

∆wsn = εnηtwT
snx(x− wT

snxwsn), (10)

0 < εb � 1, 0 < εn � εb, (11)

ηt := η0(η f inal/η0)
t/tmax , (12)

where ∆ws0, and ∆wsn are the vector of correction of weight coefficients of the neuron-winner
and its topological neighbors, respectively; εb and εn are the constants of the updated force of
weight coefficients of the neuron-winner and its topological neighbors, respectively; η0, ηt, and
η f inal are the initial, current and final value of learning rate, respectively;

10. if (wT
s0x)2 ≥ v, the neuron ws0 is labelled as fixed;

11. if ws0 and ws1 are connected by the edge, its age is nulled, otherwise, a new edge with the zero
age is formed between ws0 and ws1;

12. all edges in the graph with the age of more than amax are removed. In the case when some nodes
do not have any incident edges (become isolated), these nodes are also removed;

13. if t < tmax, proceed to step 15, otherwise, increment the step counter t by 1 described as t := t + 1
and proceed to step 3;
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14. if all neurons are fixed, the algorithm implementation stops, otherwise, proceed to step 3 and a
new learning epoch begins (repetition of the training dataset).

The information-extreme classifier that evaluates belonging of jth datapoint xj with N1 features to
one of the Z classes performs feature encoding using boosted trees and decision rules constructed in
radial basis of binary Hamming space. In this case, there is the training set, D = {xj, yj

∣∣ j = 1, n} ,
where n is the size of dataset and yj is the label of jth pixel, which correspond to one class from set of
classes {Xo

z
∣∣z = 1, Z} . The training of boosted information-extreme classifier is performed according

to the following steps:

1. Initialize weight wj = 1/n.

2. Initialize step counter k = 1.
3. Bootstrap Dk from D using probability distribution P(X = xj) = wj.

4. Train decision tree Tk on Dk using entropy criterion to measure the quality of split.
5. Perform binary encoding of datapoint xj from D using concatenation of results from T1, . . . , Tk

trees. In this case, each decision tree produces a binary code where each non-zero bit corresponds
to a node of decision path from root to leaf node [12,14]. The output of this step is a binary matrix
{bz,s,i

∣∣i = 1, N2; s = 1, nz; z = 1, Z} , where N2 is the number of induced binary features and nz is
the number of samples corresponding to class Xo

z . Hence, the equality n = ∑
z

nz condition is met.

6. Build information-extreme decision rules in radial basis of binary Hamming space and compute
optimal information criterion:

E∗z = max
{d}

Ez(d) (13)

where {d} = {0, 1, . . . ,
(

∑
i

bz,i ⊕ bc,i − 1
)
} is a set of concentric radiuses with center bz (support

vector) of data distribution in class Xo
z , which is computed using the rule:

bz,i =

 1, if 1
nz

nz
∑

s=1
bz,s,i >

1
Z

Z
∑

c=1

1
nc

nc
∑

s=1
bc,s,i;

0, otherwise.
(14)

where Ez—training efficiency criterion of decision rule for class Xo
z , which is computed as the

normed modification of the Kullback’s information measure [13]:

Ez =
1− (αz + βz)

log2(2 + ς)− log2 ς
· log2

[
2− (αz + βz) + ς

(αz + βz) + ς

]
, (15)

where αz, and βz are the false-positive and false-negative rates of classification of input vectors as
belonging to the class Xo

z ; ς is any small non-negative number, introduced to avoid uncertainty
when being divided by zero.

A conventional way to increase the learning efficiency is a reduction of the multi-class
classification problem to the series of the two-class one by the principle “one-against-all”. In this
case, to avoid the problems of class imbalance, due to the majority of negative datapoints in
datasets, a synthetic class is an alternative to class Xo

z . The synthetic class is represented by nz

datapoints of the remaining classes, which are the closest to support vector bz, where nz is the
volume of the training dataset of class Xo

z .
7. Test obtained information-extreme rules on dataset D and compute the error rate for each sample

from D. Under the inference mode, decision on belonging of datapoint b to one class from set
{Xo

z
∣∣z = 1, Z} is made according to the maximum value of membership function µz(b) through

the expression argmax
z
{µz(b)}. In this case, membership function µz(b) of binary representation
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b of input datapoint x to class Xo
z , the optimal container of which has support vector b∗z and radius

d∗z , is derived from Equation (5).
8. Update {wj} proportional to errors on datapoint xj.

9. If
∣∣E∗k − E∗k−1

∣∣< ε , abort the loop.

10. k = k + 1.
11. If k ≤ K, where K is the maximum number of trees, go to step 2.

Orthogonal incremental ELM is proposed to be used as a regression model. It avoids redundant
nodes and obtains the least-squares solution of equation Hβ = Y by incorporating the Gram–Schmidt
orthogonalization method into well-known incremental ELM. rigorous proofs in theory of convergence
of orthogonal incremental extreme learning are given by Ying [11]. The training of orthogonal
incremental ELM is performed according to the following steps:

1. Set the maximum number of iterations Lmax and expected learning accuracy E0.
2. For L = 1, . . . ,Lmax do
3. Increase by one the number of hidden nodes: r = r + 1.
4. Randomly generate one hidden node and calculate its output vector hr.
5. If r = 1 then vr = hr else

vr = hr −
〈v1, hr〉
〈v1, v1〉

v1 −
〈v2, hr〉
〈v2, v2〉

v2 − . . .− 〈vr−1, hr〉
〈vr−1, vr−1〉

vr−1 (16)

6. If ||vr||≥ ε calculate the output weight for the new hidden node:

βr = vT
r E/(vT

r vr) (17)

and calculate the new residual error:
E = E− vrβr (18)

else r = r− 1.
7. If ||E||≥ E0 , abort the loop.

In order to approximate the global optimum of complex criterion during training of decision
rules and feature exctactor fine-tuning, the use of simulated annealing metaheuristic algorithm is
proposed [13]. The efficiency of the simulated annealing algorithm depends on the implementation of
the create_neighbor_solution procedure, forming a new solution si on the ith iteration of the algorithm.
Figure 3 shows a pseudocode of the simulated annealing algorithm, which is implemented by the
epochs_max iterations, each of which function f is calculated by passing a labelled training dataset
through the model of the system of detection and calculation of a complex criterion (6).

An analysis of the pseudocode in Figure 3 shows that current solution scurrent, in relation to which
new best solutions sbest are sought for, is updated in case of providing a new solution of the criterion
increase (1), or randomly from the Gibbs distribution [13]. In this case, an initial search point that
is formed by the create_initial_solution procedure can be either randomly generated or a result of the
preliminarily training by another algorithm. To generate new solutions in the create_neighbor_solution
procedure, it is proposed to use the simplest non-adaptive algorithm, which can be represented as:

scurrent = scurrent + uni f orm_random(−1, 1) · step_size, (19)

where uniform_random is the function of generation of a random number from the uniformed
distribution from the assigned range; step_size is the size of a range of the search for new solutions,
neighboring to scurrent.
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4. General Implementation and Setup Remarks

Autonomous navigation implementation is foreseen on 1 or 2 Raspbery Pi 3+ single-board 64-bit
computers. They are equipped with CPU Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC
@ 1.4GHz and have 1GB of RAM. The official Raspbian operating system is 32-bit only and various
other 64-bit have numerous problems with input–output device drivers, and hence, Debian Stretch is
compiled for 64-bit SoC Broadcom BCM2837 Cortex-53 chip.

Training and inference regimes were implemented using Opencv 3.4, Tensorflow HRT with
contributed modules and Robot Operating System Melodic Morenia (for arm64) with ORB-SLAM
libraries. The libraries were optimised using single instruction, multiple data (SIMD) technologies
(NEON-instruction). Jemalloc was installed to manage a given memory space. Image preprocessing
was done with Opencv. Orthogonal Matching Pursuit, decision trees, ELM and growing sparse coding
neural gas were implemented on Tensorflow framework for both training and inference.

For the purposes of testing the error corrector regime, dataset pre-processing and subsequent
processing based on geometric odometry ORB-SLAM with a constraint on the maximum keypoint
number limited to 100 was performed. The results were saved in a text file. After this, the proposed
model was trained on a half of the KITTI dataset sequence. It is worth mentioning that for classifier
training purposes, manually labelled turn samples taken from various sequences of KITTI dataset
were used. A classifier in this case plays a regularizing role. The last step is the model launched in the
inference mode to generate the final result taking into account ORB-SLAM results.

5. Simulation Results and Discussion

Parameters K1 and K2 values affect both the informative nature of the feature representation and
the degree of computational complexity. For the purposes of this paper, computational complexity
is measured by the quantity of “Mul” and “Add” operations performed at the time of convolutional
operations with an image or a feature map. The computational complexity for the network architecture
in Figure 2 can be calculated as:

S = K2(2706472K1 + 4438784K2) (20)

The optimal configuration of the convolutional extractor or the classifier and the regression model
may differ, as they are responsible for different tasks. A complex criterion (6) offers an acceptable
compromise between accuracy of the decision rules and the computational complexity of the visual
feature extractor.
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The set of recognition classes {Xo
z} describes the characteristic obstacles and the corresponding

response commands, and has a power Z = 5. The first class of recognition Xo
1 characterizes the forward

movement without turning. Classes Xo
2 and Xo

3 correspond to the left turn of 45 and 90 degrees,
respectively. Classes Xo

4 and Xo
5 correspond to the right turn of 45 and 90 degrees, respectively. The size

of the corresponding training and test sets for each class is nz = 30. The regression model was
trained on a half of the total length of the KITTI dataset sequence. KITTI-0.7 and KITTI-0.9 were used.
The length of KITTI-0.7 sequence is equal to 1100 and the length of KITTI-0.9 sequence is equal to 1590.

It is proposed first to train the model using the unsupervised pretrained feature extractor via
growing sparse coding neural gas without fine-tuning. In this case, three fixed values of the training
dataset reconstruction parameter ν were used during training. This parameter directly affects the
number of feature map channel K2.

In order to improve the results of machine learning of the visual navigation system,
informativeness of feature description was increased by fine-tuning of the unsupervised trained
convolutional filters parameters, which are depicted in Figure 2. In this case, the following parameters
of simulated annealing algorithm were used: c = 0.98, T0 = 10, epochs_max = 3000, and step_size = 0.001.
Each fine-tuning step involved a re-training of a regression model and classifier. A simulation was
performed for the three fixed values of parameters K1 and K2 (Table 1) to evaluate the tendency of
change in average values of the partial and complex criteria during the growth of such parameters
affect the size of the feature extractor (Figure 2). The optimal parameter values were determined for
the KITTI-07 open dataset.

Table 1. Dependence of partial and complex criteria on feature extractor hyperparameters K1 and K2.

v K1 K2 E/Emax εmin/ε Cmin/C J

0.6 3 18 0.083 0.112 1.000 0.009296
0.6 5 18 0.101 0.188 0.827 0.015703
0.6 7 18 0.098 0.200 0.705 0.013818
0.7 3 21 0.28 0.688 0.297 0.057214
0.7 5 21 0.29 0.756 0.264 0.057879
0.7 7 21 0.29 0.775 0.238 0.053491
0.8 3 46 0.39 0.968 0.082 0.030957
0.8 5 46 0.55 1.000 0.077 0.04235
0.8 7 46 0.51 1.000 0.072 0.03672

The analysis of Table 1 shows that increases in parameter values K1 and K2 tend to increase
both the reliability and computational complexity (20) of the decision rules of the classifier and the
regression model. At the same time, the increase in parameter K1 has a negligible effect on the overall
classifier efficiency due to the corresponding decrease in the learning efficiency with a substantial
growth of the feature space, while the regression error is equally sensitive to the values of parameters
K1 and K2.

However, considering that, as K1 and K2 grow, the reliability of decision rules increases at a slower
rate than computational complexity, and the use of complex criterion J offers a pragmatic compromise
solution. The optimal parameter values are K∗1 = 5 and K∗2 = 21.

The average value of the information criterion of functional efficiency for the optimal configuration
of the feature extractor is E = 0.29. This corresponds to 95.2% accuracy for the training set, and 94%
for the test dataset. Figure 4 depicts the change in average information efficiency criterion (4) as a
function of the number of iterations of the simulated annealing algorithm.

The analysis of Figure 4 shows that after the 1000th iteration, the rate of increase of the information
criterion (15) reduces, and after the 2500th iteration, the information criterion remains virtually
unchanged. This indicates that the further increase in the information criterion can be obtained only
by expanding the informative nature of the features by increasing values of K1 and K2 or improving
the architecture of the feature extractor (Figure 2).
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Figure 4. A graph of the change of the average information efficiency criterion (15) in dependence of
the number of iterations of the simulated annealing algorithm.

For a visual assessment of the effectiveness of the machine learning of the navigation system, a
ground truth trajectory constructed using annotation data from the KITTI dataset can be compared
with a reconstructed trajectory obtained using a trained model. The regression model produces yaw
and translation along the x-axis and y-axis. To obtain the rotation matrix R from the rotation vector θ,
the Rodrigues Transformation was used [9]. To reconstruct the movement trajectory, the coordinate
tpos[i] and orientation Rpos[i] of camera for ith frame relative to the start position were calculated as:

Rpos[i] = R · Rpos[i− 1] (21)

tpos[i] = tpos[i− 1] + t · Rpos[i] (22)

Figure 5a shows the result of using feature-based odometry from the ORB-SLAM system [5,6].
The maximum number of keypoints is limited to 100 to provide the required frame rate in case of
onboard system without graphics processing unit (GPU) acceleration.Data 2018, 3, x FOR PEER REVIEW  12 of 14 
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(a) feature-based monocular odometry; (b) proposed model; (c) parallel error correction for
feature-based monocular odometry using the proposed model.

The analysis of Figure 5a shows that the reconstructed trajectory has a significant error. Figure 5b
shows the result of using proposed model trained and tested on the same datasets. In this case,
the error of reconstruction is much smaller. Figure 5b shows the result of using feature-based odometry
from ORB-SLAM with parallel correction based on the proposed model. As can be seen, the accuracy
of the reconstruction is high.

Table 2 shows that the proposed approach performs a better trajectory reconstruction than the
well-known ORB-SLAM. In particular, for sequence 7 from the KITTI dataset, the translation error
of length is reduced by nearly 65.6% under the same frame rate (10 frames per second). Testing was
carried out on the single-board Raspberry Pi 3+ Computer.
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Table 2. Mean results in the KITTI dataset.

Sequence
Proposed Model ORB-SLAM with 100 Keypoints Limitation

t, % θ, degree per 100 m t, % θ, degree per 100 m

KITTI-07 1.57 2.60 2.24 7.56
KITTI-09 1.49 2.12 1.64 6.89

Figure 6a shows that the trained model on the KITTI-07 dataset has poor performance when
tested on another dataset (KITTI-09). Figure 6b shows that re-training of the model on the new dataset
considerably increases the accuracy of the trajectory reconstruction from the dataset.
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Thus, the results obtained on open datasets testify to the suitability of the model for practical
use. To avoid overfitting, the complexity of model is optimized. However, the limited capacity of the
optimized model requires its re-training when changing the domain area of use.

For an independent testing of trained model TUM set sequences shot outdoors were used.
ORB-SLAM was tested on the same sequences with a limit of a 100 keypoints for comparison (Table 3).

Table 3. Mean results in the TUM dataset.

Sequence
Proposed Model ORB-SLAM with 100 Keypoints Limitation

t, % θ, degree per 100 m t, % θ, degree per 100 m

TUM-outdoors 5 4.31 3.60 6.24 7.56
TUM-outdoors 6 5.42 3.68 7.64 8.11
TUM-outdoors 7 4.33 3.59 6.44 7.93
TUM-outdoors 8 5.01 3.61 7.12 7.99

Analysis of Table 3 demonstrates that ORB-SLAM translation error for TUM sequences exceeds
the translation error of the proposed model more than 1.4 times. The ORB-SLAM rotation error exceeds
the corresponding rotation error of the proposed model more than 2 times. Accuracy of the proposed
model, however, tested on the independent sequence is lower than on the KITTI dataset, which was
used in training, since at the beginning of TUM sequences indoor video footage, very different from
the training data, was used.

Thus, the proposed model and training algorithm of the autonomous robot navigation system
were tested on open datasets. Testing on the independent TUM sequence shot outdoors produces a
translation error not exceeding 6% and a rotation error not exceeding 3.68 degrees per 100 m. Accuracy
can be further improved by additional training on the samples of such sequences.
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6. Conclusions

The scientific novelty of the results lies in the following:

- The model of autonomous navigation system for a compact drone is proposed. The model
consists of a 4-layer convolutional sparse coding network with series of successive frames as an
input and multi-scale convolutional filters, ELM for estimating position displacement and an
information-extreme classifier for predicting turns;

- a complex criterion for evaluating effectiveness of the model which takes into account
computation complexity of feature extractor and accuracy of decision rules;

- the training algorithm consists of 3 parts. The first part is an unsupervised training of feature
extractor with series of successive frames as an input. The second part is a supervised training
of information-extreme classifier for turn prediction with fine-tuning of feature extractor using
a metaheuristic search algorithm. The last part is a supervised training of ELM for position
displacement prediction or correction using the feature extractor.

The significance of the results for the unmanned aviation sector lies principally in the
formulation of a modern scientific and methodological basis for the design of trainable autonomous
navigation systems for compact drones, which operate under computational resource and information
constraints. Simulation results validate the high efficiency of the resulting decision rules for coordinate
determination and obstacle recognition based on the video footage. Our approach performed a better
trajectory reconstruction than the well-known ORB-SLAM. In particular, for sequence 7 from the KITTI
dataset, the translation error is reduced by nearly 65.6% under the same frame rate. Besides, testing
on the independent TUM sequence shot outdoors produces a translation error not exceeding 6% and
a rotation error not exceeding 3.68 degrees per 100 m. Testing was carried out on the single-board
Raspberry Pi 3+ Computer.
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