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Abstract: Environmental sustainability is nowadays a major global issue that requires efficient
and effective responses from governments. Essential variables (EV) have emerged in different
scientific communities as a means to characterize and follow environmental changes through a set
of measurements required to support policy evidence. To help track these changes, our planet has
been under continuous observation from satellites since 1972. Currently, petabytes of satellite Earth
observation (EO) data are freely available. However, the full information potential of EO data has not
been yet realized because many big data challenges and complexity barriers hinder their effective
use. Consequently, facilitating the production of EVs using the wealth of satellite EO data can be
beneficial for environmental monitoring systems. In response to this issue, a comprehensive list of
EVs that can take advantage of consistent time-series satellite data has been derived. In addition,
a set of use-cases, using an Earth Observation Data Cube (EODC) to process large volumes of satellite
data, have been implemented to demonstrate the practical applicability of EODC to produce EVs.
The proposed approach has been successfully tested showing that EODC can facilitate the production
of EVs at different scales and benefiting from the spatial and temporal dimension of satellite EO data
for enhanced environmental monitoring.
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1. Introduction

The latest Global Risks Report from the World Economic Forum (WEF) identified for the first
time in its 10-year outlook survey that the top five global risks in terms of likelihood and impact
were all related to the environment, ranking climate change and biodiversity loss as major global
threats [1]. Therefore, environmental sustainability is recognized as a critical global issue that demands
achieving a good balance between the exploitation of natural resources for socio-economic development,
and conserving ecosystem services that are critical to everyone’s wellbeing and livelihoods [2].

To reach this objective, it is essential to provide accountable scientific knowledge to policy- and
decision-makers to enable them to develop effective policies based on evidence [3,4]. However, this is
still a challenging task because this requires organizing actions (i.e., from data acquisition to knowledge
generation) in coherent and coordinated workflows. These data value chains are a series of transformations
to produce new insights from data [5] that can follow the data-information-knowledge-wisdom pattern
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to provide evidence about the limits of our planet [6,7]. This requires a paradigm shift from data-centric
to more knowledge-centric approaches [8] integrating different datasets from various disciplines both
environmental and socio-economic conditions [9]. Ultimately, this allows describing and assessing
environmental conditions at different scales (e.g., national, regional, global) and understanding the
interactions between the different components of the Earth system (e.g., atmosphere, hydrosphere,
biosphere, geosphere) and possibly predicting future changes [10]. However, such a knowledge-centric
approach has not yet been widely applied for environmental monitoring [11,12].

The concept of essential variables (EV) has emerged in various scientific communities as a means to
adequately describe and monitor the evolution of Earth system components (e.g., atmosphere, biosphere,
hydrosphere) through a set of observational data. These data should be (1) relevant (i.e., critical for
characterizing a system and its changes); (2) feasible (i.e., methodologies are scientifically sound,
technically feasible); (3) cost-effective (i.e., low cost of implementation, maintenance, archiving and (4)
support policy frameworks [13,14]. EVs can be understood as “a minimal set of variables that determine
the system’s state and developments, are crucial for predicting system developments, and allow us to define
metrics that measure the trajectory of the system“ [15]. Currently, EVs are already been defined for
climate [16–18], biodiversity [19,20], water [21], oceans [22] and other domains have started the process
such as agriculture [23], ecosystems [24], mountains, extractives [25], air quality [26] or renewable
energies [27] as well as socio-economic [13,28]. Timely and reliable access to EVs can provide the basis
for accountable scientific understanding and knowledge on environmental conditions to enhance
informed and evidence-based policy process [29].

To facilitate environmental monitoring, our planet has been under continuous observation from
satellites since 1972, providing synoptic, regular, multi-spectral observations of the planet. These Earth
observation (EO) data can provide the long baseline required to determine trends, define present
conditions, and inform future evolution [30]. EO data have the potential to drive progress in key
national and international development agendas, providing new insights and supporting better policy
development across diverse environmental sustainability issues [31,32]. Indeed, governments have
national and international commitments and obligations as well as national environmental programs.
They all need information that is synoptic, consistent, spatially explicit and sufficiently detailed to
capture anthropogenic impacts. However, this vision of EO data-driven decision making has not been
fully addressed and challenges remain [33]. The full information potential of EO data has not yet been
realized, because many big data challenges (e.g., volume, variety, velocity), related complexity barriers
(e.g., data preparation, model integration and prediction) and lack of capacities/skills hinder effective
and efficient use of EO data in policy and decision-making processes [34,35].

Traditional approaches to the acquisition, management, distribution, and analysis of satellite EO
data have limitations (e.g., data size, heterogeneity, complexity) that impede their massive use and
analysis [36]. To address these issues and leverage the information potential of EO data, EO Data
Cubes (EODC) have been developed to strengthen the connection between data, applications and
users [37]. EODC are tackling Big Data challenges by providing efficient and effective solutions to
store, organize, manage and analyze large volumes of freely available data in analysis ready (ARD)
format [38,39]. Various implementations exist mostly at the national and regional scales such as
in Australia [40,41], Africa [42], Armenia [43], Austria [44], Brazil [45], Colombia [46], Mexico [31],
Switzerland [47] and Taiwan [48]. However, none of these EODC are neither explored the potential
nor routinely generating EVs.

Consequently, the aim of this paper is to (1) explore and define which EVs can be generated using
EODC in the three most advanced domains: climate, biodiversity and water; and (2) demonstrate
the applicability of EODC in generating selected EVs at local and national scales. This can help
understanding how EODC can contribute and strengthen existing environmental monitoring systems
with the regular provision of EVs.
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2. Methodology and Implementation

The definition and development of EVs in various thematic and scientific domains usually
follows a community process to reach an agreement on a set of observables/measurements that can
be considered as essential and that satisfy the needs of national to global monitoring, reporting,
research or forecasting [15]. Among the different scientific communities, climate, biodiversity and
water are those that can be considered the most mature domains and where EVs definition process
is the most advanced [24]. For each of these three domains, EVs are reviewed and evaluated
according to their level of measurability using remotely-sensed data time-series. They are then
classified following three labels: (Y)es-(P)atrial-(N)o. Yes, means that an EV is fully measurable using
remote-sensing data time-series; Partial relates to EVs that need additional information (e.g., in-situ data,
models); No, indicates that they are not measurable using remote-sensing. In addition, main spatial
((L)ocal-(N)ational-(R)egional-(G)lobal) and temporal ((H)our-(D)ay-(W)eek-(M)onth-(S)eason-(A)nnual)
scales for monitoring are also considered. Classification choices are made based on literature search in
relevant scientific libraries such as Science Direct, Scopus, Web of Science or Google Scholar.

2.1. Essential Climate Variables

Originally, the concept of EVs has been defined by the climate community through the effort
led by the Global Climate Observing System (GCOS) which established a set of 52 essential climate
variables (ECV). These ECVs are supposed to support the work of the United Nations Framework
Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change
(IPCC) [17]. They were selected for their relevance to characterize the climate system as well as their
technical and economic feasibility for systematic observations from satellite remote-sensing or in-situ
measurements [16,49]. ECVs are generated by different organizations (e.g., European Space Agency,
National Oceanic and Atmospheric Administration) and can be searched and accessed through the
Global Observing Systems Information Center (GOSIC) that provides a single entry-point to ensure a
harmonized and integrated search across various data holdings [50]. However, from a user-perspective
accessing ECVs is still difficult because of the variety of data formats, access methodologies, spatial
coordinates and temporal resolution [18] making them difficult to integrate with other datasets [51,52].

The full list of ECVs (Table 1) has been extracted from the GCOS website (https://gcos.wmo.int/en/

essential-climate-variables).

Table 1. Essential climate variables (ECV) and possible contributions from remote
sensing. Y-Yes, P-Patrial, N-No; L-N-R-G, ((L)ocal-(N)ational-(R)egional-(G)lobal); H-D-W-M-S-A,
((H)our-(D)ay-(W)eek-(M)onth-(S)eason-(A)nnual).

Class ECV Remote Sensing Spatial Scale Temporal Scale

Atmosphere

Surface

Precipitation Y [53] L-N-R-G H-D-W-M-S-A
Pressure (surface) N L-N-R-G H-D-W-M-S-A

Surface Radiation Budget Y [54] R-G H-D-W-M-S-A
Surface Wind Speed

and direction Y [55] L-N-R-G H-D-W-M-S-A

Temperature (near surface) Y [56] L-N-R-G H-D-W-M-S-A
Water Vapor (surface) Y [55] R-G H-D-W-M-S-A

Upper Atmosphere

Earth Radiation Budget Y [57] G W-M-S-A
Lighting Y [58] G W-M-S-A

Temperature (upper air) P [59] R-G H-D-W-M-S-A
Water Vapor (upper air) P [60] R-G H-D-W-M-S-A

Cloud properties P [61] R-G H-D-W-M-S-A
Wind speed and direction

(upper air) Y [55] L-N-R-G H-D-W-M-S-A

Atmospheric Composition

Aerosols properties P [62] L-N-R-G H-D-W-M-S-A
Carbon Dioxide, Methane and

other Greenhouse gases P [63] L-N-R-G H-D-W-M-S-A

Ozone Y [64] L-N-R-G H-D-W-M-S-A
Precursors (supporting the
Aerosol and Ozone ECVs) P [65] L-N-R-G H-D-W-M-S-A

https://gcos.wmo.int/en/essential-climate-variables
https://gcos.wmo.int/en/essential-climate-variables
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Table 1. Cont.

Class ECV Remote Sensing Spatial Scale Temporal Scale

Land

Hydrosphere

River Discharge N L-N-R-G H-D-W-M-S-A
Groundwater P [66] R-G H-D-W-M-S-A

Lakes Y [67] L-N-R-G H-D-W-M-S-A
Soil Moisture P [68] L-N-R-G H-D-W-M-S-A

Cryosphere

Snow Y [69] L-N-R-G H-D-W-M-S-A
Glaciers Y [70] L-N-R-G M-S-A

Ice Sheets and ice shelves P [70] L-N-R-G M-S-A
Permafrost P [71] L-N-R-G M-S-A

Biosphere

Albedo Y [72] R-G H-D-W-M-S-A
Land cover Y [73] L-N-R-G A

Fraction of Absorbed
Photosynthetically Active

Radiation (FAPAR)
P [74] L-N-R-G W-M-S-A

Leaf Area Index (LAI) P [74] L-N-R-G W-M-S-A
Above-ground biomass P [75] L-N-R-G M-S-A

Soil Carbon P [76] L-N-R-G M-S-A
Land Surface Temperature Y [77] L-N-R-G H-D-W-M-S-A

Fire Y [78] L-N-R-G H-D-W-M-S-A
Evaporation from land P [79] L-N-R-G H-D-W-M-S-A

Anthroposphere
Anthropogenic Greenhouse

Gas Fluxes N L-N-R-G H-D-W-M-S-A

Anthropogenic Water Use N L-N-R-G H-D-W-M-S-A

Ocean

Physical

Ocean Surface Heat Flux P [80] R-G H-D-W-M-S-A
Sea Ice Y [81] R-G W-M-S-A

Sea Level P [82] R-G H-D-W-M-S-A
Sea State N R-G H-D-W-M-S-A

Sea Surface Salinity Y [83] R-G H-D-W-M-S-A
Sea Surface Temperature Y [84] R-G H-D-W-M-S-A

Subsurface Currents N R-G H-D-W-M-S-A
Surface Currents P [85] R-G H-D-W-M-S-A

Surface Stress N R-G H-D-W-M-S-A

Biogeochemical

Inorganic Carbon N R-G W-M-S-A
Nitrous Oxide N R-G W-M-S-A

Nutrients P [86] R-G D-W-M-S-A
Ocean Colour Y [87] R-G D-W-M-S-A

Oxygen N L-N-R-G H-D-W-M-S-A
Transient Tracers N L-N-R-G H-D-W-M-S-A

Biological/Ecosystems Marine Habitats Properties P [88] R-G M-S-A
Plankton P [89] L-N-R-G H-D-W-M-S-A

2.2. Essential Biodiversity Variables

Similarly, the biodiversity community has established essential biodiversity variables (EBV)
as a set of variables that are between primary observations and indicators [19,20]. Currently,
there are 21 EBVs organized in 6 classes (e.g., genetic composition, species population, species
traits, community composition, ecosystem function, ecosystem structure) [90]. These variables are
meant to study, report and manage biodiversity change, status and trends [91]. They designed to
support global initiatives such as the United Nations Convention on Biological Diversity (CBD) and
the Intergovernmental Panel for Biodiversity and Ecosystem Services (IPBES) [92] as well as national
reporting commitments [93,94]. Ideally, these variables should benefit from a synergetic use of remote
sensing and in-situ measurements [95,96]. However, to access EBV, interoperability challenges are
similar to those identified for ECVs [92].

The EBV list (Table 2) has been extracted from the Group on Earth Observations (GEO) Biodiversity
Observation Network (BON) website (https://geobon.org/ebvs/what-are-ebvs/) which is providing
access to EBVs through its portal (https://portal.geobon.org). The classification is based on the work
done by Pettorelli et al. (2016) [95] and Randin et al. (2020) [97] how carefully reviewed the potential
contributions of remote sensing for biodiversity.

https://geobon.org/ebvs/what-are-ebvs/
https://portal.geobon.org


Data 2020, 5, 100 5 of 23

Table 2. Essential biodiversity variables (EBV) and possible contributions from remote sensing.

Class EBV Remote Sensing Spatial Scale Temporal Scale

Genetic composition

Co-ancestry N L M-S-A
Allelic diversity N L-N-R-G M-S-A

Population genetic differentiation P L-N-R-G M-S-A
Breed and variety diversity N L-N-R-G M-S-A

Species population
Species distribution P L-N-R-G M-S-A

Population abundance P L-N-R-G M-S-A
Population structure by age/size class P L-N-R-G M-S-A

Species traits

Phenology P L-N-R-G W-M-S-A
Morphology P L-N-R-G M-S-A

Reproduction N L-N-R-G W-M-S-A
Physiology N L-N-R-G W-M-S-A
Movement N L-N-R-G W-M-S-A

Community composition Taxonomic diversity P L-N-R-G M-S-A
Species interactions N L-N-R-G M-S-A

Ecosystem functions

Net primary productivity P L-N-R-G H-D-W-M-S-A
Secondary productivity N L-N-R-G H-D-W-M-S-A

Nutrient retention N L-N-R-G M-S-A
Disturbance regime Y L-N-R-G M-S-A

Ecosystem structure
Habitat structure P L-N-R-G M-S-A

Ecosystem extent and fragmentation P L-N-R-G M-S-A
Ecosystem composition by functional type P L-N-R-G M-S-A

2.3. Essential Water Variables

Essential water variables (EWV) have emerged from different activities on water-related to the
GEO and led by the Integrated Global Water Cycle Community of Practice [98]. Through a community
reviewing process to ensure wide acceptance by the community, a set of 16 variables that are linked
to applications and end-users [21] and are aiming to support international bodies to provide a
comprehensive list of parameters targeting monitoring, modeling, and inter-disciplinary decision
support systems [99]. This list has been derived from user-needs/requirements assessment in all GEO
user sectors (e.g., agriculture, health, ecosystems, biodiversity, climate, energy, weather).

EWV are listed in Table 3 and extracted from the Global Earth Observation System of Systems
(GEOSS) water strategy report [98].

Table 3. Essential water variables (EWV) and possible contributions from remote sensing.

Class EWV Remote Sensing Spatial Scale Temporal Scale

Primary

Precipitation Y [53] L-N-R-G H-D-W-M-S-A
Evaporation and Evapotranspiration P [79] L-N-R-G H-D-W-M-S-A

Snow Cover (and Depth, Freeze Thaw Margins) P [100] L-N-R-G H-D-W-M-S-A
Soil moisture/temperature Y [56] L-N-R-G H-D-W-M-S-A

Groundwater P [101] R-G H-D-W-M-S-A
Runoff/Streamflow/River Discharge N L-N-R-G H-D-W-M-S-A

Lakes/Reservoir levels and Aquifer volumetric change P [67] L-N-R-G H-D-W-M-S-A
Water Quality P [102] L-N-R-G H-D-W-M-S-A

Water use/demand N L-N-R-G D-W-M-S-A
Glaciers/ice sheets Y [70] R-G M-S-A

Supplementary

Surface meteorology P [55] L-N-R-G H-D-W-M-S-A
Surface and atmospheric radiation budget P [57] R-G H-D-W-M-S-A

Cloud and aerosols P [103] L-N-R-G H-D-W-M-S-A
Land Cover and vegetation/Land use Y [73] L-N-R-G M-S-A

Permafrost P [71] L-N-R-G W-M-S-A
Elevation/topography and geological stratification P [104] L-N-R-G A

2.4. Implementation

To demonstrate the practical capability to generate EVs, an operational EODC implementation
has been used enabling a country to benefit from satellite EO data for environmental monitoring.
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Switzerland is facing important environmental challenges because it is a small country with increasing
pressures on land resources [105] and it is among the first countries in the world to have an operational
EODC providing access to a unique EO analysis-ready data (ARD) archive over the entire national
territory [106]. The Swiss Data Cube (SDC) is a tera-scale analytical cloud-based platform offering
access to 36 years (e.g., 1984 to present days) of satellite data from Landsat 5-7-8 [47], Sentinel-1 [107],
and Sentinel-2 [108] sensors. The SDC facilitates national-scale analyses of large volume of spatially
aligned and consistently calibrated satellite EO data. It is an initiative implemented and operated
by the United Nations Environment Programme (UNEP)/Global Resource Information Database
(GRID)-Geneva in partnership with the University of Geneva, the University of Zurich, and the Swiss
Federal Institute for Forest, Snow and Landscape Research (WSL). The SDC is supported by the Federal
Office for the Environment (FOEN) and is aiming to contribute to its environmental and reporting
mandate while at the same time enabling any Swiss institutions to benefit from the information power
of satellite EO data. The archive is updated on a daily basis and contains approximately 12,500 scenes
corresponding to a total volume of 5 TB and more than 1000 billion observations/pixels. It is built on
the Open Data Cube (ODC), an open-source geospatial data management and analysis software project,
led by the Committee on Earth Observation Satellites (CEOS) in partnership with Geoscience Australia,
the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the National Aeronautics
and Space Administration (NASA), the United States Geological Survey (USGS), Catapult Satellite
Applications, and Analytical Mechanics Associates (AMA) [109]. In the backend, PostgreSQL database
is used to index data and their metadata; data can be either stored as Network Common Data Format
(NetCDF) or Cloud-optimized Geotiff; and data are handled using Geospatial Data Abstraction Library
(GDAL) and specific Python libraries (e.g., numpy, proj, matplotlib). The SDC has already provided
insightful results for forest monitoring [110], land degradation [111] and snow evolution [112].

To efficiently and effectively process these large volumes of data and developed tailored
applications, the SDC provides a Python application programming interface (API) that enables
users to write their own processing algorithms [113]. This API is accessible through Jupyter Notebooks,
an interactive web-based programming interface that can be used for combining software code,
algorithm output and explanatory text [114]. Consequently, using these capabilities, dedicated analysis
workflows have been implemented as Python scripts to produce the EVs presented in the next
section. Results are then published into a GeoServer instance (https://geoserver.swissdatacube.org/)
and properly documented with metadata descriptions and stored in a GeoNetwork catalog
(https://geonetwork.swissdatacube.org/geonetwork/srv/eng/catalog.search#/home). This allows an
interoperable discovery and access to data products using standardized interfaces such as the Web Map
Service (WMS), Web Coverage Service (WCS) and Catalog Service for the Web (CSW). Ultimately, these
data can be examined in a web-based application enabling users to visualize, query, and download
time-series products generated with the SDC (http://www.swissdatacube.org/viewer).

3. Results

Based on the evaluation of ECV, EBV and EBW, approximately 67 from a total number of
89 variables can be fully or partially measured using remote sensing. This corresponds to a percentage
of 75%. By domain, this corresponds to 79% of ECV (41 of 52), 57% of EBV (12 of 21) and 88% of EWV
(14 of 16). This shows that remote sensing can provide a substantial contribution to measure this EVs.

To test and validate the technical feasibility, identify possible limitations and determine the
potential of generating EVs using an EODC, different use-cases have been selected. Climate change,
biodiversity loss and water management are among the most important pressures that Switzerland
has to overcome in the next future [115]. Based on this consideration and the review done in Section 2,
the following essential variables have been selected: (1) for ECV: Soil moisture and Snow cover; (2) for
EBV: Ecosystem structure; and finally, for EWV: Lake level and Water quality.

Switzerland is recognized as the water castle of Europe because approximately 6% of Europe’s
freshwater reserves are stored in the country [116]. Therefore, adequate policies and management

https://geoserver.swissdatacube.org/
https://geonetwork.swissdatacube.org/geonetwork/srv/eng/catalog.search#/home
http://www.swissdatacube.org/viewer
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practices are required to preserve and protect this resource. One famous feature of the Swiss landscape
is the mountainous regions covered by snow in the winter season. Besides its touristic aspect [117],
snow is an important water resource and component of the water cycle, storing water in winter and
releasing it in spring during the melting season. Snow cover is an ECV that is important to monitor as
it provided useful indications on climate change as well as for effective natural resource management
(e.g., flood risk management, water supply) [118]. The contribution of snow melt to water bodies will
likely decrease by about 25% by the end of the century and consequently greatly affect the water regime
of some of the major European rivers (e.g., Rhône, Rhine and Danube) [119,120]. Detailed information
on snow cover evolution can be produced to map snow cover extension using optical sensors data
available in the Swiss Data Cube. The Snow Observations from Space (SOfS) algorithm [121] allows
monitoring of snow cover evolution and variability over the entire Swiss territory using a time-weighted
approach of the Normalized Difference Snow Index [100,122] to compute frequencies of observations.
Initial results using 20 years of Landsat observations have evidenced an apparent decrease of snow
cover during the winter season [31,112]. The area where permanent snow coverage is observed during
the winter season has decreased by about 4% while during the same period the area with little or no
snow has increased by about 8% (Figure 1).

Figure 1. Comparison of snow observations frequencies between the periods 1995/2005 (above)
and 2005/2017 (below). Areas with permanent snow cover over the winter season (dark blue) have
significantly decreased whereas at the same time areas with little or no snow (red) have increased. Data
source: Landsat.

Such results can be an indication of changing climate conditions over the Swiss Alps and can help
follow the evolution trend of snow cover in this Alpine region.

Another ECV that can be useful to provide useful information on water conditions is the Soil
moisture. It can be measured in various ways but the Normalized Difference Water Index (NDWI)
is recognized as a good proxy to estimate water content in vegetation and soils [123]. The NDWI
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estimates soil moisture and canopy water content using the reflecting properties in the near-infrared
(NIR) and short-wave infrared (SWIR) bands and is calculated as follows [124]:

NDWI = (NIR - SWIR)/(NIR + SWIR), (1)

Usually, NDWI is a function of local climate conditions and soil properties controlling water
availability [125]. NDWI has demonstrated its usefulness in different circumstances such as drought
monitoring, early warning, crop monitoring and soil moisture in grasslands and shrublands [126–128].
In the Swiss Data Cube, a Python script has been implemented to produce different satellite-derived
indices allowing users to easily perform time-series analysis of annual, seasonal or monthly mean.
Annual and seasonal NDWI means (with their respective standard deviations) have been computed
for the entire country from 1984 to 2019 using Landsat data. Preliminary results allow researchers to
explore both spatial and temporal variation of NDWI across Switzerland (Figure 2).

Figure 2. Normalized Difference Water Index (NDWI) seasonal mean (Year 2019) from Winter
(upper-left), Spring (upper-right), Summer (lower-left) and Autumn (lower-right). These maps show
the evolution over a year of the water content in vegetation and soils.

Such datasets allow soil moisture over a dedicated area to be explored. For example, users can
select a protected area in the Valais canton named “Bois de Finges” and compute a zonal statistic
over the annual mean time-series (Figure 3). This gives a curve that indicates that soil moisture is
relatively stable over time, even if a small decrease can be observed, but more interestingly shows
various important declines corresponding to major drought events that occurred in 1986, 2003 and
2018. This demonstrates the potential of NDWI to monitor soil moisture and drought conditions.

Still concerning water, lakes are also a major feature of the Swiss landscape having more than
100 lakes of a surface larger than 0.3 square kilometers [115]. Most of these lakes are artificially regulated
and, therefore, their levels can be generally considered as stable [129,130]. However, in the last years,
Switzerland has suffered regularly from severe drought conditions that have affected small natural
and unregulated lakes showing an important decrease in their respective water levels. Water level,
being an EWV, can be evaluated using satellite imagery using both optical and/or radar imagery [131].
In the French-speaking part of Switzerland, two lakes are regularly mentioned in the news showing a
substantial decrease in their respective water levels during the summer season. These are the lake des
Brenets, located in the north-western part at the Swiss/French border, and the lake Bret, on the eastside
of Lausanne city. Using the Water Observations from Space algorithm (WOfS) [132] it is possible to
detect surface water and evaluate the frequency of whether water is permanent or temporary for a
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given pixel through over a dedicated time-frame. Water percentages have been computed for the 2017
and 2018 summer months using Sentinel-2 data for both lakes (Figures 4 and 5).

Figure 3. NDWI Annual mean time-series for the Bois de Finges protected area showing important
decrease in water content corresponding to major drought events.

Figure 4. Water percentages for the lake des Brenets in 2017 (above) and 2018 (below). Water level
severely decreased in 2018 showing that the east side of the lake was covered approximately only 50%
of the time (in yellow) compared to permanent water (blue) and no water (red). Data source: Sentinel-2.
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Figure 5. Water percentages for the lake de Bret in 2017 (left) and 2018 (right). The water level shows a
similar pattern with the north-west side of the lake evidencing a clear decrease in water level. Data
source: Sentinel-2.

This shows that for the same period of the year, the 2018 drought strongly affected the two lakes
and a clear decrease in water levels can be observed. Large areas have been completely drained,
severely impacting leisure activities such as sailing or fishing.

Remote-sensing techniques have been extensively applied for Water quality assessments on
oceans, seas, and lakes and can help to estimate and monitor mineral water quality indicators such
as turbidity, chlorophyll content, surface temperature or water colors [87,102,133]. Total suspended
matter (TSM) allows the average amount of suspended matter in a water body to be determined and,
therefore, can be considered as a relatively good proxy to estimate water quality. It can help to evidence
areas of high turbidity that can have various causes such as pollution, vegetation or mineral induced
turbidity. Lakes Thun and Brienz are located in the central part of Switzerland at the foothill of the
Alps. These two lakes are feed only by the Aar river, a tributary of the Rhine, that takes its source in the
Aare Glacier in the Bernese Alps. Consequently, the Aar river is carrying an important sediment load
that can somehow affect the water quality of these two lakes [134]. The TSM algorithm implemented
by the ODC can be used with Landsat data from April to August 2016 to compute the average value
per pixel of suspended matter (Figure 6).

Results show that most of the sediment load is deposited in the Brienz lake whereas the Thun
lake appears clearer having virtually no sediment deposited in the lake. This result is confirmed also
with a visual inspection of a true-color composite (Figure 7) for the same period that shows lake Brienz
having a color that is desaturated and is whiter than the Thun lake that has a better water quality.

The last example relates to EBV and how ecosystem structure can be evaluated. By structure,
it is implied the set of biophysical properties of ecosystems that create the conditions of the structural
components of ecosystems that lead to and maintain biodiversity characteristics [19]. Ecosystem extent
and fragmentation can be estimated using satellite data. To quantify the spatial extent of vegetation,
one can use the fractional cover (FC) methodology. The fraction of vegetation cover can be derived
using a linear unmixing methodology to evaluate the proportion of photosynthetic vegetation (PV),
non-photosynthetic vegetation (NPV) and bare soil (BS) within each pixel and codified in red/green/blue
colors [135]. In Figure 8, Landsat 8 data has been used to compute FC for estimating the spatial extent
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of vegetation in a portion of the Swiss low-land in the Greater Geneva area during the summer of 2003.
This map shows that most of the area is covered by photosynthetic vegetation and can help to better
determine the structure of vegetated areas as well as assessing the impacts of drought that caused the
death of vegetation during the heatwave an appearing as NPV on the map.

Figure 6. Total suspended matter (TSM) concentration for the lakes Thun (left) and Brienz (right)
showing an important difference in terms of sediment load. Data sources: Landsat; Google.

Figure 7. True color composite of lakes Thun (left) and Brienz (right). Brienz lake shows desaturated
colors indicating that sediment load is more important than in the Thun lake. Data source: Landsat.

Finally, to derive some EBV, the Normalized Difference Vegetation Index (NDVI) is a well-accepted
index for vegetation monitoring. In particular, it can help to inform the seasonal pattern of vegetation
activity (i.e., phenology) and can help to evaluate vegetation dynamics and health at different scales [136].
NDVI is a measure of the state of vegetation health based on how the vegetation reflects light in the
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red (i.e., strongly absorbed) and near-infrared (NIR) (i.e., strongly reflected) bands. It is calculated as
follows [137]:

NDVI = (NIR - RED)/(NIR + RED), (2)

Figure 8. Fractional cover in the Great Geneva area using Landsat 7 (Summer 2003).

Index values range from −1.0 to 1.0 representing roughly vegetation for positive values;
clouds-water-snow for negative values; and bare soils and rocks for values close to zero [138].
When vegetation is affected by dehydration or becomes sick usually the colors turn from green to
brown. This change is particularly significant in NIR light that is increasingly absorbed when vegetation
deteriorates. Therefore, NDVI can provide accurate information on the presence of chlorophyll and
can be correlated with plant health [139]. In the SDC, we used the script mentioned previously
for generating NDWI annual and seasonal means by adapting Formula (1) to compute annual and
seasonal NDVI means nation-wide from 1984 to 2019. Vegetation seasonal patterns can be observed as
exemplified in Figure 9.

Figure 9. NDWI seasonal mean (Year 2019) from Winter (upper-left), Spring (upper-right), Summer
(lower-left) and Autumn (lower-right). These maps show the evolution over a year of the water
content in vegetation and soils.
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Similar to the NDWI example, zonal statistics can be computed for the same protected area
(i.e., Bois de Finges) annual mean time-series have been computed showing an increase of the NDVI
measurements over time (Figure 10). One significant hypothesis that can be made is that conditions
for vegetation growth have improved (i.e., more precipitation and heat) caused by climate change
at mid-latitudes and, therefore, vegetation can be observed to be more active. Similar patterns have
been observed in different parts of the World [140–142] and further studies are needed to confirm and
characterize this change across the different biogeographical regions and landscapes of Switzerland.

Figure 10. Normalized Difference Vegetation Index (NDVI) Annual mean time-series for the Bois
de Finges protected area showing an important increase of the vegetation’s greenness over the
period considered.

4. Discussion

The presented use-cases are, to our knowledge, among the first attempts to compute various
essential variables to support environmental monitoring using an Earth Observations Data Cube.
The first results indicate that EODC can facilitate the production of EVs and can make them accessible
to different users. In particular, this offers a consistent analytical framework for space and time-series
analysis using satellite EO data. Initial implementation indicates benefits, limitations and further
development to strengthen the efficient and effective generation of EVs for environmental monitoring.

In terms of benefits, EODC can help to improve the accessibility, processing and use of EVs [18]
providing access to analysis-ready data. It can therefore facilitate the generation of information and
knowledge emphasizing the importance of suitable connections between data, applications and
users [31,143]. Importantly, such technology can help to move away from traditional data-centric
approaches and can enhance more user-/knowledge-centric approaches by lowering the barriers to
use of satellite EO data [8] and automating the extraction of actionable information and knowledge at
different spatial and temporal scales [144]. This is an essential condition to efficiently support public
policy decision-making. Ultimately, it can allow the provision of decision-ready products that can
be used for effective decision-making and evidence-based policy-making [14]. More importantly,
it allows quantifying measurements and can provide a unique capability to track environmental
changes across a country. Finally, EVs can contribute to support the production of high-level
environmental indicators defined in different policy frameworks such as the Sustainable Development
Goals (SDGs) [4,110], the Aichi targets on Biodiversity [145], the Water-Food-Energy Nexus [146] as
well as the Driver-Pressure-State-Impact-Response framework [29].

Other identified benefits are: (1) scalability and reproducibility of code/methods at different
scales [37,147] that can be applied in more than 100 countries that are using the Open Data Cube
software; (2) integration of the information products into national environmental information database;
(3) support innovation and growth in the digital economy; (4) improve efficiency and effectiveness of
government investments; (5) improve management of natural resources and (6) stimulate research.
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The major limitation is probably the lack of awareness about the EV concept both in some
scientific domains as well as in the policy context [15,24]. In addition, EODC is a relatively new
technology requiring new knowledge and capacities (e.g., Big Data, artificial intelligence, data science).
Therefore, to reach wide adoption, acceptance and commitment, capacity development efforts are
fundamental [148]. In that sense, GEO can play a fundamental role in leveraging the potential of EODC
and EVs. In its 2020–2022 work programme (http://www.earthobservations.org/geoss_wp.php) there
are related activities both on capacity development and EVs. Therefore, GEO can help advocating
and strengthening the role of EO and EVs and their associated benefits to society, enabling different
stakeholders to become familiar with this technology and raise awareness on the potential of EVs for
enhanced environmental monitoring. Benefits can be demonstrated through appropriate examples,
best practices, and guidelines. Particular attention should be devoted to developing capacities at the
following three levels [149]: (1) human (e.g., education and training of individuals); (2) institutional
(e.g., enhancing the understanding within organization and governments of the value of EO data to
support decision-making); and (3) infrastructure (e.g., installing/configuring/managing the needed
technology). Ultimately, all these efforts should be geared towards a more open and reproducible EO
science [37], an approach of research and education that aims to enhance scientific accountability and
credibility by making scientific research and knowledge (e.g., data, methods, tools and resources) more
collaborative, transparent and accessible through digital technologies.

Another limitation that needs to be overcome is that most of the reviewed EVs are not directly
generated from remote sensing measurements. Satellite EO data are often a data source that needs to
be used in conjunction with either in-situ/crowdsourced measurements or integrated into models to
properly generate EVs. Consequently, efforts should be made to better understand how to link EODC
with other data sources to develop efficient workflows and produce EVs in a consistent and coherent
manner. To tackle this issue, the system of systems (SoS) approach promoted by GEO in developing
GEOSS, a platform interlinking existing and planned observation systems, can be an interesting
solution [150,151]. The GEOSS platform relies on interoperability arrangements, a set of standardized
technical specifications that allows data from different systems to be combined into coherent data
sets [152]. Recent efforts have been devoted to implement Open Geospatial Consortium (OGC) and
International Organization for Standardization (ISO) specifications in EODC. These standards are
widely adopted in the geospatial community to make EO data and algorithms interoperable [153,154].
With the help of these standards this can prevent EODC from becoming silos of information and
facilitate the integration of EO data with different data sources such as in-situ measurements or
socio-economic data at different scales (e.g., local, national, international). This is a fundamental
condition to leverage the information potential of EO data. All these data sources enclose unique
insights and spatiotemporal signatures of relevant environmental changes and can provide crucial
information to improve understanding, responding and adequately addressing environmental and
sustainability challenges from local to global scales [144,155].

These first results are encouraging and prove the feasibility of generating EVs using an
EODC. However, further work is needed to routinely produce EVs. First of all, it is necessary
to explore how best to use in-situ data and models together with remotely-sensed data provided by
EODC to generate other EVs (i.e., those identified as partial contributions in Section 2). Second,
it is important to make the information products interoperable [44,153] and compatible with
find-accessible-interoperable-reproducible (FAIR) data-sharing principles [156,157] to facilitate their
reuse by different users. Third, all these information products can be the basis for developing a national
(or other scales) database for environmental monitoring using satellite EO data and add other EVs such
as land cover [158,159]. Fourth, it would be valuable to test the presented approach in other emerging
EV domains to refine the understanding of the potential of EODC to support additional disciplines.

The examples shown in this paper demonstrate that EODC and EVs have the potential to realize
the objective of transforming data into actionable information to support decisions based on evidence
and improve the management of natural resources. This can help countries and local decision-makers

http://www.earthobservations.org/geoss_wp.php


Data 2020, 5, 100 15 of 23

to establish and operate their own analytical capabilities to underpin regulatory and official reporting
mandates supported by replicable, reusable and scientifically accountable decision-ready products [31].

5. Conclusions

Nowadays, petabytes of EO data and geospatial information are freely and openly available from
different data holdings. Combined with open source analytical tools for efficiently and effectively
storing, managing and analyzing these data are leading an increasing number of countries to use
EODC and ARD to derive useful information and new insights on environmental changes to inform
policies and support decision-making.

Essential variables can play an important role in providing necessary information on key elements
to adequately describe different components of the Earth system. Moreover, they can also significantly
contribute to high-level policy frameworks such as the SDGs. Consequently, it is necessary to understand
how to generate EVs on a regular basis.

In this paper, we reviewed EVs in the climate, biodiversity and water domains and produced a
comprehensive list of EVs that can take advantage of consistent time-series satellite data. Through
various examples, we demonstrated the applicability of EODC to derive EVs and how they can be used
both at the local and at the national scales for environmental monitoring. The initial implementation
has shown that it is technically feasible, enabling the rapid production of different EVs and benefiting
from the spatial and temporal dimension of satellite EO data. However, further work is needed to better
understand how to derive EVs using in-situ and or modeled data used in combination with satellite data.
We practically demonstrate the objectives of EV to have a high impact, high feasibility and relatively
low cost of implementation and such work can be a contribution to the new GEO Initiative on Essential
Variables (http://earthobservations.org/documents/gwp20_22/geo_essential_variables_ip.pdf).

To conclude, we think that EODC represents a valuable opportunity to strengthen environmental
monitoring systems, facilitating the production of essential information in a consistent and comparable
manner to support evidence-based policy-making.
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