
data

Article

The Hierarchical Classifier for COVID-19 Resistance Evaluation

Nataliya Shakhovska , Ivan Izonin * and Nataliia Melnykova

����������
�������

Citation: Shakhovska, N.; Izonin, I.;

Melnykova, N. The Hierarchical

Classifier for COVID-19 Resistance

Evaluation. Data 2021, 6, 6.

https://doi.org/10.3390/data6010006

Received: 29 October 2020

Accepted: 11 January 2021

Published: 15 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Artificial Intelligence, Lviv Polytechnic National University, 5 Kniazia Romana str.,
79000 Lviv, Ukraine; nataliya.b.shakhovska@lpnu.ua (N.S.); nataliia.i.melnykova@lpnu.ua (N.M.)
* Correspondence: ivan.v.izonin@lpnu.ua; Tel.: +38-098-888-96-87

Abstract: Finding dependencies in the data requires the analysis of relations between dozens of
parameters of the studied process and hundreds of possible sources of influence on this process.
Dependencies are nondeterministic and therefore modeling requires the use of statistical methods for
analyzing random processes. Part of the information is often hidden from observation or not moni-
tored. That is why many difficulties have arisen in the process of analyzing the collected information.
The paper aims to find frequent patterns and parameters affected by COVID-19. The novelty of the
paper is hierarchical architecture comprises supervised and unsupervised methods. It allows the
development of an ensemble of the methods based on k-means clustering and classification. The best
classifiers from the ensemble are random forest with 500 trees and XGBoost. Classification for sepa-
rated clusters gives us higher accuracy on 4% in comparison with dataset analysis. The proposed
approach can be used also for personalized medicine decision support in other domains. The features
selection allows us to analyze the following features with the highest impact on COVID-19: age, sex,
blood group, had influenza.

Keywords: classification; clustering; COVID-19; data analysis; data visualization; feature selection

1. Introduction

The trend of the disease in most countries of the world and Ukraine continues to
deteriorate [1]. The nature of the increase in the number of sick people changed from
linear in May–August 2020 to a clear exponential in September–October this year. During
October–November, the situation threatens to become extremely difficult, especially for the
country’s medical system.

The difficulty in analyzing and forecasting the spread of COVID-19 is the indisputable
difference between real data and official statistics published by the National Health Service
of Ukraine [2], the National Security and Defense Council of Ukraine, and other sources.
The main reasons for this are the following:

• The number of tests in Ukraine is insufficient to identify a real picture of the spread
of the disease [3], which doubt the adequacy of the data, especially at the beginning
of the epidemic—during the first—quarantine period. For comparison, according to
the WHO report dated 3rd September 2020, 1 million 621 thousand 697 tests were
performed in Ukraine, which is 0.48 tests per 1000 population. In the United States,
2.19 tests were performed per 1000 population. In the UAE, testing reaches almost
8 tests per 1 thousand of population. In Germany, 1.68 tests were performed per
1000 population.

• Many people, recognizing well-known symptoms, do not rush to report it to their
doctor, but are treated on their own, continuing to spread the disease, and, accordingly,
with a successful recovery, do not get into the official statistics.

• The rate of increase or decrease in daily morbidity should primarily depend on the
actual number of active patients. However, it is also necessary to take into account
the insufficient amount of laboratory tests, which does not allow timely diagnosis,
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insufficient effectiveness of diagnostic methods, which also reduces the reliability of
official data [4].

Even though intelligent machine learning algorithms [4], neural networks [5], and
SARIMA-type models [6] used in research are able to determine certain “patterns” and
trends in the behavior of the studied phenomena, it is impossible to obtain a high accuracy
prediction under the above circumstances [5]. It can only indicate the defining trends and
patterns of disease spread.

That is why the aim of the paper is to find frequent patterns and to find parameters
affected by COVID-19. Our approach consists of a hierarchical classifier as comprising
supervised and unsupervised methods.

The main contribution of this paper can be summarized as follows:

− a dataset from three countries (Ukraine, Germany, and Belarus) was collected, which
allowed a more in-depth analysis and generalization;

− hypothesis that patients with blood group II are more vulnerable to COVID-19;
− the features affected by COVID-19 cases were selected based on machine learning

algorithms and comparison of their results;
− the proposed hierarchical classifier based on the combined use of unsupervised and

supervised machine learning algorithms provide higher accuracy on 4% in comparison
with random forest and XGBoost algorithms.

Thus, the frequent pattern for COVID-19 resistance can be found. The proposed
approach can be used also for personalized medicine decision support in other domains.
The developed pattern of resistance patient to COVID-19 allows more accurate estimation
of new cases based on traditional models such as SSIR, SEIR, SARIMA, etc.

The structure of the paper is following. Section 2 represents the literature review and
approach for the spread of virus modeling. The dataset description is given in Section 3.
Section 4 represents the estimation of quality metrics for the existing clustering method.
Next, the novel approach based on an ensemble of the clustering and classification methods
is developed. Section 5 reports the results of the proposed approach. The conclusion
underlines the novelty of the proposed approach.

2. Literature Review

COVID-19 is known to be one of the influenza virus variants [6]. When ingested,
specific antibodies (Ig) are produced that are intended to combat the virus and are major
markers in the study that are capable of showing whether the virus is present in the
body. Thus, predominantly the presence of viruses in the blood indicates the presence of
specific IgG, and the sign of a transmitted viral infection is the presence in the body of
IgM [7]. However, the appearance of these and other specific immunoglobulins may be
associated with the transmission of a history of other types of viral infection, the preliminary
vaccination against influenza, including tuberculosis.

The main idea is to analyze rapid tests and answers in the questionnaire: was/were
vaccinated against influenza, tuberculosis, and whether they were ill with influenza/
tuberculosis this year. Additionally, a person should indicate which blood group they
have. Compared to other regions or countries, it will probably reveal the causes of different
incidence of COVID-19 in different countries.

The main methods used to build a predictive model and calculate the spread of
COVID-19 virus are the following:

• data mining [8];
• principle of similarity in mathematical modeling [9];
• correlation analysis [10];
• regression analysis [11].

Autoregressive integrated moving average, or ARIMA, is one of the most widely
used forecasting methods for univariate forecasting of time series data [12]. Although the
method can handle trending data, it does not support seasonal component time series [13].
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The ARIMA extension that supports direct modeling of the seasonal component of the
series is called SARIMA [14]. The problem with ARIMA is that it does not support seasonal
data. This is a time series with a repeating cycle. ARIMA expects data that is not seasonal
or has a seasonal component removed, for example, seasonally adjusted using techniques
such as seasonal variance.

Seasonal autoregressive integrated moving average, SARIMA or seasonal ARIMA,
is an extension of ARIMA that explicitly supports univariate time series data with a sea-
sonal component [15]. It adds three new hyperparameters for specifying autoregressive
(AR), difference (I), and moving average (MA) for the seasonal component of the series, as
well as an additional parameter for the seasonality period. The seasonal ARIMA model is
formed by including additional seasonal terms in ARIMA [16]. The seasonal portion of the
model consists of terms that are very similar to the non-seasonal components of the model,
but include reverse shifts of the seasonal period [17].

The special methods for virus modeling are analyzed in [18]. The biggest problem is
the uncertainty of the available official data, especially regarding the real initial number of
infected (cases), which can lead to ambiguous results and inaccurate forecasts for the order,
which was also pointed out by other investigators.

That is why the agent approach is combined with the SEIR-model in [19]. The fol-
lowing agents are used: person, house, business, government, healthcare system. The
COVID-ABS approach was capable to effectively simulate social intervention scenarios.
However, it is impossible to find the source of spread of virus.

The task of finding dependencies in the data requires the analysis of dependencies
between dozens of parameters of the studied process and hundreds of possible sources
of influence on this process. Dependencies are nondeterministic and therefore modeling
requires the use of statistical methods for analyzing random processes [20]. Part of the in-
formation is often hidden from observation or not monitored. That is why many difficulties
have arisen in the process of analyzing the collected information.

Today, the developed methods of statistical analysis allow working with partially
uncertain or vague processes. However, the available methods have significant limitations
in the scope and data types.

The purpose of the paper is to find the dependence between individual parameters of
separated responder (age, sex, blood group, etc.) and COVID-19 resistance. The frequent
pattern of resistant people based on this dependence should be developed. The travel
restriction, isolation, quarantine, lock down, and social distancing are not taken into
account. That is why we do not use the SEIR model, which allows to predict the number of
new cases.

Thus, all the above factors may adversely affect the conduct, interpretation, and gener-
alization of research results and the understanding and interpretation of the phenomenon
under study.

3. Dataset Description

The dataset [21] is collected using Google form (Appendix A), is funded by the Central
European Initiative, and verified by Lviv regional center COVID’19 resistance. The project
Stop COVID-19 [22] has use case, implemented in Ukraine and Belarus. Partners from
Germany shared Google form too and helped in data collection. The dataset is collected data
over the period from 1 September to 29 October. The dataset provides data of COVID-19
unconfirmed and confirmed cases [21].

This dataset consists of the following characteristics:

• Age (categorical): 1:<15, 2: 16–22, 3: 23–40, 4: 41–65, 5: >66;
• Sex (categorical): male, female;
• Region (string): Lviv (Ukraine), Chernivtsi (Ukraine), Belarus, Germany, Other;
• Do you smoke (Boolean): 2: yes, 0: no;
• Have you had COVID (categorical): 2: yes, 0: no, 1: maybe;
• IgM level (numerical): [0..0.9) (negative), [0.9..1.1) (indefinite), ≥1.1 (positive);
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• IgG level (numerical): [0..0.9) (negative), [0.9..1.1) (indefinite), ≥1.1 (positive);
• Blood group (categorical): 1, 2, 3, 4;
• Do you vaccinate for influenza? (categorical): 2: yes, 0: no, 1: maybe;
• Do you vaccinate for tuberculosis? (categorical): 2: yes, 0: no, 1: maybe;
• Have you had influenza this year? (categorical): 2: yes, 0: no, 1: maybe;
• Have you had tuberculosis this year? (categorical): 2: yes, 0: no, 1: maybe.

Characteristics IgG and IgM represent the result of rapid tests and anti-SARS-CoV-2
IgG and IgM kits. The number of IgG and IgM antibodies is different for different times
after infection. That is why not only categorical meaning (positive, indefinite, or negative),
but also exact values of these attributes are taken into account.

A total of 313 responses are presented in the dataset. Thirty-eight rows have
empty values.

4. Materials and Methods

In predictive analytics machine learning methods, in particular, neural networks, are
often mentioned [23]. However, in this case, the effectiveness of their use will be small.
The main reason is that machine learning models are worthwhile in the case of stationary
processes. It is assumed that future forecasting data are described by the same distribution
as the training data. However, the growth of detected cases of coronavirus is a significantly
non-stationary process. In addition, to identify complex patterns by machine learning
methods, it is necessary to have large enough training samples with a sufficient number of
informative features, such as patient conditions, behavior in different regions, attendance at
different institutions, and so on. Currently, such features are analyzed by various specialists
and when such data are widely available, machine learning methods will be able to show
their effectiveness [3,4,8].

In our point of view, models that combine available data and expert opinion are
effective. These can be parametric models, i.e., models that describe the process of coro-
navirus spread using some formula with parameters. The values of these parameters
should describe the available data by the selected model. In the simple case, if the time
derivative of the number of coronavirus cases is proportional to the total number of cases,
then the solution of such diffraction is described by an exponential function. In logarithmic
scale, we obtain a linear dependence, the parameters of which can be found by the method
of least squares. However, the exponential nature of the number of detected cases can
describe the process only for a certain period of time, the number of cases is limited by the
number of people who can potentially catch the virus. Thus, after some time, the pandemic
should end, and the number of cases should reach saturation. This process can be modeled
using a logistic curve.

It is also important to assess the uncertainty of the forecast, the limits of changes in
forecast values. One of the beneficial approaches, in our opinion, is the usage of Bayesian
inference, which are based on Bayesian theorem [24]. The least squares method makes
it possible to find constant coefficients for the models and, accordingly, some predicted
value. With the help of Bayesian regression, it is possible to find distributions for model
parameters and accordingly estimate the uncertainty of forecasting, which is important for
a small amount of data.

Thus, the results of Bayesian inference prediction can be seen as a compromise between
historical data and expert opinion, which is important for cases with small dataset. The
logistics curve model can be useful when distribution has exponential growth of detected
coronavirus cases.

Analysis of the spread of the COVID-19 epidemic in different countries shows the
different nature of virus affection [25]. That is why our idea is to find parameters that affect
the spread of the COVID-19 epidemic.
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4.1. Data Preprocessing

First, the data preprocessing is provided. The main assumption of the analysis: all who
filled out the form were either ill or had symptoms. The data distribution is analyzed.

RStudio is used for data analysis. By using packages factoextra, cluster, corrplot,
and caret, the biggest part of the methods was implemented.

The instances selection is based on data distribution.
The distribution of dataset characteristics is given in Table 1. Frequency of <15 age is

lower than 0.013. That is why 4 rows are deleted. Sex distribution is relatively the same.

Table 1. Age, sex, region and COVID distribution.

# Age n

1 23–40 124
2 40–65 84
3 16–22 82
4 >65 19
5 <15 4

# Sex n

1 Male 178
2 Female 135

# Region n

1 Ukraine, Lviv 159
2 Ukraine, Chernivtsi 67
3 Belarus 56
4 Germany 27
5 others 4

# COVID n

1 yes 105
2 no 100
3 maybe 78

Distribution based on blood group is presented in Figure 1. Confirmed cases distribu-
tion by blood group is the following: 1 group—58, 2 group—76, 3 group—18, 4 group—15.
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The next assumption is the correlation between features (Figure 2) for seeking persons
and persons with unknown diagnose.

Figure 2. Correlation matrix.

The presented correlation matrix shows lack of dependent parameters for the whole
dataset. The target attribute COVID is clearly not defined by features.

Spectral decomposition, which examines the covariance/correlation between vari-
ables, is developed using principle component analysis (PCA). The dependence between
variables is given in Figure 3. Positively correlated variables point to the same side of the
plot. Negatively correlated variables point to opposite sides of the graph. Therefore, the cor-
relation between COVID and age, sex, blood group, vaccinated tuberculosis, had influenza
is presented.

Figure 3. The dependence between variables.

The next step is clustering and data analysis inside clusters.
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4.2. Cluster Analysis
4.2.1. COVID-19 Dataset Clustering

Clustering methods require finding the distance between instances. That is why one-
hot-encoding is used for categorical data transformation to numerical data for clustering.

First, we try to find clusters and use these clusters for future analysis. The first method
is k-means algorithm with 4 clusters estimated by gaps-statistics [26]. Visualization of
k-means shows intersection between clusters (Figure 4). This requires the future analysis.

Figure 4. k-means visualization.

The tendency of clustering is analyzed. Hopkins statistics (H) [27] shows that data
distribution is not uniform. That means the data are good for clustering:

H = 0.5940309. (1)

4.2.2. Analysis of Each Cluster

The next step is to analyze each cluster separately (Figure 5).
As you can see, the distributions in different clusters are completely different to

each other: not only median values differ, but also the spread of values. However, it is
worth mentioning that “box-and-whiskers diagrams” are most informative when the data
distribution is normal or close to normal. Cluster 2 consists of only men, and cluster 4
consists of only women. Persons vaccinated against influenza are presented only in
cluster 3.

Next, cluster objects distribution by parameters is given (Figure 6). Cluster 3 has the
biggest number of confirmed cases. The most frequent is blood group 2. This fact confirms
the hypothesis that patients with blood group II are more vulnerable to COVID-19 for the
mentioned dataset. The smallest number of confirmed cases is given in cluster 4.

The visualization of the clusters distribution by blood group shows outliers in clusters 1
and 2 (blood group 3), in cluster 3 (blood group 1), and uniform distribution of persons
with blood group 1–3 in cluster 4.
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Figure 5. Cluster objects distribution: (a) by age; (b) by blood group; (c) by sex; (d) by
vaccinated influenza.
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Figure 6. Cluster objects distribution by blood group.

4.3. Classification

We try to build the classifier for the whole dataset. The target variable will be “Have
you had COVID”, the rest of variables will be features.

First, the decision tree is built (Figure 7).

Figure 7. Decision tree visualization.

The accuracy is equal to 0.5135. However, this model allows choosing the main
features as following “Have you had influenza this year”, sex, blood group, region.

Besides the feature selection based on PCA and decision tree shows the different result
(Figures 3 and 7), the random forest model will be developed based on all features and
grouping features (Figure 3). Five hundred trees with 3 variables tested at each split are
built. Mean of squared residuals (MSR) account for dispersions of the actual value of target
variable and the estimated value of the target variable derived from linear regression (thus
considering the meant of target variable). MSR for the whole dataset and selected features
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are equal to 0.5067292 and 0.5736409, respectively. Thus, all features are taken into account
for future analysis.

Out-of-bag measuring (OOB) is the prediction error of random forests, boosted de-
cision trees, and other machine learning models utilizing bagging to sub-sample data
samples used for training. OOB is the mean prediction error on each training sample xi,
using only the trees that did not have xi in their bootstrap sample. OOB rate is equal to
16.61%. The confusion matrix is given in Table 2.

Table 2. Confusion matrix.

0 1 2 Class Error

0 153 9 17 0.14525139
1 8 88 12 0.18518518
2 1 3 20 0.16666666

The biggest error is for class 1 (COVID—yes). It can be explained by differences in
IgG and IgM representation (data scatter is between 0.00 and 18.00) in different countries.

The minimal depth values for all trees in a random forest are given in Figure 8.

Figure 8. Distribution of minimal depth of developed trees.

The x-axis ranges from zero trees to the maximum number of trees. In each tree, any
variable was used for 500 splitting. Therefore, the maximum depth in created trees is for
vaccinated influenza. The first level in the biggest part of “poor classifiers” is presented
by IgG.

To further explore variable importance measures, we pass our forest to measure
importance function and get the following data frame (Table 3). Age and blood group are
the most frequent roots.

Figure 9 represents the plot of selected measures of importance of variables in a forest.
The correlation between mean_min_depth and times_a_root is found. From this fact, we
conclude that the attributes age and blood type are the most influential on the analysis of
the incidence of COVID-19.
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Table 3. Data frame based on the random forest algorithm.

# Variable Mean_Min Depth Times_a_Root

1 Age 1.511688 112
2 Blood group 1.620000 111
3 Sex 1.723688 53
4 Had influenza 1.727688 92
5 Smoke 2.030000 79
6 Vaccinated influenza 2.372752 25

7 Vaccinated
tuberculosis 2.164000 28Data 2021, 6, x FOR PEER REVIEW 12 of 18 
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After selecting a set of most important variables (Table 4), we can investigate inter-
actions relatively, i.e., splits appearing in maximal subtrees in accordance with selected
variables. To extract the names of 5 most important variables according to both the
mean minimal depth and number of trees in which a variable appeared, we have the
following result.

Table 4. Most important variables.

# Region

1 Age
2 IgG
3 Blood group
4 Had influenza
5 IgM

Naive Bayes shows the density for each features in the dataset (Figure 10). The accuracy
of naive Bayes is much less than random forest and is equal to 67%. Figure 9 visualizes the
marginal probabilities of predictor variables in the given class.
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Figure 10. Naive Bayes plot of density by parameters: (a) had influenza; (b) vaccinated tuberculosis; (c) vaccinated influenza;
(d) smoke.

Next step, neural network classification is used. The architecture of the neural network
is the following:

• 1 hidden layer and 7 neurons in hidden layer,
• Biases are used,
• Backpropagation as learning algorithm,
• logistic activation function.

The accuracy is equal to 82%.
The following classifiers are used for COVID-19 classification too:

1. Support vector machine with lineal kernel shows the accuracy equal to 60.5%.
2. Logistic regression for numerical data shows Akaike information criterion (AIC):

37.471. The accuracy is equal to 55.3%.

At the next step of analysis, each classifier is evaluated for:

• whole dataset,
• dataset by countries,
• selected features,
• each cluster separately.

Results of models’ accuracy are given in Tables 5 and 6.

4.4. Hierarchical Classifier

The importance of variables is different for different methods. It means that depen-
dence between parameters is supported only for part of the dataset. That is why we propose
to find the dependence for separated clusters and use this dependence for classification.

We propose the hierarchical classifier as a two-stage algorithm for data prediction.
The first stage is clustering; the next stage is classification model building for each
separated cluster.

Besides, the hierarchical classifier built on ensemble of k-means and XGBoost shows
the best accuracy for clusters 1, 2, and 4. K-means together with random forest is not
dominated by the rest of the models in cluster 3. All “poor” classifiers show better accuracy
for separated clusters than for the whole dataset.
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Table 5. Models’ accuracy for whole features.

Model Full
Dataset

Filtered by
Ukraine

Filtered by
Belarus

Filtered by
Germany Cluster 1 Cluster 2 Cluster 3 Cluster 4

Logistic
regression 0.553 0.572 0.534 0.544 0.601 0.592 0.610 0.589

Support
vector

machine
0.605 0.6327 0.570 0.584 0.621 0.694 0.635 0.637

Naive
Bayes 0.670 0.693 0.655 0.655 0.674 0.693 0.672 0.692

XGBoost 0.898 0.932 0.860 0.942 0.941 0.945 0.899 0.957
Random

forest 0.897 0.924 0.859 0.940 0.932 0.944 0.961 0.925

Neural
network 0.820 0.849 0.828 0.79 0.830 0.849 0.8204 0.849

Decision
tree 0.513 0.542 0.517 0.492 0.553 0.631 0.612 0.642

Table 6. Models’ accuracy for selected features.

Model * Age, IgG, Blood_Group,
Had_Influenz, IgM

Age, Sex, Blood_Group,
Had_Influenz

Logistic regression 0.633 0.671
Support vector machine 0.671 0.722

Naive Bayes 0.674 0.732
XGBoost 0.935 0.945

Random forest 0.945 0.934
Neural network 0.832 0.845

Decision tree 0.553 0.631
* Optimal parameters for the investigated methods are shown in Table A2.

Therefore, the hierarchical classifier is built as following:

1. Using gaps-statistics, the appropriative number of clusters is found. This number is
equal to four;

2. k-means divides objects by 4 groups; density of distribution is calculated;
3. XGboost and random forest are used for each cluster separately;
4. Hard voting on the obtained results is provided. Based on it, the class with the highest

number of votes will be selected. If votes are the same, the result of the classifier with
minimal depth value will be selected.

The accuracy of the hierarchical classifier is given in Table 7.

Table 7. The accuracy of the hierarchical classifier.

Model Cluster 1 Cluster 2 Cluster 3 Cluster 4

Hierarchical
classifier 0.941 0.945 0.961 0.957

XGBoost and random forest algorithms give the high accuracy for the model based on
selected features too, but less in comparison with the hierarchical classifier.

5. Conclusions

Thus, it is shown that the study of COVID-19-resistance is now in high demand.
Our approach consists of a hierarchical classifier and dependence between COVID-19
resistance and patient’s features estimation. The dataset was collected in different countries
and at 29.10.2020 contains 313 observations.
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The novelty of the paper is the hierarchical classifier based on the combined usage of
unsupervised and supervised machine learning algorithms. The “poor” classifiers based
on k-means results are evaluated. The hierarchical classifier is built on k-means, random
forest with 500 trees, and XGBoost. Classification for separated clusters gives us higher
accuracy on 4% in comparison with dataset analysis. The proposed approach can be used
also for personalized medicine decision support in other domains.

The hypothesis that patients with blood group II are more vulnerable to COVID-19 is
approved for the collected dataset. This fact can be used in further research.

The features selection allows us to analyze the following features with highest impact
to COVID-19: age, sex, blood group, had influenza.

The developed pattern of resistance patient to COVID-19 allows more accurate esti-
mation of new cases based on traditional models such as SSIR, SEIR, SARIMA, etc.

Among the prospects for further research, it is planned to analyze the effectiveness
of various ensembles of artificial neural networks to improve the accuracy of solving the
classification problem.
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Appendix A

Table A1. Statistics of the collected dataset.

Age Sex Region Smoke

Min.: 1.000
Max.: 5.000

1st Qu.: 2.000
Median: 2.000
Mean: 2.207

3rd Qu.: 3.000

Min.: 1.00
Max.: 2.00

1st Qu.: 1.00
Median: 1.00
Mean: 1.46

3rd Qu.: 2.00

Length: 198
Class: character
Mode: character

Min.: 0.000
Max.: 2.000

1st Qu.: 0.000
Median: 0.000
Mean: 0.474

3rd Qu.: 0.000
Covid IgM IgG Blood group

Min.: 0.000 Min.: 0.000 Min.: 0.000 Min.: 1.000
Max.: 2.000 Max.: 9.800 Max.: 123.300 Max.: 4.000

1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.: 2.000
Median: 1.000 Median: 2.250 Median: 2.625 Median: 2.000
Mean: 1.106 Mean: 2.731 Mean: 41.760 Mean: 2.145

3rd Qu.: 2.000 3rd Qu.: 4.825 3rd Qu.: 99.675 3rd Qu.: 3.000
Vaccinated influenza Vaccinated tuberculosis Had influenza

Min.: 0.000 Min.: 0.00 Min.: 0.0000
Max.: 2.0000 Max.: 2.00 Max.: 2.0000
1st Qu.: 0.000 1st Qu.: 1.00 1st Qu.: 0.0000
Median: 0.000 Median: 2.00 Median: 0.0000
Mean: 0.424 Mean: 1.46 Mean: 0.4949

3rd Qu.: 0.000 3rd Qu.: 2.00 3rd Qu.: 1.0000

Table A2. Models’ parameters constructed for the whole dataset.

Model Accuracy Parameters

Logistic regression 0.553

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7055 20.7048 0.082 0.938
Age 1.1441 3.1016 0.369 0.731

IgG −1.8642 6.9744 −0.267 0.802
Blood group −0.3521 14.4088 −0.024 0.982

Had influenza 0.9687 0.5028 1.927 0.126
IgM −0.1306 9.2942 −0.014 0.989

Support vector
machine

0.605

SVM-Type: C-classification
SVM-Kernel: linear; cost: 10; beta0 = −0.5491702; >svmfit$coefs

[,1]
[1,] −0.0351190476
[2,] 0.0009065892

[3,] −0.3970516219
[4,] −0.0062360063

##—Detailed performance results:
## cost error dispersion

## 1 1e − 03 0.25 0.120185
## 2 1e − 02 0.25 0.120185
## 3 1e − 01 0.25 0.120185
## 4 1e + 00 0.25 0.120185
## 5 5e + 00 0.25 0.120185
## 6 1e + 01 0.25 0.120185
## 7 1e + 02 0.25 0.120185
Number of Support Vectors: 144
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Table A2. Cont.

Model Accuracy Parameters

Naive Bayes 0.670 95% CI: (0.4829, 0.7658); No Information Rate: 0.6327; p-Value [Acc > NIR]:
0.5639

XGBoost 0.898
booster = “gbtree”, objective = “binary:logistic”, eta = 0.3, gamma = 0,

max_depth = 6, min_child_weight = 1, subsample = 1, colsample_bytree = 1
test error mean #0.1263

Random Forest 0.897 Type of random forest: classification; Number of trees: 500; No. of variables
tried at each split: 2; OOB estimate of error rate: 31.82%

Neural network 0.820

1 hidden layer and 7 neurons in hidden layer with backpropagation and
logistic activation function

$neurons
$neurons[[1]]

×1 ×2 ×3 ×4 ×5
2 1 0.83886256 0.00 0.02793296 0.03582645 0.1794872
8 1 0.22748815 0.82 0.54748603 0.35181777 0.4487179

11 1 0.09004739 0.92 0.56145251 0.30235390 0.7179487
13 1 0.12322275 0.34 0.83798883 0.50076039 0.9358974

$neurons[[2]]
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

2 1 0.4205161 0.9336224 0.6383656 0.054238905 0.9657629 0.6551819
8 1 0.5645997 0.9994024 0.9742761 0.002255419 0.9983305 0.9231495

11 1 0.5289330 0.9996923 0.9852911 0.001609122 0.9989139 0.9578591
13 1 0.6656213 0.9998608 0.9908708 0.001052506 0.9994693 0.9543330

[,8]
2 0.9310445
8 0.9656552

11 0.9696302
13 0.9684360
$neurons[[3]]

[,1] [,2]
2 1 1.330679e − 4
8 1 3.060782e − 05

11 1 2.867471e − 05
13 1 2.672559e − 05

Decision tree 0.513 95% CI: (0.4829, 0.7658); No Information Rate: 0.6327; p-Value [Acc > NIR]:
0.5639
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Spread of COVID-19 by Using the Modified Multi-Agent Systems—Evidence from the Selected Countries. Results Phys. 2020,
103662. [CrossRef]

5. Izonin, I.; Tkachenko, R.; Verhun, V.; Zub, K. An Approach towards Missing Data Management Using Improved GRNN-SGTM
Ensemble Method. JESTECH, in press. [CrossRef]

6. Jiang, C.; Yao, X.; Zhao, Y.; Wu, J.; Huang, P.; Pan, C.; Liu, S.; Pan, C. Comparative Review of Respiratory Diseases Caused by
Coronaviruses and Influenza A Viruses during Epidemic Season. Microbes Infect. 2020, 22, 236–244. [CrossRef] [PubMed]

7. Charpentier, C.; Ichou, H.; Damond, F.; Bouvet, E.; Chaix, M.-L.; Ferré, V.; Delaugerre, C.; Mahjoub, N.; Larrouy, L.;
Le Hingrat, Q.; et al. Performance Evaluation of Two SARS-CoV-2 IgG/IgM Rapid Tests (Covid-Presto and NG-Test) and One
IgG Automated Immunoassay (Abbott). J. Clin. Virol. 2020, 132, 104618. [CrossRef] [PubMed]

8. Muhammad, L.J.; Islam, M.M.; Usman, S.S.; Ayon, S.I. Predictive Data Mining Models for Novel Coronavirus (COVID-19)
Infected Patients’ Recovery. SN Comp. Sci. 2020, 1. [CrossRef] [PubMed]

https://ourworldindata.org/coronavirus?utm_campaign=Optimizando&utm_medium=email&utm_source=Revue%20newsletter
https://ourworldindata.org/coronavirus?utm_campaign=Optimizando&utm_medium=email&utm_source=Revue%20newsletter
https://nszu.gov.ua/en/novini/oficijnij-sajt-nacionalnoyi-sluzhbi-zdorovya-ukrayini-staye-19
https://www.slovoidilo.ua/2020/09/04/infografika/suspilstvo/pandemiya-koronavirusu-skilky-testiv-zrobyly-ukrayini-ta-inshyx-krayinax-svitu
https://www.slovoidilo.ua/2020/09/04/infografika/suspilstvo/pandemiya-koronavirusu-skilky-testiv-zrobyly-ukrayini-ta-inshyx-krayinax-svitu
https://www.slovoidilo.ua/2020/09/04/infografika/suspilstvo/pandemiya-koronavirusu-skilky-testiv-zrobyly-ukrayini-ta-inshyx-krayinax-svitu
http://doi.org/10.1016/j.rinp.2020.103662
http://doi.org/10.1016/j.jestch.2020.10.005
http://doi.org/10.1016/j.micinf.2020.05.005
http://www.ncbi.nlm.nih.gov/pubmed/32405236
http://doi.org/10.1016/j.jcv.2020.104618
http://www.ncbi.nlm.nih.gov/pubmed/32919222
http://doi.org/10.1007/s42979-020-00216-w
http://www.ncbi.nlm.nih.gov/pubmed/33063049


Data 2021, 6, 6 17 of 17

9. Ivorra, B.; Ferrández, M.R.; Vela-Pérez, M.; Ramos, A.M. Mathematical Modeling of the Spread of the Coronavirus Disease 2019
(COVID-19) Taking into Account the Undetected Infections. The Case of China. Commun. Nonlinear Sci. Numer. Simul. 2020, 88,
105303. [CrossRef] [PubMed]

10. Caruana, G.; Croxatto, A.; Coste, A.T.; Opota, O.; Lamoth, F.; Jaton, K.; Greub, G. Diagnostic Strategies for SARS-CoV-2 Infection
and Interpretation of Microbiological Results. Clin. Microb. Infect. 2020, 26, 1178. [CrossRef] [PubMed]

11. Ghosal, S.; Sengupta, S.; Majumder, M.; Sinha, B. Linear Regression Analysis to Predict the Number of Deaths in India Due
to SARS-CoV-2 at 6 Weeks from Day 0 (100 Cases - March 14th 2020). Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 311–315.
[CrossRef] [PubMed]

12. Yang, Q.; Wang, J.; Ma, H.; Wang, X. Research on COVID-19 Based on ARIMA Model∆—Taking Hubei, China as an Example to
See the Epidemic in Italy. J. Infect. Public Health 2020, 13, 1415–1418. [CrossRef] [PubMed]

13. Petukhova, T.; Ojkic, D.; McEwen, B.; Deardon, R.; Poljak, Z. Assessment of Autoregressive Integrated Moving Average (ARIMA),
Generalized Linear Autoregressive Moving Average (GLARMA), and Random Forest (RF) Time Series Regression Models for
Predicting Influenza A Virus Frequency in Swine in Ontario, Canada. PLoS ONE 2018, 13, e0198313. [CrossRef] [PubMed]

14. Adhikari, R.; Agrawal, R. An Introductory Study on Time Series Modeling and Forecasting. arXiv 2013, arXiv:1302.6613.
15. Ez, M.; Ea, S.; Al, F. A SARIMA Forecasting Model to Predict the Number of Cases of Dengue in Campinas, State of São Paulo,

Brazil. Rev. Soc. Bras. Med. Trop. 2011, 44, 436–440. [CrossRef]
16. Dehesh, T.; Mardani-Fard, H.A.; Dehesh, P. Forecasting of COVID-19 Confirmed Cases in Different Countries with ARIMA

Models. medRxiv 2020. [CrossRef]
17. Martinez, E.Z.; Silva, E.A.S.D. Predicting the Number of Cases of Dengue Infection in Ribeirão Preto, São Paulo State, Brazil,

Using a SARIMA Model. Cadernos de Saúde Pública 2011, 27, 1809–1818. [CrossRef] [PubMed]
18. Anastassopoulou, C.; Russo, L.; Tsakris, A.; Siettos, C. Data-Based Analysis, Modelling and Forecasting of the COVID-19

Outbreak. PLoS ONE 2020, 15, e0230405. [CrossRef] [PubMed]
19. Silva, P.C.L.; Batista, P.V.C.; Lima, H.S.; Alves, M.A.; Guimarães, F.G.; Silva, R.C.P. COVID-ABS: An Agent-Based Model of

COVID-19 Epidemic to Simulate Health and Economic Effects of Social Distancing Interventions. Chaos Solitons Fract. 2020, 139,
110088. [CrossRef] [PubMed]

20. Sakai, H.; Okuma, A. An Algorithm for Checking Dependencies of Attributes in a Table with Non-Deterministic Information:
A Rough Sets Based Approach. In Proceedings of the PRICAI 2000 Topics in Artificial Intelligence; Mizoguchi, R., Slaney, J., Eds.;
Springer: Berlin/Heidelberg, Germany, 2000; pp. 219–229.

21. Shakhovska, N.; Izonin, I.; Melnykova, N. Dataset for Covid’19 Resistance Evaluation from Ukraine, Germany and Belarus.
2020. Available online: https://www.researchgate.net/publication/344954442_Dataset_for_Covid19_resistance_evaluation_
from_Ukraine_Germany_and_Belarus?channel=doi&linkId=5f9aedc8458515b7cfa7ef90&showFulltext=true (accessed on
15 January 2021).

22. Stop Covid’19 Project. Available online: https://covid-72b6d.web.app/results (accessed on 29 October 2020).
23. Markopoulos, A.P.; Georgiopoulos, S.; Manolakos, D.E. On the Use of Back Propagation and Radial Basis Function Neural

Networks in Surface Roughness Prediction. J. Ind. Eng. Int. 2016, 12, 389–400. [CrossRef]
24. Mbuvha, R.; Marwala, T. Bayesian Inference of COVID-19 Spreading Rates in South Africa. PLoS ONE 2020, 15. [CrossRef]

[PubMed]
25. (PDF) CoronaTracker: World-Wide COVID-19 Outbreak Data Analysis and Prediction. Available online: https://www.

researchgate.net/publication/340032869_CoronaTracker_World-wide_COVID-19_Outbreak_Data_Analysis_and_Prediction
(accessed on 27 October 2020).

26. Alok, A.K.; Saha, S.; Ekbal, A. A New Semi-Supervised Clustering Technique Using Multi-Objective Optimization. Appl. Intell.
2015, 43, 633–661. [CrossRef]

27. Shirkhorshidi, A.S.; Aghabozorgi, S.; Wah, T.Y.; Herawan, T. Big Data Clustering: A Review. In Proceedings of the Computational
Science and Its Applications—ICCSA 2014; Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D.,
Apduhan, B.O., Gervasi, O., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 707–720.

http://doi.org/10.1016/j.cnsns.2020.105303
http://www.ncbi.nlm.nih.gov/pubmed/32355435
http://doi.org/10.1016/j.cmi.2020.06.019
http://www.ncbi.nlm.nih.gov/pubmed/32593741
http://doi.org/10.1016/j.dsx.2020.03.017
http://www.ncbi.nlm.nih.gov/pubmed/32298982
http://doi.org/10.1016/j.jiph.2020.06.019
http://www.ncbi.nlm.nih.gov/pubmed/32624404
http://doi.org/10.1371/journal.pone.0198313
http://www.ncbi.nlm.nih.gov/pubmed/29856881
http://doi.org/10.1590/s0037-86822011000400007
http://doi.org/10.1101/2020.03.13.20035345
http://doi.org/10.1590/S0102-311X2011000900014
http://www.ncbi.nlm.nih.gov/pubmed/21986608
http://doi.org/10.1371/journal.pone.0230405
http://www.ncbi.nlm.nih.gov/pubmed/32231374
http://doi.org/10.1016/j.chaos.2020.110088
http://www.ncbi.nlm.nih.gov/pubmed/32834624
https://www.researchgate.net/publication/344954442_Dataset_for_Covid19_resistance_evaluation_from_Ukraine_Germany_and_Belarus?channel=doi&linkId=5f9aedc8458515b7cfa7ef90&showFulltext=true
https://www.researchgate.net/publication/344954442_Dataset_for_Covid19_resistance_evaluation_from_Ukraine_Germany_and_Belarus?channel=doi&linkId=5f9aedc8458515b7cfa7ef90&showFulltext=true
https://covid-72b6d.web.app/results
http://doi.org/10.1007/s40092-016-0146-x
http://doi.org/10.1371/journal.pone.0237126
http://www.ncbi.nlm.nih.gov/pubmed/32756608
https://www.researchgate.net/publication/340032869_CoronaTracker_World-wide_COVID-19_Outbreak_Data_Analysis_and_Prediction
https://www.researchgate.net/publication/340032869_CoronaTracker_World-wide_COVID-19_Outbreak_Data_Analysis_and_Prediction
http://doi.org/10.1007/s10489-015-0656-z

	Introduction 
	Literature Review 
	Dataset Description 
	Materials and Methods 
	Data Preprocessing 
	Cluster Analysis 
	COVID-19 Dataset Clustering 
	Analysis of Each Cluster 

	Classification 
	Hierarchical Classifier 

	Conclusions 
	
	References

