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Abstract: It is recognized that the performance of any prediction model is a function of several
factors. One of the most significant factors is the adopted preprocessing techniques. In other words,
preprocessing is an essential process to generate an effective and efficient classification model. This
paper investigates the impact of the most widely used preprocessing techniques, with respect to
numerical features, on the performance of classification algorithms. The effect of combining various
normalization techniques and handling missing values strategies is assessed on eighteen benchmark
datasets using two well-known classification algorithms and adopting different performance evalu-
ation metrics and statistical significance tests. According to the reported experimental results, the
impact of the adopted preprocessing techniques varies from one classification algorithm to another. In
addition, a statistically significant difference between the considered data preprocessing techniques
is demonstrated.

Keywords: preprocessing; classification algorithms; normalization; missing values; classification
performance; data cleaning

1. Introduction

Data are not always “clean”; the presence of redundant, inconsistent, noisy, and/or
missing data in a dataset indicates that data are not clean and need to be handled before
applying any machine learning algorithm. Data preprocessing is concerned with solving
such issues. In addition, data normalization, discretization, and transformation are data
preprocessing tasks. Thus, data preprocessing is a significant step for Knowledge Discovery
in Database (KDD). More specifically, the performance of machine learning algorithms is
strongly influenced by the adopted preprocessing techniques [1]. Some researchers argue
that adopting particular data preprocessing technique relies primarily on the considered
dataset [2], while others claim that the selection should be based on experiments [3].

With respect to numerical features, data normalization and handling missing values are
considered the main preprocessing issues especially when the adopted classification algorithm
was originally designed to handle numerical features. The reason behind the importance of
the normalization process with respect to the performance of classification algorithms is that
features assigned “small-range” values are dominated by features with “large-range” values;
consequently, the small-range features have no influence on the classification process [4,5].
Results from previous research showed that feature normalization has a significant impact on
classification accuracy [2–4,6–8]. Regarding missing values, the“bad” treatment of missing
data results in a degradation in classification accuracy, especially when the considered dataset
contains a high missing values rate [9–11]. Therefore, handling missing values carefully
during preprocessing is considered a necessary step in order to obtain a high performance
classification model. Much research work has studied the effect of various normalization
techniques or handling missing values strategies on classification performance separately;
however, few works have evaluated the impact of combining normalization and handling
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missing values techniques. In addition, less attention has been given to the effect of different
treatments of missing values or normalization techniques on classification efficiency.

The main motivation for the work presented in this paper is the desire to supply
machine learning researchers and users with recommendations regarding the preprocessing
techniques to be adopted in order to obtain high performance classification models. Thus,
this paper investigates the impact of combining several preprocessing techniques, related
to normalization and dealing with missing values, on the performance of classification
algorithms.

In this research, three well-known normalization techniques: (i) min-max normaliza-
tion, (ii) Z-score normalization, and (iii) decimal scaling normalization are evaluated. With
respect to handling missing values, for numeric dimensions, three well-known strategies
are evaluated: (i) discarding instances that include missing values, (ii) replacing missing
values with the feature mean, and (iii) using the k-Nearest Neighbor (kNN) algorithm
to replace missing values. Two alternative classification algorithms are considered to
generate the prediction models after applying the preprocessing techniques: (i) Support
Vector Machines (SVMs) and (ii) Artificial Neural Networks (ANNs). As a result, nine
variations of preprocessing combinations are evaluated for each classification algorithm. It
is worth noting here that some classification algorithms were originally designed to handle
numerical data, for example kNN and SVM. However, such algorithms can be adapted
to handle categorical data. Other classification algorithms were originally designed to
handle categorical data; examples include decision tree, naive Bayes, and rule based classi-
fiers. However, such algorithms can be adapted to handle numerical data. In the research
presented in this paper, classification algorithms that were originally designed to handle
numerical data are considered. It is expected that these algorithms will be affected by the
normalization process due to: (i) being originally designed to handle numerical features
(the nature of the algorithm) and (ii) applying some calculations on numerical features, like
distance computation.

In order to determine if one technique significantly outperforms another (others), the
Friedman statistical test [12] and the Nemenyi post-hoc test [13] have been applied. From
the foregoing, the objectives of the work presented in this paper can be summed up as
follows:

• We evaluate the effect of combining several preprocessing techniques, applied to
numerical features, on the performance of classification algorithms.

• We find the optimal combination of preprocessing techniques, with respect to the
numerical values, that results in more accurate classification.

The above-mentioned objectives can be articulated by the following big question:
“What are the most convenient techniques that can be adopted to produce high performance
classification models in terms of classification effectiveness and efficiency?”

The remainder of this paper is organized as follows: Section 2 provides the required
background to the work described in this paper and discusses the previous work that
studied the effect of preprocessing techniques on the performance of classification models.
Section 3 describes the datasets that have been used to evaluate the considered prepro-
cessing techniques. Section 4 presents the adopted experimental methodology. Section 5
presents and discusses the obtained results. Finally, Section 6 concludes the discussion and
provides directions for further work.

2. Related Work

This section provides a review of preprocessing techniques, normalization, and han-
dling missing values with respect to numerical attributes. In addition, the section presents
a summary of related work on the effect of preprocessing techniques on the performance
of classification algorithms. The section is organized as follows: Section 2.1 provides an
overview of data normalization techniques, while Section 2.2 presents an overview of the
missing values problem and the most common ways to deal with it. A summary of the
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previous related work on the effect of preprocessing techniques on the performance of
classification algorithms is presented in Section 2.3.

2.1. Normalization

Data normalization is a preprocessing technique applied to numerical features be-
fore applying classification or clustering algorithms that are mainly designed to handle
numerical features. The reason behind the importance of the normalization process is to
avoid a number of the considered features concealing the effect of others, particularly when
features have different varying ranges. On the other hand, selecting the normalization
technique and normalization range (interval) is considered a significant step during the
preprocessing stage, due to the “change” that affects the considered data and consequently
the results of the machine learning algorithm that will be applied after preprocessing [3].
The most widely used data normalization techniques are [5]:

• Min-max normalization: This is one of the most common techniques to normalize
data, in which values for the considered feature are transformed to new smaller ones
within a predefined interval, usually [0–1] is adopted [5]. It is recognized that min-
max normalization maintains all the relationships in the considered data [6]. Each
value in the considered feature is mapped to a new normalized value according to the
following equation [5]:

v′ =
v−minA

maxA −minA
(new_maxA − new_minA) + new_minA (1)

where v′ is the new normalized value, v is the original value for the given feature,
maxA is the maximum value for the given feature A, minA is the minimum value for
the given feature A, while new_maxA and new_minA represent the maximum and
minimum values for the new considered range.

• Z-score normalization: This is a statistical normalization technique that handles the
outlier issue [5]. The mean and standard deviation for the considered feature are used
to transform the feature values. More specifically, values for the considered feature
are transformed into new normalized values by applying the following equation [5]:

v′ =
v− µ

σ
(2)

where µ is the mean value of the designated feature and σ is the standard deviation of
the considered feature. Applying the Z-score normalization technique, values below
the mean appear as negative numbers, values above the mean as positive numbers,
while values that are exactly equal to the mean are mapped to zero.

• Decimal normalization: This is a normalization technique that normalizes the desig-
nated feature by moving the decimal point of the feature values, where the maximum
absolute value of the considered feature determines the decimal point movement.
Each value in the designated feature is mapped to a new normalized value according
to the following equation [5]:

v′ =
v

10j (3)

where j is the smallest integer to get max (|v′|) < 1.

2.2. Handling Missing Values

Missing data are recognized as one of the significant issues that should be handled
carefully during the preprocessing stage, before applying machine learning algorithms, to
obtain effective machine learning models. In practice, a dataset may contain missing data
that are generated due to several reasons such as human errors, equipment faults, data
unavailability (some people reject providing a value for specific features), and data not being
up-to-date or inconsistent with other existing data (consequently removed). In addition,
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the detection of a data anomaly can be considered a reason for missing values, where the
anomalous values are deleted and replaced with new values using a repairing mechanism [14].
The rates of missing values can be categorized as follows [15]:

1. “Trivial”, where 1% of the data are missing.
2. “Manageable”, where 1–5% of the data are missing.
3. “Sophisticated”, where 5–15% of the data are missing; therefore sophisticated methods

are required to handle this.
4. “Severe”, more than 15% of the data are missing; thus, the serious influence of any

applied technique would be noted.

In this paper, all rates were used in the experiments and taken into consideration.
According to the literature, the most widely used strategies to deal with missing values
are [5,15–17]:

1. Deleting an instance: Instances with missing values for at least one feature are deleted
(ignored); this technique is the default option to deal with missing values with respect
to many statistical packages [18,19].

2. Filling manually: The missing values are filled manually; therefore, it is considered
not efficient and not feasible especially when handling datasets that include a high
missing values rate.

3. Replacing with a global constant: A global value is utilized to fill in the missing values
such as “unknown”.

4. Replacing with the mean: The mean for a specific feature is used to fill in any missing
values for that feature; this technique is also referred to as “maximum likelihood” [20].
Several variations of this technique are available. One variation utilizes the feature
mean for all instances belonging to the same class label instead of the mean of all
instances to fill in missing values.

5. Using a prediction model: The decision tree, regression, and Bayesian models can
be adopted to predict the missing values. Recent studies have used deep neural
networks to repair data because neural networks can handle natural data that include
missing values perfectly [21].

6. Adopting an imputation procedure: The missing values are estimated based on a specific
procedure, the most widely used procedure being k-Nearest Neighbor (kNN). Adopting
the kNN procedure, missing values are imputed according to the most similar instances,
where the distance measure (such as the Euclidean or Manhattan distance) is used to
determine the most similar instances. Moreover, the repairing mechanisms adopted for
handling anomalous data can be considered as one of the imputation procedures that
exploit observations of the same data features in nearby locations [14]. Note here that
Points 4, and 5 can be considered as imputation processes and coupled with this point.

7. Adopting multiple imputation procedure: Multiple simulated variations of the con-
sidered dataset are produced and analyzed; after that, the results are joined together
in order to output the inference [16].

Among the previous strategies, discarding an instance, replacing with the mean, and
kNN imputation are considered the most common strategies for dealing with missing
values and also available in most data mining tools. Thus, those techniques are considered
in the work presented in this paper.

2.3. Previous Work on the Impact of Preprocessing Techniques on the Performance of
Classification Algorithms

This section discusses the previous work that studied the effect of preprocessing
techniques on the performance of classification models. Many techniques have been
proposed to normalize data and deal with missing values. Several experimental studies
tried to find the “best” technique to be used before applying classification algorithms;
thus, a better prediction can be obtained. According to the literature, the research on the
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effect of preprocessing techniques on the performance of classification algorithms can be
summarized as follows:

1. Each research work evaluated various data preprocessing techniques. More specifi-
cally, some studies evaluated a number of normalization techniques, and some others
evaluated some ways for dealing with missing data. Note here that only one reference
was found by the author that evaluated the effect of normalization and handling
missing values on classification accuracy using only one medical dataset [6]. In this
research work, we focus on the most widely used preprocessing techniques with
respect to numerical variables.

2. Most research works were focused primarily on a specific classification algorithm.
More specifically, with respect to normalization, most experiments were conducted
to evaluate the impact on the performance of Support Vector Machine (SVM) or
Artificial Neural Networks (ANNs) such as the work presented in [3,6,22,23]. On the
other hand, with respect to handling missing values, experiments were conducted
using rule-based, Decision Tree (DT), or kNN classifiers such as the work presented
in [15,16,24].

3. With respect to normalization, the evaluation in most research works was conducted
using a specific dataset such as a hyperspectral dataset [4,22], a medical dataset [3,6,7,25],
or a direct marketing dataset [2]. Only a few researchers have studied the effect of
normalization on classification performance using several general datasets such as the
experimental study presented in [23]. On the other hand, related work on handling
missing values can be categorized into three categories according to the utilized datasets:
(i) research work that utilized datasets with missing values in their original form [26,27],
(ii) research work that utilized datasets with no missing values in their original form
(missing values are generated artificially) [28], and (iii) research work that utilized
datasets with and without missing values in their original form [15].

4. With respect to handling missing values, as noted earlier, instrument failure is con-
sidered one of the main reasons for finding missing values in the datasets. Sensors
are one of the instruments that are subject to failure for several reasons including
environmental factors. Recently, several researchers have directed their research work
toward handling missing or corrupted data resulting from sensor failures [29,30]. The
field of renewable energy forecasting [31,32] is considered an example of this case,
where the data are collected by geographically distributed sensors [33]. In order to
handle the missing values in such datasets, some researchers replaced them with the
mean of the same attribute observed for the same month of the same year at the same
hour [33]. Moreover, linear interpolation, mode imputation, k-nearest neighbors,
and multivariate imputation by chain equations (MICEs) are also used to solve the
missing values problem with respect to renewable energy forecasting [29].

5. Most research works used evaluation measures that evaluate the accuracy of the
classifiers (such as the error rate and accuracy), while efficiency measures were not
taken into consideration (such as model generation time or prediction time).

6. Most research works did not consider statistical tests to rigorously compare the
performance of different preprocessing techniques.

In the context of the work described in this paper, several combinations of normal-
ization techniques and handling missing values strategies are investigated using two
well-known classification algorithms and eighteen benchmark datasets from different disci-
plines and feature various characteristics. Additionally, different evaluation measures and
statistical tests are adopted during the evaluation process.

3. Evaluation Datasets

This section provides a description of the main characteristics of the evaluation
datasets. Eighteen datasets from different disciplines with various numbers of instances,
class labels, and features were taken from the University of California Irvine (UCI) machine
learning repository [34]. Table 1 presents the main characteristics of the evaluation datasets.
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Recall that the research presented in this paper is concerned with the effect of different
preprocessing techniques on classification performance with respect to numerical features;
the considered datasets include at least one numerical feature. In addition, to precisely
study the effect of diverse treatments of missing values on classification performance,
nine of the considered datasets contain missing values (“original missing values”), while
the remaining nine do not. The objective behind choosing datasets with “no missing”
values is to artificially generate various rates of missing values; thus, a deeper and more
comprehensive investigation can be achieved.

Table 1. The evaluation datasets’ description.

Dataset Instance # Classes # Feature # Features Type
(Numerical, Nominal)

Missing Values
(in All, in

Numerical)

Missing Values
Rate (%) Area

Automobile 205 4 25 (15, 10) (59, 57) 1.5 Life
ChronicKidneyDisease 400 2 24 (11, 14) (1012, 778) 9.5 Medicine

Credit Approval 690 2 15 (6, 9) (67, 25) 0.65 Financial
Cylinder Bands 540 2 35 (22, 13) (999, 571) 5.30 Physical

Dermatology 366 6 34 (1, 33) (8, 8) 0.06 Medicine
HCC survival 165 2 49 (26, 23) (826, 475) 10.22 Medicine

Hepatitis 155 2 19 (6, 13) (167, 122) 5.67 Medicine
MammographicMasses 961 2 5 (1, 4) (162, 83) 3.37 Medicine

Thyroid (sick) 3772 2 29 (7, 22) (6064, 5914) 2.17 Medicine
Abalone 4178 28 8 (7, 1) None 0 Wildlife

Ecoli 336 8 7 (7,0) None 0 Biology
PenDigits 10,992 10 16 (16,0) None 0 Computer

Glass 214 6 9 (9, 0) None 0 Physical
Page Blocks 5473 5 10 (10, 0) None 0 Computer
Waveform 5000 3 21 (21, 0) None 0 Physical

Vehicle 846 4 18 (18,0) None 0 Computer
Online Shoppers’ 12,330 2 17 (10, 7) None 0 Business

Purchasing Intention

4. The Adopted Experimental Methodology

This section presents the adopted experimental methodology. Figure 1 summarizes
the entire methodology. As shown in Figure 1, and as recognized, the generation of
classification models commences with acquiring a dataset. Recall that eighteen benchmark
datasets from various disciplines are considered. As noted in the previous section, the
evaluation datasets can be categorized into two categories according to the inclusion of
missing values: original missing values and no missing values. The first step in the adopted
preprocessing strategy is to artificially introduce missing values for datasets that do not
feature missing values. Two different rates are adopted to generate missing values: 10%
sophisticated and 20% severe rates, respectively (see the literature review).

Now, the dataset includes missing values and is ready to be treated using one of
the missing values treatment strategies (deleting instances that include missing values,
replacing missing values with the feature mean, and using the k-Nearest Neighbor (kNN) al-
gorithm). The next step is the normalization process, where the given dataset is normalized
using one of the normalization techniques (min-max, Z-score and decimal). Consequently,
nine alternative data preprocessing combination techniques are applied for each dataset:
(i) Delete&MinMaxcombination technique, (ii) Delete&Z-score combination technique,
(iii) Delete&Decimal combination technique, (iv) Mean&MinMax combination technique,
(v) Mean&Z-score combination technique, (vi) Mean&Decimal combination technique,
(vii) kNN&MinMax combination technique, (viii) kNN&Z-score combination technique,
and (ix) kNN&Decimal combination technique.

After that, the considered classification algorithms (SVM and ANN) are applied to
each dataset variation in order to generate the desired classification model. The final step
in the adopted methodology is the evaluation process in which the performances of the
resulting classification models are compared. Concerning effectiveness evaluation, accuracy
and Area Under the receiver operating Curve (AUC) [35] measures are considered. On
the other hand, model construction time is adopted to evaluate the efficiency. In addition,
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a statistical significance test is applied to the obtained results to ensure a more precise
comparison.

Dataset
No Missing Values

Missing Values

10% 20%

Generating Missing Values
Delete Mean kNN

Handling Missing Values

Min-Max Z-score Decimal

Normalization

SVM ANN
Classification Model Generation

Performance Evaluation

Figure 1. The proposed research methodology for determining the most convenient preprocessing
techniques that can be adopted to produce high performance classification models.

5. Experiments and Evaluation

The well-known Weka data mining tool [36] was used for data preprocessing and clas-
sification models’ generation. All experiments were executed utilizing Intel(R) Core(TM)
i7-4600U CPU@2.10GHz 2.70 GHz with 8 GB RAM memory, running Windows 7 Profes-
sional. Ten-fold Cross-Validation (TCV) was adopted to obtain accurate results. Despite
including average accuracy and average AUC results, the analysis was based on the aver-
age AUC because the AUC is a more precise measure than accuracy for comparing machine
learning algorithms [35,37].

As noted earlier, in total, nine data preprocessing combination techniques are con-
sidered for each dataset with respect to each classification algorithm. In the context of
the dataset with “no missing” values, the nine different data preprocessing combination
techniques are applied to: (i) datasets having 10% missing values generated artificially and
(ii) datasets having 20% missing values generated artificially.

Thus, the obtained results are organized in the following sub-sections as follows:
Section 5.1 presents the obtained results using datasets that originally included missing
values with respect to the nine alternative data preprocessing combination techniques
and the two classification algorithms (ANN and SVM). Section 5.2 presents the obtained
results using datasets that include 10% missing values that were generated artificially
with respect to the nine alternative data preprocessing combination techniques and the
two classification algorithms (ANN and SVM). Section 5.3 presents the obtained results
using datasets that that include 20% missing values (generated artificially) with respect to
the nine alternative data preprocessing combination techniques and the two classification
algorithms (ANN and SVM). Section 5.4 discusses the classification models’ efficiency
based on model generation time.
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5.1. Results Obtained from Datasets Having Missing Values Originally

We commence with the results obtained when using the ANN classification algorithm
coupled with the nine alternative data preprocessing combination techniques. Table A1
presents the results in terms of accuracy and AUC measures. As noted earlier, the discussion
of the results will be based on the AUC measure. Thus, Figure 2 shows the results in
terms of the AUC measure. From the figure, it can be clearly observed that no one data
preprocessing technique outperforms the others for all datasets. In addition, it can be noted
that for most datasets, the obtained results are close, except the HCC survival dataset, where
the delete strategy significantly degrades the classification accuracy regardless of the adopted
normalization technique, the reasons behind this being: (i) the high missing values rate
compared to the remaining eight datasets (see Table 1) and (ii) the distribution of missing
values in the dataset.

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

ANN Classification for the Datasets Having Missing Values Originally

Delete&MinMax Delete&Z-score Delete&Decimal Mean&MinMax Mean&Z-score

Mean&Decimal k-NN&MinMax k-NN&Z-score k-NN&Decimal

Figure 2. The results obtained when using ANN classification for datasets having missing values originally.

The results obtained when using the SVM classification algorithm coupled with the
nine alternative data preprocessing combination techniques are presented in Figure 3,
and the detailed results are tabulated in Table A2. From the figure, we can observe the
significant impact of the adopted preprocessing technique on the classification accuracy
with respect to some datasets, such as the case of the Thyroid dataset where the obtained
AUC results range from 0.500 to 0.833. Another case is the Hepatitis dataset, where the
obtained AUC range was [0.500–0.772]. With respect to the HCC survival dataset, the same
as using the ANN classifier, the delete strategy produced the worst AUC results regardless
of the adopted normalization technique.
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0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

SVM Classification for the Datasets Having Missing Values Originally

Delete&MinMax Delete&Z-score Delete&Decimal Mean&MinMax Mean&Z-score

Mean&Decimal k-NN&MinMax k-NN&Z-score k-NN&Decimal

Figure 3. The results obtained when using SVM classification for datasets having missing values originally.

In order to achieve a more precise evaluation of the effect of different preprocessing
combination techniques on classification effectiveness, statistical tests were applied. Re-
garding the statistical comparison of the nine considered data preprocessing combination
techniques coupled with the ANN classifier, the Friedman test was applied. Figure 4a
shows the reported Friedman test results using SPSS. The Friedman test reported that there
was no significant difference between the nine data preprocessing techniques (X2(2) = 9.826,
p = 0.277). With respect to comparing the nine data preprocessing combination techniques
and SVM classifier, the Friedman test reported a significant difference between the nine
data preprocessing techniques (X2(2) = 19.456, p = 0.013), as shown in Figure 4b. Con-
sequently, the Nemenyi post-hoc test was applied to determine the data preprocessing
combination technique that significantly outperformed the others. When applying the
Nemenyi post-hoc test, two models are significantly different if the difference of their mean
rank is higher than or equal to the Critical Difference (CD) [13]. The CD is calculated
according to the following Equation [37].

CD = qα

√
k(k + 1)

6N
(4)

where qα is the confidence level, k is the number of models, and N is the number of datasets.
With respect to our comparison, k = 9, N = 9, and α = 0.05 were adopted. Thus,

CD = 3.102
√

9(9+1)
6∗9 = 4.005. Then, the difference between the mean ranks manipulated

for each pair of models (preprocessing combinations) is compared with the value of the
critical difference. Because the difference between the highest mean rank and the lowest
mean rank is less than the CD (6.33 − 3.06 = 3.27 < 4.005), the Nemenyi test did not detect
any significant differences between the models.
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(a) ANN classifier (b) SVM classifier

Figure 4. The reported Friedman test results for datasets having missing values originally.

5.2. Results Obtained from Datasets Having 10% Artificially Generated Missing Values

This section presents the results obtained when using the ANN and SVM classification
algorithms coupled with the nine alternative data preprocessing combination techniques
for datasets with a 10% missing values rate (generated artificially). We commence with the
results obtained when using the ANN classification algorithm presented in Figure 5, and
Table A3 presents the detailed results. From the figure, it can be seen that Delete&Zscore
produced the best AUC results for three datasets, Delete&MinMax generated the best AUC
for one dataset, Mean&MinMax generated the best AUC for one dataset, Mean&MinMax
generated the best AUC for one dataset, Mean&Zscore generated the best AUC for one
dataset, Mean&Decimal generated the best AUC for one dataset, and kNN&MinMax gen-
erated the best AUC for one dataset. For one dataset, the same AUC results were obtained
regardless of the adopted data preprocessing combination technique. It is interesting to
note here that SeismicBumps was highly affected by the adopted preprocessing combina-
tion technique where the AUC range was [0.575–0.743]. Note here that the AUC value 0.575
was obtained when applying the Delete&Decimal preprocessing combination technique.

Figure 6 displays the results using the nine data preprocessing combination techniques
coupled with the SVM classification algorithm in the context of a 10% missing values rate.
From the figure, it can be noted that Delete&Zscore produced the best AUC results for
most datasets. More specifically, Delete&Zscore produced the best AUC results for six
datasets, while Delete &MinMax generated the best AUC for one dataset, and kNN &Zscore
generated the best AUC for one dataset. For the remaining dataset (SeismicBumps), the
same AUC results were obtained regardless of the adopted data preprocessing combination
technique. Note here that the detailed results are presented in Table A4.
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ANN Classification for the Datasets Having 10% Missing Values

Delete&MinMax Delete&Z-score Delete&Decimal Mean&MinMax Mean&Z-score

Mean&Decimal k-NN&MinMax k-NN&Z-score k-NN&Decimal

Figure 5. The results obtained when using ANN classification for datasets having 10% missing values.

0.000

0.100
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0.700

0.800

0.900

1.000

SVM Classification for the Datasets Having 10% Missing Values

Delete&MinMax Delete&Z-score Delete&Decimal Mean&MinMax Mean&Z-score

Mean&Decimal k-NN&MinMax k-NN&Z-score k-NN&Decimal

Figure 6. The results obtained when using SVM classification for datasets having 10% missing values.

Regarding the statistical comparison of the nine considered data preprocessing combi-
nation techniques coupled with the ANN classifier, the Friedman test was applied. The
Friedman test demonstrated that there was a significant difference between the nine data
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preprocessing techniques (X2(2) = 26.900, p = 0.001). As a result, the Nemenyi post-hoc test
was applied to determine the data preprocessing combination technique that significantly
outperformed the others. Note that k = 9, N = 9, and α = 0.05; thus, CD≈ 4.005 was adopted.
Figure 7 presents a visual representation of the Nemenyi test, where the mean ranks of all
considered method are plotted (mean ranks were reported by the Friedman test using SPSS,
where the highest mean rank was assigned to the best method). The models that are not sig-
nificantly different are connected. Note here that the best model is positioned on the right.
Interestingly, the Nemenyi test noted that Delete&Zscore, Mean&MinMax, Mean&Zscore,
kNN&MinMax, and kNN&Zscore significantly outperformed Delete&Decimal. In other
words, the statistical test result indicated that decimal normalization was the least effective
normalization technique regardless of the coupled missing values treatment strategy. In
addition, the worst combination technique was Delete&Decimal.

CD=4.005

1 2 3 4 5 6 7 8 9

Delete&
Decimal

KNN&Decimal

Mean&Decimal Delete&MinMax

Mean&Zscore

KNN&MinMax

KNN&Zscore

Mean&MinMax

Delete&Zscore

Figure 7. A visual representation of the post-hoc test results for datasets that feature 10% missing values when using the
ANN classifier. Connected techniques are not significantly different, and the best technique is positioned on the right. CD,
Critical Difference.

With respect to comparing the nine data preprocessing combination techniques and
the SVM classifier, the Friedman test reported a significant difference between the nine data
preprocessing techniques (X2(2) = 50.979, p = 0.000). Again, the Nemenyi post-hoc test was
conducted to determine the data preprocessing combination technique that significantly
outperformed the others. Figure 8 presents the visual representation of the Nemenyi test.
As shown in the figure, the Nemenyi post-hoc noted that: (i) Delete&Zscore, Mean&Zscore,
and kNN&Zscore significantly outperformed Delete&Decimal and Mean&Decimal, and
(ii) Delete&Zscore and kNN&Zscore significantly outperformed kNN&Decimal. Again,
Decimal normalization was the least effective normalization technique. In addition, Z-score
normalization was the most effective normalization technique regardless of the coupled
missing values treatment strategy.
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CD=4.005

1 2 3 4 5 6 7 8 9

Delete&
Decimal

KNN&Decimal

Mean&Decimal Delete&MinMax

Mean&Zscore

KNN&MinMax

KNN&Zscore

Mean&MinMax

Delete&
Zscore

Figure 8. A visual representation of the post-hoc test results for datasets that feature 10% missing values when using the
SVM classifier. Connected techniques are not significantly different, and the best technique is positioned on the right.

5.3. Results Obtained from Datasets Having 20% Artificially Generated Missing Values

The results obtained when using ANN classification algorithm coupled with the nine
alternative data preprocessing combination techniques for datasets with 20% missing
values are displaced in Figure 9. An interesting observation is that the delete strategy
was working “good” even with 20% missing values compared to other missing values
treatment strategies. More specifically, Delete&MinMax produced the best AUC results
for three datasets, and Delete&Zscore produced the best AUC results for two datasets.
For the remaining datasets, Mean&MinMax generated the best AUC for one dataset;
Mean&Decimal generated the best AUC for one dataset; kNN&MinMax generated the
best AUC for one dataset; and kNN&Zscore generated the best AUC for one dataset. The
detailed results are presented in Table A5.

The results obtained when using the SVM classification algorithm coupled with
the nine alternative data preprocessing combination techniques for datasets having 20%
missing values are presented in Figure 10. The same as the case of the ANN classifier,
the delete strategy was working “well” even with 20% missing values compared to other
missing values treatment strategies. In addition, the Z-score technique generated the
best AUC results for most cases regardless of the adopted treatment for missing values.
More specifically, Delete&Zscore produced the best AUC results for four datasets, and
kNN&Zscore produced the best AUC results for three datasets. For the remaining two
datasets, Delete&Decimal generated the best AUC for one dataset, and all techniques
generated the same AUC result for one dataset (SeismicBumps). The detailed results are
presented in Table A6.
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Figure 9. The results obtained when using ANN classification for datasets having 20% missing values.
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Figure 10. The results obtained when using SVM classification for datasets having 20% missing values.

Regarding the statistical comparison of the nine considered data preprocessing com-
bination techniques coupled with the ANN classifier, the Friedman test was applied. The
Friedman test demonstrated that there was a significant difference between the nine data
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preprocessing techniques (X2(2) = 16.052, p = 0.042). Applying the Nemenyi post-hoc test,
the only reported significant difference was between Mean&MinMax and Delete&Decimal,
where the Mean&MinMax technique significantly outperformed Delete&Decimal, as shown
in Figure 11.

With respect to the statistical comparison of the nine considered data preprocessing
combination techniques coupled with the SVM classifier, the Friedman test was applied.
The Friedman test demonstrated that there was a significant difference between the nine
data preprocessing techniques (X2(2) = 42.669, p = 0.000). The Nemenyi post-hoc test re-
ported that: (i) Delete&Zscore, Mean&Zscore, and kNN&Zscore significantly outperformed
Delete&Decimal, and (ii) Delete&Zscore and kNN&Zscore significantly outperformed
Mean&Decimal and kNN&Decimal, as shown in Figure 12.

CD=4.005

1 2 3 4 5 6 7 8 9

Delete&
Decimal

KNN&Decimal

Mean&Decimal

Delete&MinMax

Mean&Zscore

KNN&MinMax

KNN&Zscore

Mean&MinMax

Delete&Zscore

Figure 11. A visual representation of the post-hoc test results for datasets that feature 20% missing values when using the
ANN classifier. Connected techniques are not significantly different, and the best technique is positioned on the right.

CD=4.005

1 2 3 4 5 6 7 8 9

Delete&
Decimal

KNN&Decimal

Mean&Decimal

Delete&MinMax

Mean&Zscore

KNN&MinMax

KNN&Zscore

Mean&MinMax

Delete&Zscore

Figure 12. A visual representation of the post-hoc test results for datasets that feature 20% missing values when using the
SVM classifier. Connected techniques are not significantly different, and the best technique is positioned on the right.
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5.4. Classification Models Efficiency

The previous Sections 5.1–5.3 presented a comparison of the effectiveness of the nine
considered data preprocessing combination techniques. In order to achieve a compre-
hensive comparison, this sub-section presents a comparison of the efficiency of the nine
considered data preprocessing combination techniques. Figure 13 shows the generation
time results (in seconds) obtained when using the ANN classification algorithm coupled
with the nine data preprocessing combination techniques, and Figure 14 shows the gen-
eration time results (in seconds) obtained when using the SVM classification algorithm
coupled with the nine data preprocessing combination techniques
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16.00

18.00

20.00

Automobile Kidney Disease Credit Approval Cylinder Bands Dermatology Hcc survival Hepatitis mammographic Thyroid (sick)

Generation Time Using ANN Classification Algorithm

Delete&MinMax Delete&Z-score Delete&Decimal Mean&MinMax Mean&Z-score

Mean&Decimal k-NN&MinMax k-NN&Z-score k-NN&Decimal

Figure 13. Generation time results (in seconds) obtained using the ANN classification algorithm coupled with the nine data
preprocessing combination techniques.

Commencing with missing values treatment strategies, as expected, it can be noted that
the lowest generation run times were obtained when using the delete strategy for handling
missing values, and this is very obvious for datasets featuring high missing values rates;
while the kNN technique for handling missing values generated the highest generation times.
Additionally, it is interesting to note here that the effect of handling missing values on classifi-
cation efficiency was more obvious when the ANN classification algorithm was adopted to
generate the classification models. With respect to the data normalization techniques, there
was no significant difference in efficiency between the three considered data normalization
techniques.
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Figure 14. Generation time results (in seconds) obtained using the SVM classification algorithm coupled with the nine data
preprocessing combination techniques.

6. Conclusions and Future Work

Handling missing values and data normalization are considered important prepro-
cessing activities prior to applying classification algorithms. In this paper, the effect of
different combinations of data preprocessing techniques was investigated. Three well-
known normalization techniques and three well-known strategies for handling missing
values were considered. Consequently, nine alternative data preprocessing combination
techniques were evaluated: (i) Delete&MinMax combination technique, (ii) Delete&Z-score
combination technique, (iii) Delete&Decimal combination technique, (iv) Mean&MinMax
combination technique, (v) Mean&Z-score combination technique, (vi) Mean&Decimal
combination technique, (vii) kNN&MinMax combination technique, (viii) kNN&Z-score
combination technique, and (ix) kNN&Decimal combination technique. The classifica-
tion models were generated using the ANN and SVM classification algorithms. Eighteen
datasets were used to evaluate the nine data preprocessing combination techniques. The
datasets were categorized into three categories according to the inclusion of missing val-
ues: (i) datasets having missing values originally, (ii) datasets having 10% missing values
generated artificially, and (iii) datasets having 20% missing values generated artificially.

From the reported evaluation, there was no noticeable difference between the con-
sidered data preprocessing combination techniques with respect to most datasets that
featured missing values originally. In other words, there was no significant effect of the
adopted preprocessing techniques for most datasets having less than 10% missing values.
Regarding datasets having 10% missing values, there was a significant effect of the adopted
preprocessing techniques on the performance of classification models, the statistical tests re-
sults indicating that decimal normalization was the least effective normalization technique
regardless of the coupled missing values treatment strategy, while Z-score normalization
was the most effective normalization technique regardless of the coupled missing values
treatment strategy. Moreover, the worst combination technique was Delete&Decimal.

In the context of datasets having 20% missing values, unexpectedly, the delete strategy
worked very well compared to the considered missing values treatment strategies. Thus,
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we proved that the delete strategy can be adopted for datasets featuring up to 20% missing
values and can produce comparable classification accuracy compared to the mean and
kNN strategies. In addition, the same as the case of the datasets with 10% missing values,
decimal normalization was the least effective normalization technique, while Z-score
normalization tended to generate the best AUC results, and the worst preprocessing
combination technique was Delete&Decimal.

Interestingly, the impact of the adopted preprocessing techniques varied from one
classification algorithm to another. More specifically, the effect of the data preprocessing
techniques was more noticeable when the SVM classifier was utilized to generate the classi-
fication models. Overall, for most scenarios, Delete&Decimal was the worst preprocessing
combination technique that could be applied before generating the desired classification
model.

As future work, the authors intend to investigate the impact of different preprocessing
techniques on clustering algorithms. In addition, generating datasets with more than a
20% missing values rate will be considered in order to determine the best preprocessing
techniques to be adopted for such datasets.
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Appendix A

Table A1. Average accuracy and AUC values obtained using the ANN classification algorithm coupled with the nine data preprocessing techniques with respect to the datasets that featured missing
values originally.

ANN Classification
Technique Delete& Delete& Delete& Mean& Mean& Mean& kNN& kNN& kNN&

MinMax Zscore Decimal MinMax Zscore Decimal MinMax Zscore Decimal

Dataset Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Automobile 82.39 0.929 86.16 0.947 69.81 0.880 79.51 0.923 79.02 0.929 73.17 0.881 79.02 0.920 78.54 0.920 73.17 0.880
Kidney 99.37 1.000 100.00 1.000 99.36 1.000 98.25 0.999 97.50 0.999 97.50 0.991 98.75 1.000 98.50 0.999 97.00 0.985
Credit 85.15 0.902 83.46 0.908 85.60 0.901 83.33 0.903 83.04 0.902 83.91 0.899 83.91 0.904 82.61 0.899 83.33 0.901

Cylinder 72.20 0.726 73.29 0.762 72.56 0.740 75.37 0.823 75.93 0.831 71.30 0.769 75.74 0.814 77.04 0.841 75.56 0.803
Dermatology 97.49 0.997 97.49 0.997 96.93 0.997 97.27 0.997 97.54 0.997 97.54 0.998 97.27 0.997 97.54 0.997 97.54 0.998
HCC survival 25.00 0.188 25.00 0.125 25.00 0.188 72.12 0.766 72.73 0.774 75.76 0.782 72.73 0.765 74.55 0.784 73.94 0.796

Hepatitis 82.50 0.831 82.50 0.815 86.25 0.815 80.65 0.791 83.87 0.852 82.58 0.811 81.94 0.802 84.52 0.846 81.94 0.819
Mammographic 80.00 0.852 80.72 0.872 80.36 0.851 79.81 0.857 81.06 0.880 80.02 0.852 78.98 0.843 79.81 0.872 79.19 0.846

Thyroid 96.29 0.948 97.47 0.952 92.40 0.871 97.38 0.959 98.01 0.941 94.33 0.888 97.45 0.953 98.01 0.942 94.41 0.885

Table A2. Average accuracy and AUC values obtained using the SVM classification algorithm coupled with the nine data preprocessing techniques with respect to the datasets that featured missing
values originally.

SVM Classification
Technique Delete& Delete& Delete& Mean& Mean& Mean& kNN& kNN& kNN&

MinMax Zscore Decimal MinMax Zscore Decimal MinMax Zscore Decimal

Dataset Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Automobile 64.15 0.799 74.84 0.876 64.15 0.788 68.29 0.827 76.59 0.872 64.88 0.814 67.80 0.827 77.07 0.871 64.88 0.813
Kidney 99.37 0.988 100.00 1.000 99.36 0.988 98.75 0.990 98.50 0.987 93.25 0.946 98.00 0.984 98.75 0.990 93.25 0.946
Credit 86.22 0.868 86.06 0.867 86.22 0.868 84.93 0.856 85.07 0.858 84.93 0.856 85.22 0.860 85.22 0.860 85.22 0.860

Cylinder 71.48 0.673 74.01 0.706 66.07 0.617 75.19 0.737 73.89 0.724 69.63 0.678 75.37 0.734 73.89 0.721 68.52 0.666
Dermatology 97.77 0.993 96.09 0.988 96.93 0.990 97.54 0.993 96.72 0.990 96.99 0.990 97.54 0.993 96.72 0.990 96.99 0.990
HCC survival 37.50 0.375 25.00 0.250 25.00 0.250 73.94 0.719 73.94 0.722 72.73 0.670 74.55 0.727 73.33 0.715 72.12 0.662

Hepatitis 85.00 0.693 86.25 0.763 83.75 0.500 85.16 0.756 83.87 0.748 79.35 0.512 85.81 0.772 83.23 0.732 79.35 0.512
Mammographic 80.24 0.804 82.17 0.822 80.24 0.804 79.08 0.794 82.83 0.828 79.08 0.794 76.90 0.767 82.52 0.825 77.11 0.769

Thyroid 91.98 0.500 96.22 0.833 91.98 0.500 93.88 0.500 97.06 0.822 93.88 0.500 93.88 0.500 96.90 0.801 93.88 0.500
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Table A3. Average accuracy and AUC values obtained using the ANN classification algorithm coupled with the nine data preprocessing techniques with respect to the datasets that feature 10%
missing values.

ANN Classification
Technique Delete& Delete& Delete& Mean& Mean& Mean& kNN& kNN& kNN&

MinMax Zscore Decimal MinMax Zscore Decimal MinMax Zscore Decimal

Dataset Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Abalone 26.69 0.762 25.10 0.730 25.20 0.728 25.54 0.748 25.64 0.733 25.14 0.730 26.09 0.744 25.16 0.732 25.13 0.725
Ecoli 82.10 0.940 77.78 0.925 76.54 0.908 84.23 0.947 79.46 0.940 78.27 0.937 83.93 0.946 79.17 0.937 78.27 0.935
Glass 63.10 0.791 70.24 0.854 55.95 0.769 59.81 0.808 63.08 0.804 55.14 0.776 61.22 0.816 62.15 0.820 54.21 0.778
Iris 92.55 0.993 93.62 0.993 91.49 0.964 90.67 0.975 93.33 0.982 86.67 0.950 86.67 0.931 92.67 0.979 89.33 0.974

ShopperIntention 84.29 0.794 86.77 0.859 82.13 0.723 85.49 0.816 86.85 0.864 84.28 0.785 84.89 0.815 85.36 0.849 84.01 0.773
PageBlocks 96.54 0.959 96.32 0.966 93.61 0.874 95.45 0.950 95.78 0.960 94.66 0.940 94.81 0.939 95.38 0.950 94.13 0.913
PenDigits 93.42 0.963 95.33 0.982 92.37 0.959 89.92 0.958 89.74 0.957 90.57 0.958 91.64 0.964 91.23 0.965 92.29 0.963

SeismicBumps 92.11 0.614 90.79 0.617 93.42 0.575 92.92 0.715 90.83 0.711 93.00 0.743 93.03 0.726 91.87 0.697 93.11 0.737
Vehicle 72.13 0.863 72.13 0.881 51.64 0.753 71.63 0.895 70.09 0.873 62.29 0.856 73.29 0.911 70.92 0.879 63.71 0.861

Table A4. Average accuracy and AUC values obtained using the SVM classification algorithm coupled with the nine data preprocessing techniques with respect to the datasets that feature 10%
missing values.

SVM Classification
Technique Delete& Delete& Delete& Mean& Mean& Mean& kNN& kNN& kNN&

MinMax Zscore Decimal MinMax Zscore Decimal MinMax Zscore Decimal

Dataset Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Abalone 23.21 0.705 25.51 0.740 22.85 0.683 24.01 0.713 25.66 0.726 22.50 0.694 23.38 0.709 24.22 0.716 22.69 0.696
Ecoli 75.93 0.918 84.57 0.935 62.96 0.828 79.46 0.920 82.74 0.933 73.21 0.876 79.76 0.922 83.33 0.934 74.11 0.885
Glass 61.90 0.780 67.86 0.816 40.48 0.586 56.07 0.738 59.81 0.786 43.93 0.660 56.07 0.738 61.22 0.790 43.93 0.660
Iris 95.74 0.977 95.74 0.970 92.55 0.960 88.67 0.936 92.00 0.951 86.00 0.911 88.67 0.936 93.33 0.957 85.33 0.931

ShopperIntention 87.44 0.630 88.29 0.682 84.76 0.515 87.70 0.635 88.05 0.657 85.90 0.554 87.40 0.621 87.62 0.640 85.48 0.538
PageBlocks 93.34 0.663 96.00 0.859 91.02 0.509 92.38 0.668 95.29 0.827 90.90 0.560 92.67 0.708 94.88 0.815 90.55 0.540
PenDigits 97.00 0.995 97.71 0.996 79.22 0.940 92.53 0.988 92.26 0.988 84.69 0.966 94.92 0.992 95.06 0.993 85.52 0.970

SeismicBumps 94.30 0.500 94.30 0.500 94.30 0.500 93.42 0.500 93.42 0.500 93.42 0.500 93.42 0.500 93.42 0.500 93.42 0.500
Vehicle 63.11 0.777 72.95 0.852 28.69 0.490 67.26 0.826 70.80 0.847 43.74 0.698 69.86 0.814 73.17 0.861 42.55 0.684
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Table A5. Average accuracy and AUC values obtained using the ANN classification algorithm coupled with the nine data preprocessing techniques with respect to the datasets that feature 20%
missing values.

ANN Classification
Technique Delete& Delete& Delete& Mean& Mean& Mean& kNN& kNN& kNN&

MinMax Zscore Decimal MinMax Zscore Decimal MinMax Zscore Decimal

Dataset Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Abalone 26.34 0.751 25.06 0.712 25.17 0.714 24.30 0.737 24.01 0.724 25.23 0.718 25.08 0.726 24.92 0.717 23.58 0.712
Ecoli 78.67 0.908 69.33 0.880 78.67 0.895 81.25 0.936 76.79 0.926 75.30 0.918 80.65 0.934 78.27 0.922 75.89 0.915
Glass 59.26 0.739 51.85 0.700 40.74 0.570 59.35 0.784 60.75 0.810 52.34 0.748 59.81 0.771 66.36 0.835 54.67 0.752
Iris 94.34 0.995 94.34 0.994 92.45 0.990 92.00 0.980 90.00 0.978 84.67 0.952 93.33 0.975 92.67 0.964 84.00 0.954

ShopperIntention 84.87 0.786 86.66 0.852 80.18 0.692 84.61 0.791 86.24 0.850 82.90 0.751 84.04 0.785 84.87 0.830 83.42 0.754
PageBlocks 95.19 0.995 94.69 0.969 92.37 0.771 94.28 0.929 95.05 0.939 93.88 0.919 94.10 0.920 94.72 0.935 93.90 0.906
PenDigits 88.32 0.957 90.42 0.978 84.73 0.926 86.91 0.952 85.55 0.949 87.47 0.955 88.33 0.957 88.05 0.956 89.15 0.958

SeismicBumps 88.68 0.571 88.68 0.306 90.57 0.602 92.76 0.712 91.87 0.686 93.03 0.748 92.88 0.705 91.02 0.686 93.11 0.729
Vehicle 59.09 0.794 59.09 0.833 40.91 0.517 66.90 0.859 64.42 0.834 58.75 0.836 68.91 0.881 66.90 0.861 61.23 0.845

Table A6. Average accuracy and AUC values obtained using the SVM classification algorithm coupled with the nine data preprocessing techniques with respect to the datasets that feature 20%
missing values.

SVM Classification
Technique Delete& Delete& Delete& Mean& Mean& Mean& kNN& kNN& kNN&

MinMax Zscore Decimal MinMax Zscore Decimal MinMax Zscore Decimal

Dataset Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Abalone 22.49 0.701 24.13 0.735 22.03 0.666 23.17 0.707 24.16 0.714 22.15 0.689 22.93 0.703 23.91 0.708 22.33 0.692
Ecoli 66.67 0.882 77.33 0.900 50.67 0.755 76.79 0.899 80.06 0.918 67.86 0.831 77.68 0.900 80.36 0.919 70.24 0.851
Glass 62.96 0.729 55.56 0.684 40.74 0.420 54.67 0.720 56.54 0.765 43.46 0.644 55.61 0.723 57.48 0.766 42.99 0.643
Iris 94.34 0.971 55.56 0.949 96.23 0.981 86.00 0.927 88.00 0.932 76.00 0.843 92.00 0.955 94.00 0.963 83.33 0.907

ShopperIntention 87.56 0.607 87.18 0.640 84.95 0.500 87.34 0.617 87.73 0.639 85.46 0.537 86.87 0.597 87.22 0.614 85.20 0.525
PageBlocks 91.54 0.607 94.69 0.829 90.05 0.500 91.72 0.618 94.63 0.799 90.77 0.554 92.02 0.641 94.24 0.782 90.48 0.538
PenDigits 91.32 0.981 95.81 0.988 13.47 0.577 87.88 0.979 87.89 0.980 80.90 0.956 90.91 0.985 91.27 0.986 82.68 0.962

SeismicBumps 92.45 0.500 92.45 0.500 92.45 0.500 93.42 0.500 93.42 0.500 93.42 0.500 93.42 0.500 93.42 0.500 93.42 0.500
Vehicle 59.09 0.744 68.18 0.807 22.73 0.386 62.06 0.802 61.70 0.801 45.98 0.699 64.54 0.820 66.19 0.828 44.44 0.688
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