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Abstract: Accurate real-life monitoring of motor and non-motor symptoms is a challenge in Parkin-
son’s disease (PD). The unobtrusive capturing of symptoms and their naturalistic fluctuations within
or between days can improve evaluation and titration of therapy. First-generation commercial PD
motion sensors are promising to augment clinical decision-making in general neurological consul-
tation, but concerns remain regarding their short-term validity, and long-term real-life usability. In
addition, tools monitoring real-life subjective experiences of motor and non-motor symptoms are
lacking. The dataset presented in this paper constitutes a combination of objective kinematic data and
subjective experiential data, recorded parallel to each other in a naturalistic, long-term real-life setting.
The objective data consists of accelerometer and gyroscope data, and the subjective data consists of
data from ecological momentary assessments. Twenty PD patients were monitored without daily life
restrictions for fourteen consecutive days. The two types of data can be used to address hypotheses
on naturalistic motor and/or non-motor symptomatology in PD.

Dataset: DataVerseNL: https://doi.org/10.34894/5HHK8H

Dataset License: CC0—“Public Domain Dedication”.

Keywords: Parkinson’s disease; real-life; unscripted; naturalistic monitoring; wearable sensors;
motor diaries; ecological momentary assessments; experience sampling method

1. Summary

Parkinson’s disease (PD)’s world-wide prevalence is expected to double to over 12 mil-
lion patients by 2040 [1]. Current treatment strategies are symptomatic, mainly focus
on improving motor function, and start with oral dopaminergic replacement medication.
Refractory motor symptoms, adverse effects, or (non-)motor fluctuations can indicate ad-
vanced treatments, such as continuous levodopa administration or deep brain stimulation,
or additional non-dopaminergic therapies [2,3]. A challenge in PD care is to improve
symptom monitoring during patients’ real life, in between clinical visits. Continuous,
passive PD monitoring is suggested to improve therapy evaluation and titration by de-
creasing reliability on patient recall, and limitations of current monitor tools such as the
lack of unobtrusive, repetitive assessment [4,5]. Wearable sensors monitoring motor symp-
toms are probably the best-known example of passive monitoring [6–9]. Wearable motion
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sensors are also suggested to investigate non-motor symptoms such as depression [10].
Additionally or complementary to continuous objective monitoring, continuous subjective
monitoring via electronic (e-)diaries is suggested to contribute to both motor and non-motor
PD monitoring in real life [11,12].

Due to the ubiquitous presence of smartphones and smartwatches with dedicated
mHealth-applications, the collection and analysis of real-life data has increased exponen-
tially over the last decade. Most of these devices allow objective motion data collection via
inertial measurement units (IMUs). IMUs typically contain accelerometers and/or gyro-
scopes. In addition to these objective measures, subjective information about the patient’s
status can be obtained through diary methods or regular questionnaires administered
via mHealth-applications. A valid translation of these real-life, or naturalistic, data into
clinically or scientifically relevant information is an important challenge for researchers
involved in PD and many (neuro)psychological and somatic diseases [6,12].

The presented multi-modal data were collected to improve understanding of the feasi-
bility, usability, and validity of real-life PD monitoring, with a focus on motor symptoms.
Objective data were collected via bilateral wrist and a chest IMU containing accelerom-
eters and gyroscopes. Subjective data were collected via smartphone-based ecological
momentary assessments (EMA), also called experience sampling methods. The practical
feasibility of this novel combined method in a general PD population was demonstrated
before [11]. We showed a good completion of objective and subjective data collection, with
an acceptable burden for PD patients, and without high variability in completion between
or within days.

These naturalistic long-term objective and subjective data aim to overcome the lack
of unobtrusive, momentary, repetitive assessments of currently available PD motor moni-
toring devices [7,13,14]. Substantial concerns exist about the first-generation PD monitor
devices regarding real-life validity, and their specific intended role in clinical practice [15,16].
Defining the exact role in clinical practice of a clinically supportive, data-driven tool is of
critical importance to realize successful and impactful implementation [17,18]. In our data,
the subjective data complements the motor monitoring by the objective data. Combining
continuous objective and subjective data can help to overcome the well-known challenge
of translating scripted, lab-based monitor methods, to unscripted, real-life monitor meth-
ods [19,20]. More specifically, it can serve as an alternative, continuous gold standard
informing about subjectively experienced PD symptomatology, parallel to naturalistic
sensor data. Traditional PD monitor instruments, such as the Movement Disorders So-
ciety Unified Parkinson Disease Rating Scale (MDS-UPDRS) and the Parkinson Disease
Quality of Life Questionnaire (PDQ-39) are limited as they require the physical presence of
trained clinicians, one assessment covers days to weeks, and their usability for longitudinal
follow-up has been questioned [21–23]. As a proof-of-concept, we successfully predicted
subjective EMA-answers regarding tremor severity based on objective motion data in a
single participant [24].

Non-motor symptoms are notoriously disregarded in PD management, despite their
repeatedly demonstrated effect on patients’ quality of life [25]. Dedicated non-motor
symptom scales are increasingly available and applied; however, naturalistic momentary
assessment is no standard practice yet. EMA is explored for psychiatric disorders such
as depression [26], and evidence suggests a role of EMA in monitoring or treating de-
pression [27]. EMA may contribute to clinical practice and scientific research regarding
non-motor symptoms in PD [28]; this hypothesis requires, however, further investigation.

This paper and its accompanying database aim to enable and stimulate PD researchers
to answer research questions regarding real-life motor and/or non-motor symptoms, using
objective data, subjective data, or both. For the patients who reported to suffer from motor
fluctuations, motor-related motion sensor analyses can be performed. The potential value of
these data is underlined by previous naturalistic PD monitoring work calling for continuous
data sets containing self-reported motor states and motion sensor data [29]. Especially,
the repetitive subjective symptom experiences via EMA offer new possibilities in motor
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monitoring development. Where recent validation studies aim on performance over longer
time periods [9,30], the additional ESM facilitates analyses over shorter time windows.
Moreover, the ESM offers a higher symptom resolution than merely ON-versus OFF-
medication. Open-code efforts such as the BEAT-PD data challenge offer well-performing
publicly available algorithms to differentiate between ON and OFF, and detecting tremors
and dyskinesia [31]. These proposed signal processing and prediction analyses can be
applied on finer-grain symptom resolutions in our dataset.

Further, many non-motor symptom-related research questions and hypotheses can
be explored with these data. Non-motor symptoms are increasingly suggested to be part
of continuous PD monitoring [12], and a concrete example is the suggestion to include
patient-reported outcomes to monitor non-motor symptoms after deep brain stimulation
for PD [32]. Research into general non-motor monitoring, as well as research into such
specific non-motor monitoring applications, can profit from the data presented here.

With this data and this accompanying descriptor, we contribute to open-science
for PD in general, and open-source, reproducible algorithms for real-life PD monitor-
ing [29,31,33,34]. Furthermore, the applied methodology to combine momentary objective
data with high-frequency objective data can be extrapolated to (EMA-)research in general.

2. Data Description

The data is publicly available via DataverseNL repository “EMA and wearable sensor
monitoring in PD”, under CC0—“Public Domain Dedication” license (https://doi.org/10.348
94/5HHK8H (accessed on 11 February 2021)) [35]. We provide raw sensor data and raw EMA
data separately and unmerged, to enable every researcher to process the data as desired.

The code used for extracting, aligning, and merging both data types, including
the example analysis, is available on https://github.com/jgvhabets/sensor_EMA_PD_
monitoring (accessed on 11 February 2021).

2.1. Objective Sensor Data

Sensor data are stored in European Data Format [36] (edf)-files, and organized on the
DataVerseNL repository in separate patient folders. Each patient folder contains multiple
edf-files representing all 14 recording days.

• The name of every edf-file contains first the sensor name, followed by the start date and time
of the recording. For example, in folder “110001”, the file “13792_20180828_0752223.edf”
contains the recording from participant 110001 with sensor 13792, which started recording
on 28 August 2018, at 07:52:23. The read-me file “READ_ME_EMA_SENSOR_PD.txt”
explains which sensor numbers represent left wrist, right wrist, or chest IMUs. The sensors
actively recorded when they were not connected to a USB-charging device.

• Each edf-file contains six channels (representing the x-, y-, and z-axes for, respectively,
accelerometer and gyroscope), including timestamps. Acceleration is recorded in m/s
per second, and rotation is recorded in degrees per second.

• Prior to the first recording day, the clocks of all three sensors were reset and synchro-
nized. The manufacturer assures temporal drift to be negligible over the period of two
weeks with respect to merging and pairing with EMA-assessments.

• Single edf-files were created when a sensor was disconnected from the charger. A file
continued storing data until the sensor was connected to a charger again and the file
closed. If a recording passed midnight (00:00:00), the file closed as well, and a new file
was created and continued storing data.

2.2. Subjective EMA Data
2.2.1. EMA Data Organization

The EMA method consisted of three types of questionnaires: a “beep” questionnaire,
a daily morning questionnaire, and a daily evening questionnaire (Table 1). The “beep”
questionnaire was identically offered seven times per day, with an accompanying notifi-
cation; the morning questionnaire was available to complete on own initiative between

https://doi.org/10.34894/5HHK8H
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06:00 and 12:00; and the evening questionnaire was available to complete on own initiative
between 20:00 and 03:00.

• The EMA data from all patients are stored in “EMA_data.csv”.
• The fist column provides a patient number, corresponding to the sensor data folder

names.
• Then, two columns provide timestamps indicating the start time and end time of

beep-questionnaire completion.
• These are followed by columns providing the answers on the items from the beep-

questionnaire.
• Then, columns provide the answers on the morning and evening questionnaires from

the corresponding day.
• The file “EMA_data_coding.xlsx” provides a clear explanation of the coding of all

questionnaire items and answers.

2.2.2. EMA Content

If no multiple-choice is provided in square brackets, items are answered on a Likert
scale from 1 to 7.

Table 1. Content of Parkinson’s-specific experience sampling questionnaires.

Beep Questionnaire (Repetitive, Seven Times Daily)

Affect and cognitive items Possible answers

I feel well, down, fearful, stressed, sleepy, tired, cheerful, relaxed
(eight different items) 7-point Likert scale (eight times)

I can concentrate well 7-point Likert scale

I experience hallucinations 7-point Likert scale

Contextual items

I am at . . . (home, work, travelling, family/friend’s place, in public)

I am with . . . (nobody, family, partner, colleagues, friends) (multiple choice,
multiple items could be selected)

I am doing . . . (work, resting, household/odd jobs, sports, something else)
(multiple choice, multiple items could be selected)

Physical items

I can do this (my current activity) without hinder 7-point Likert scale

I am comfortable walking and standing 7-point Likert scale

I can sit or stand still easily 7-point Likert scale

I can speak easily 7-point Likert scale

I can walk easily 7-point Likert scale

I experience tremor 7-point Likert scale

I am moving slow 7-point Likert scale

I experience stiffness 7-point Likert scale

My muscles are tensioned 7-point Likert scale

I am uncontrollable moving 7-point Likert scale

Dopaminergic medication items

I feel . . . (regarding medication status) [1: OFF, 2: ON→ OFF, 3: ON, 4: OFF→ ON]

I took Parkinson’s medication since last beep (yes, no, I do not recall)
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Table 1. Cont.

Beep Questionnaire (Repetitive, Seven Times Daily)

Morning questionnaire

I slept well 7-point Likert scale

I woke up often last night 7-point Likert scale

I feel rested 7-point Likert scale

It was physically difficult to get up 7-point Likert scale

It was mentally difficult to get up 7-point Likert scale

Evening questionnaire

I had long OFF periods today 7-point Likert scale

I had many OFF periods today 7-point Likert scale

Walking, dressing, eating/drinking, personal care, household activities
went well today (five separate items) 7-point Likert scale (five times)

I was tired today 7-point Likert scale

3. Methods
3.1. Participants

Twenty idiopathic PD patients participated in this study (Table 2). Patients were
recruited via their treating neurologist or neurosurgeon at Maastricht University Medical
Centre. Inclusion criteria were diagnoses of idiopathic PD, age between 18 and 80 years,
in possession of a smartphone (minimal iOS 8 or Android 4), mastering spoken and
written Dutch language, and available during two consecutive weeks of representative
daily activities (meaning no holidays or planned hospital admission). No participants
were excluded because of cognitive deficits (less than 24 points on the Montreal Cognitive
Assessment). Hoehn and Yahr scores and levodopa equivalent daily dosages were collected.
Participants 110002, 110003, 110004, 110006, 110008, 110014, 110016, 110017, 110018, 110019,
110020, and 110021 reported to suffer motor fluctuations despite dopaminergic (and deep
brain stimulation) therapy. Disease-specific details are not included in the publicly available
data set due to local ethical privacy regulations. Researchers can contact the authors when
these data are requested.

Table 2. Demographics of included Parkinson’s population.

Variable Mean (Standard Deviation) or Proportion (n)

Gender (n female/n male) 4/16

Age (years) 63 (7)

Levodopa Equivalent Daily Dosage (mg) 770 (394)

Hoehn and Yahr Scale (n)

1 2

1.5 2

2 7

2.5 3

3 3

3.5 0

4 1

Presence Motor Fluctuations (n yes/n no) 12/8
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This study was approved by the local medical ethical committee and written informed
consent was obtained from all participants, including the approval to share the anonymized
data (METC azM/UM 2017-0307).

3.2. Study Design

Participants were monitored via wearable sensors and EMA for 14 consecutive days
and were instructed to not adjust their daily life routines or activities (Figure 1). An
introductory meeting was held prior to day 1 at the patient’s home during which the
sensors were provided and the EMA application was installed and explained. A phone
call consultation was performed at day 2 and day 8 to evaluate the progress and answer
possible questions. After day 14, a researcher collected the sensors and evaluated the
study period.

3.3. Parkinson’s-Specific EMA Method

EMA is a validated method for observational studies or therapy evaluation in psy-
chiatric and psychological diseases [37–39]. Subjective experiences are collected through
questionnaires several times daily on semi-randomized moments. Recall-bias is minimized
by allowing the patient to complete the questionnaire only during a short time window
after notification, and by asking the patient to report his/her experience “at this moment”.
These repeated measurements aim to capture symptom fluctuations over the day, as well
as slower fluctuating trends over longer time spans. The practical feasibility of this method
in these 20 PD patients is described earlier [11].

We applied a PD-specific EMA questionnaire in this dataset, containing affect, motor,
and non-motor symptomatology, as well as contextual items. The morning question-
naire contains mainly items regarding sleep and fitness after waking, and the evening
questionnaire covers mainly motor functioning and symptomatology during the day, to
enrich analyses on day levels. The development and internal validation of this PD EMA-
questionnaire is extensively described earlier [40].

EMA and eDiaries are thought to be more sustainable tools to capture subjective
intraday PD fluctuations in the future than paper diaries, which are more limited by
procrastination, recall bias, and diary fatigue [41,42].
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Figure 1. Schematic overview of one day of data collection. The blue, orange, and green lines represent, respectively, the
signal on the x-, y-, and z-axis of an accelerometer, or a gyroscope. The signals are shown between 8:00 a.m. and 10:00
p.m. Selected time spans of sensor data which will be compared with the corresponding ecological momentary assessment
(EMA) answers are shown in grey.
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3.4. Devices
3.4.1. PsyMate (EMA Application)

The EMA monitoring was executed via a smartphone-based EMA application (PsyMate®,
Maastricht, The Netherlands). The application presented the beep questionnaire seven
times daily on semi-randomized moments, one questionnaire per two-hour window be-
tween 08:00 and 22:00 (see Figure 1). In order to reduce recall bias, the participants had to
start answering the questionnaire within 15 min after notification. After these 15 min the
questionnaire could not be opened anymore and was labeled as missed. The participants
were instructed to complete as many questionnaires as possible without adjusting their
lifestyle and activities. They were asked to complete the morning and evening question-
naire every day. These questionnaires were available during the above-mentioned time
spans but were not presented with a notification.

The answers to completed beep questionnaires, as well as to the morning and evening
questionnaires, were automatically uploaded to a server provided by the application
developer. Missed questionnaires were not registered in the database.

3.4.2. MOX-5 (Wearable Sensor)

The patients used three wearable sensors, one located at each wrist and one at the
sternum attached to a necklace (MOX5, Maastricht Instruments©, Maastricht, The Nether-
lands). The six degrees-of-freedom wearable sensors contained a tri-axial accelerometer
and a tri-axial gyroscope, and recorded unprocessed raw data. The axial orientation of the
wrist sensors was the following: x was parallel to the arm length, y recorded sideways
movement in anatomical position, and z recorded front/back movement in anatomical
position. The axial orientation of the chest sensor was the following: x was parallel to the
body length, y recorded movement sideways, and z recorded movement to the front or
back. The accelerometer covered an amplitude range of ±8 g and the gyroscope covered a
range of ±2000 degrees/s. Data were collected with a sampling rate of 200 Hz. The sensors
stored all data on a built-in memory disk and did not automatically transfer data or pro-
vide real-time assessments. The participants were instructed to wear the sensors from the
moment they rose in the morning, until they went to bed at night (ideally at least between
08:00 until 22:00), except during showering or bathing.

4. User Notes
4.1. Software

We performed our data pre-processing and analysis in Jupyter Notebooks for Python
(Python version 3.6, Project Jupyter©, https://jupyter.org (accessed on 11 February 2021),
revision fe7c2909). We used software packages: pyedflib, pandas (version 0.24.2) [43],
Numpy (version 1.16.4) [44], and scikit-learn (version 0.21.2) [45].

4.2. Interpretation of Data Quantity and Quality

Detailed descriptions of these results are reported earlier [11,40]. Most of the partic-
ipants experienced the data collection as not incriminating (17 out of 20.85%), and 90%
(18 out of 20) did not adapt their daily activities. On average, the participants wore the
wearable sensors 94% of the instructed wearing time, resulting in almost 15 h of sensor
data collected daily. EMA completion rates for beep, morning, and evening questionnaires
were, respectively, 79%, 97%, and 94%. No differences were seen in completion between
different study days, or different daily moments. For three participants (110007, 110010,
and 110015), more than 25% of the sensor data corresponding to the EMA beeps were
missing due to practical data storage issues.

Internal validity of the EMA answers is explored by correlating subjectively reported
concepts as positive versus negative affect, motor symptom severity, motor functioning,
and dopaminergic medication states with each other. Positive correlations between positive
affect and motor functioning and less symptom severity were hypothesized. Additionally,
dopaminergic off-medication states were hypothesized to correlate positively with motor

https://jupyter.org
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symptom severity, and to correlate negatively with motor functioning and positive affect.
The evening questionnaire on motor functioning and motor symptoms during the past
day were hypothesized to correlate in the same way as described above. On a group level,
this hypothesis was confirmed by correlations linking positive affect, with fewer motor
symptoms, better motor functionality, and on-medication states, and vice versa. On an
individual level, not enough fluctuations were captured for every individual participant
to reproduce this. Seventy-six percent of EMA beeps were answered in dopaminergic
on-state, 21.5% in transition state between on- and off-state, and 2.5% in off-state. Mild
fluctuations are therefore more likely to be captured more often in this data than severe
fluctuations. Due to the high overall completion rates, and in-person evaluations with the
participants, we suggest the low number of off-states can be explained by a low prevalence
of true off-states. For medication-state analysis, it therefore can be suggested to compare
on-state versus non-on-state (transition on/off plus off-state).

4.3. Combined Data Processing and Analyzing: Practical Example of Dopaminergic Fluctuation Detection

As an example, we propose a pipeline to align and merge two data types with varying
sample frequencies. In this process, we decided to select sensor data from the 15 min
preceding the start of EMA beep questionnaire completion. These 15 min are chosen
because the patients were instructed to complete the questionnaire according to their
experiences at that exact moment (“How do you feel at this moment”). The 15 min block
was a pragmatic and arbitrary decision; researchers might deviate from this approach
based on their own arguments or hypothesis.

To support the usability of the data, we will give an example of dopaminergic fluc-
tuation detection in participant 110018, suffering from strong symptom fluctuations [24].
We will merge both data types, extract features from the sensor data, and present cor-
relation between the objective and subjective data by predicting the subjective reported
medication state based on the objective sensor features. We extract features designed for
wrist-sensor data, and will repeat classification analyses based on wrist- and chest-sensor
data. The wrist-sensor analysis is comparable to an analysis in previous work [11]. Here, we
repeat this analysis with data from the chest-sensor. Although the wrist-data and the chest-
data were recorded during the same time points, we hypothesize that the classification
analysis based on wrist-data is more successful to differentiate medication-state.

4.3.1. Data Merging

To enable merging of the EMA data and the sensor data, the completed beep ques-
tionnaires from the EMA data were used as a reference frame. For sensor data extraction,
the timestamps of all starting moments of completed beep questionnaires were extracted
and the raw sensor data corresponding to each 15-min block preceding these EMA time
stamps were selected. Raw sensor data were first down-sampled to 100 Hz since a higher
sample rate was not necessary for the intended analysis. This resulted in a data frame
containing 90,000 rows of sensor data (15 min of 100 Hz) corresponding to every complete
beep questionnaire. Each row consisted of three values (x-, y-, z-axis) for each of the three
accelerometers and the gyroscopes.

4.3.2. Sensor Data Pre-Processing and Feature Extraction

Features representing the research topic of interest, in this case, dopaminergic med-
ication fluctuation, have to be extracted from the raw, 100 Hz sensor data. Depending
on the features and hypothesis, researchers can be interested in feature values per, e.g.,
60 s of extracted sensor data. This time span is referred to as the feature window length.
We extracted various features designed for wrist-accelerometer and wrist-gyroscope data
representing bradykinesia or medication fluctuation [8]. By calculating features, a new
dataset is created, in which each row contained the timestamp and the feature value for
one feature window length.
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For this practical example provided, we applied a feature window length of 900 s [24],
and did not apply overlapping epochs in the sensor data. The following temporal domain
features were extracted: the root mean square (RMS) of every accelerometer-axis feature
window length, and the amplitude range, representing the range between the minimal and
maximum amplitude per accelerometer-axis feature window length. The following spectral
domain features were extracted: the spectral power density for frequencies corresponding
to tremors (3.5–7.5 Hz) for both accelerometer-axes and gyroscope-axes, and the spectral
power density for frequencies corresponding to bradykinesia (0.5–3 Hz) per accelerometer-
axis, the dominant frequency per accelerometer-axis, and the dominant energy ratio per
accelerometer-axis (dividing the energy within the dominant frequency by the total sum of
the energy in all frequencies).

4.3.3. Classification Analysis

The corresponding EMA items on medication status were used as binary labels for the
extracted sensor data. We trained a logistic regression model in a 5-fold cross-validation.
Applied on wrist-worn sensor data, the classifier differentiated between the medication
states with an area under the receiver operator curve (AUROC) of 0.73 (Figure 2A). Applied
on chest-worn sensor data, the same classifier was not able to discriminate between the
medication states above chance level (AUROC of 0.51) (Figure 2B).

The presented examples show that subjectively reported experiences of medication
fluctuation can be predicted from features derived from the motion sensor data.
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