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Abstract: Halitosis is a highly distressing, socially unaesthetic condition, with a very high incidence
amongst the adult population. It predominantly arises from excessive oral cavity volatile sulphur
compound (VSC) concentrations, which have either oral or extra-oral etiologies (90–95% and 5–10% of
cases, respectively). However, reports concerning age- and gender-related influences on the patterns
and concentrations of these malodorous agents remain sparse; therefore, this study’s first objective
was to explore the significance and impact of these potential predictor variables on the oral cavity
levels of these malodorants. Moreover, because non-oral etiologies for halitosis may represent avatars
of serious extra-oral diseases, the second objective was to distinguish between etiology- (source-)
dependent patterns of oral cavity VSCs. Oral cavity VSC determinations were performed on 116
healthy human participants using a non-stationary gas chromatographic facility, and following a 4 h
period of abstention from all non-respiratory oral activities. Participants were grouped according
to ages or age bands, and gender. Statistical analyses of VSC level data acquired featured both
univariate/correlation and multivariate (MV) approaches. Factorial analysis-of-variance and MV
analyses revealed that the levels of all VSCs monitored were independent of both age and gender.
Principal component analysis (PCA) and a range of further MV analysis techniques, together with
an agglomerative hierarchal clustering strategy, demonstrated that VSC predictor variables were
partitioned into two components, the first arising from orally-sourced H2S and CH3SH, the second
from extra-orally-sourced (CH3)2S alone (about 55% and 30% of total variance respectively). In
conclusion, oral cavity VSC concentrations appear not to be significantly influenced by age and
gender. Furthermore, (CH3)2S may serve as a valuable biomarker for selected extra-oral conditions.
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Dataset License: CC BY 4.0
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1. Summary

Oral malodour (halitosis) is a highly distressing and recurring condition, which affects
a high proportion of the adult population [1]. Indeed, halitosis has a prevalence ranging
from 50% in the USA [2], 66% in China [3], and 78% in Jordan [4]. This disorder mainly
arises from microbial putrefaction of cysteine- and methionine-containing proteins at
anaerobic localizations in the oral cavity [5,6], and features the adverse production of highly
malodorous volatile sulphur compounds (VSCs), predominantly hydrogen sulphide (H2S),
methyl mercaptan (CH3SH) and dimethyl sulphide ((CH3)2S) [1,7]. Optimal putrefactive
activity occurs in low carbohydrate environments at physiological pH and temperatures,
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and limited salivary flow-rates, periodontal diseases, excessive bacterial colonization of
the tongue, unclean dentures, and poor or unsuitable dental restorations, can trigger
halitosis of oral etiology [8–14]. However, extra-oral halitosis, which is responsible for
5–10% of cases, may be sub-classified into non-blood-borne halitosis (arising from the
upper or lower respiratory tracts), and blood-borne halitosis, which is predominantly
caused by (CH3)2S [15,16]. In addition to respiratory tract conditions, a series of systemic,
gastrointestinal and neurological diseases, and the therapeutic administration of selected
drugs, represent common non-oral etiologies [15,17,18].

Interestingly, in 2014 Aydin and Harvey-Woodworth [17] noted that such halitosis
classification systems unfortunately omit some aetiologies, and that such diagnoses are
often derived from unreliable single halitometric and organoleptic assessments. Therefore,
they suggested that the diagnosis of this condition should be focused more greatly on
patient declarations and their social environments. They also proposed a new classification
system for halitosis which covers all possible aetiologies, and this was achieved by the divi-
sion of pathological halitosis into Type 1 (oral); Type 2 (airway); Type 3 (gastroesophageal);
Type 4 (blood-borne); and Type 5 (subjective). However, it was also noted that any halitosis
issue in patients may potentially represent the sums of any possible combinations of Types
1–5, which are superimposed over the background Type 0 (normal physiological odour) of
healthy subjects.

Data presented here arise from a preliminary screening section of a larger study
instigated to establish a potentially mobile, non-stationary oral health screening laboratory
service within the East Midlands area. Indeed, they represent the first series of oral cavity
VSC level determinations performed on a healthy, or perceivably healthy, population of
participants of variable ages and genders, in order to provide a bank of reference data for
future studies. Such future investigations will be focused firstly on the roles that oral and
extra-oral health conditions exert on oral cavity VSC status, and secondly on evaluating
the VSC-suppressing activities of oral healthcare products and their active ingredients,
properties which are required for the effective management and control of oral malodour
in the human population.

Although it is generally accepted that there are age-dependent escalations in oral
malodour intensity [19], to date investigations focused on this putative relationship remain
limited. Therefore, the more specific objectives of this investigation were to (1) explore
any dependencies of oral cavity VSC concentrations on participant donor ages, along with
genders, in a cohort of 116 healthy human participants who had no prior knowledge of
any pre-existing personal halitosis condition; and (2) evaluate correlations between or
orthogonalities (i.e., the independence or uncorrelation) of three VSC predictors using MV
statistical analyses in order to determine their etiologies. Prospectively, we expected a
linear combination (component) of correlated H2S and CH3SH levels for these intra-oral-
sourced VSCs, and a second one for (CH3)2S alone for extra-oral, blood-borne sources
in view of previous reports of relatively strong linear correlations between oral cavity
H2S and CH3SH concentrations, but not between those of (CH3)2S and either H2S or
CH3SH [15]). Since non-oral etiologies for halitosis may be manifestations of serious extra-
oral diseases, the establishment of an effective means of distinguishing between differential
etiology-dependent VSC marker patterns is of vital importance.

Of particular importance to objective (1) are determinations of the frequencies, nature
and concentrations of oral cavity VSCs which are over and above their specified threshold
concentration of malodorous objectionability (TCMO) values in a population of healthy
or perceivably healthy participants, and whether such incidences were participant age-
and/or gender-dependent.

2. Data Description

• Figure 1: Plots of (a) H2S, (b) CH3SH and (c) (CH3)2S oral cavity air concentrations
versus participant age for females (red) and males (blue) for the outlier-free dataset
(n = 114). Correlation coefficient (r) values for these relationships are also provided.
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• Figure 2: Plots of least squares mean ± 95% confidence intervals (CIs) for glog-
transformed and autoscaled oral cavity concentrations of (a) H2S, (b) CH3SH and
(c) (CH3)2S for each age band and gender featured in the analysis-of-variance-based
experimental design applied (results obtained both before and after the removal of
n = 2 possible outlier participant samples are shown).

• Figure 3: A monoclustering heatmap diagram based on Student’s t-tests displaying
‘between-participant’ variations in oral cavity VSC concentrations for each age band
investigated (VSC levels were glog-transformed and autoscaled prior to analysis).

• Figure 4: Plots of (a) CH3SH versus H2S, (b) (CH3)2S versus H2S, and (c) (CH3)2S ver-
sus CH3SH concentrations for the complete oral cavity VSC dataset. 95% confidence
intervals (CIs) for mean values and observations are denoted. A clustering correlation
heatmap is shown in (d).

• Figure 5: PCA scores plot with a maximum of two components demonstrating no
distinctive clusterings between (a) age bands and (b) genders arising from the VSC
dataset. Estimated variance contributions of PC1 and PC2 for PCA models are indicated,

• Figure 6: Correlation circle diagram displaying correlations between all explanatory
variables considered, and principal components 1 and 2 in a principal component
analysis model applied to the complete VSC dataset.

• Figure 7: Estimated standardised coefficients± 95% CIs for logistic regression analysis
models constructed for prediction of the binary participant gender score variable (0
for females, +1 for males) from a model featuring (a) 3 VSC levels alone, and (b), as
(a), but with their 3 first-order interaction effects also considered.

• Figure 8: Agglomerative hierarchal clustering (AHC) dendogram diagram of VSC
variables, revealing clear distinctions between clusters arising from an orally-sourced
combination of correlated oral cavity H2S and CH3SH levels, and that of uncorrelated
(orthogonal) extra-oral (CH3)2S. An automatic entropy-derived threshold limit is
also shown.

• Table 1: Frequency listing of numbers of study participants in each age band with
oral cavity VSC levels greater than their threshold concentrations of malodorous
objectionability (TCMO) limits.

• Table 2: Pearson (n − 1) correlation matrix (correlation coefficient r values) for the
raw oral cavity VSC concentration dataset (partial correlation coefficients are also
provided). VSCs are indicated in the column and row headings.

• Table 3: Principal component loadings vectors of VSC predictor variables (columns)
following Varimax rotation and Kaiser normalisation featured in a principal compo-
nent analysis (PCA) model of the complete dataset.

• Appendix A: Brief Historical Review of the Development and Applications of Methods
for Evaluating Oral Malodour in Humans

• Appendix B: Short Outlines of the Principles and Applications of Multivariate (MV)
Analysis Techniques Employed in Chemometrics and Metabolomics Investigations

• Supplement: Complete VSC dataset with gaseous oral cavity H2S, CH3SH and
(CH3)2S concentrations (ppb) listed in columns 4, 5 and 6 respectively. Corresponding
samples codes, age bands and genders are provided in columns 1, 2 and 3 respectively.

2.1. Study Experimental Design and Criteria

This study involved 116 healthy non-smoking human participants (52 male/64 female)
of age range 18–76 years. Samples were collected under conditions of informed consent ac-
cording to the Declaration of Helsinki of 1975 (revised again in 2013). The positive response
rate to advertisements for study participation was >70%; >65% (n = 116) of these advertise-
ment respondents were deemed to be suitable for inclusion as participants. For primary
screening purposes, all potential participants were required to complete a questionnaire
which requested essential demographic information, medical and dental treatment history,
and any current medications received. Exclusion criteria for this investigation are provided
in the Methods section (Section 3). None of the recruited study participants had any
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prior knowledge of any pre-existing personal halitosis condition. VSC determinations (as
parts-per-billion (ppb) oral cavity air concentrations) were performed on an OralChroma™
portable gas chromatographic (GC) monitoring system (details available in Section 3).

Oral cavity VSC measurements were made at 09.00–10.00 a.m. on sampling days, and
all participants were required to agree to avoid their morning breakfast meal, and refrain
from all further oral activities for a 4 h duration prior to sample collection. Participants
were grouped according to the 18–30, 31–40, 41–50, 51–60, 61–70, and >71 year age bands,
and also according to gender (full data file available in the supplement). H2S, CH3SH
and (CH3)2S levels greater than their reported threshold concentrations of malodorous
objectionability (TCMO) values of 95, 12 and 24 ppb, respectively [15], were detected in 22,
19 and 18 of the 116 recruited participants, respectively.

2.2. Statistical Analysis of Oral Cavity Volatile Sulphur Compound (VSC) Dataset

The experimental VSC dataset was analysed using a 2-factor analysis of variance
(ANOVA), analysis of covariance (ANCOVA) and multivariate (MV) analysis of vari-
ance (MANOVA) models, partial and Pearson correlations, principal component analysis
(PCA), partial least squares-discrimination analysis and -regression (PLS-DA and PLS-R,
respectively), orthogonal partial least squares-discrimination analysis (OPLS-DA), ANOVA-
simultaneous component analysis (ASCA), and an agglomerative hierarchical clustering
(AHC) strategy. XLSTAT2014/2020 (Addinsoft, Paris, France) and MetaboAnalyst 5.0 (Uni-
versity of Alberta and National Research Council, National Institute for Nanotechnology
(NINT), Edmonton, AB, Canada) software modules were employed for these analyses.
The PLS-DA and -R approaches featured qualitative age band or gender, and quantitative
age (years) and gender scores (0 for females, +1 for males) as response variables, respec-
tively. The AHC model employed for clustering was constructed from dissimilarities
between VSC variables based on Euclidean distance, Ward’s method of agglomeration;
an automatic entropy truncation system was featured. Datasets were autoscaled but not
glog-transformed prior to AHC analysis.

ANOVA and MANOVA models tested the statistical significance of the ‘between-
age bands’ and ‘between-genders’ factors, together with the age × gender first-order
interaction effect. For the MANOVA model, the significance of these sources of variation
was determined using Wilks’ test (Rao’s approximation). Datasets for univariate (UV)
analyses were generalized logarithmically (glog)-transformed and autoscaled in view of
significant heteroscedasticities between age and gender test groups for all VSCs, and from
the patterns of residuals arising from raw data ANOVA-predicted values (p < 0.05, Levene’s
test). Autoscaling is a process which involves the mean-centering of column variables (VSC
levels in this case), i.e., subtraction of the VSC column mean value from all observations in
that column, followed by division by the column standard deviation; this gives rise to a
set of 3 ‘standardised’ VSC variables which all have a mean value of zero and a variance
of unity.

Ordinary least squares (OLS) multiple regression was performed using XLSTAT2020
software, with quantitative age or gender scores as the dependent response variables,
and VSC concentrations, both with and without their first-order interaction effects, as
independent ‘predictor’ variables. Equation (1) shows the mathematical model for this
experimental design with all interaction effects considered, where H, M and D represent
H2S, CH3SH and (CH3)2S levels, b0 the model y (ordinate axis) intercept, and b1 to b6
the partial regression coefficients for individual VSC variables (b1 to b3), and the VSC
interaction effects (b4 to b6); eijk denotes fundamental error.

yijk = b0 + b1Hi + b2Mj + b3Dk + b4HMij + b5HDik + b6MDjk + eijk (1)

χ2 contingency table analysis was conducted to investigate associations between the
incidences of participants with one or more VSC level above the TCMO limits and age
bands, and also genders, using an XLSTAT2020 software module. These were 3 × 7 and
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3 × 2 contingency tables for investigating age bands and genders respectively. χ2 Fisher’s
exact test was employed to determine statistical significance (threshold p value 0.050).

Two probable ‘outlier’ samples with oral cavity H2S, CH3SH and (CH3)2S concen-
trations of 1464, 337 and 54 ppm, and 529, 0 and 1044 ppm, respectively, were identified.
Therefore, most of the statistical analysis strategies were applied to datasets both with and
without the inclusion of these values.

2.3. Results
2.3.1. Exploration of Dependencies of Frequencies of Participants with VSC Levels above
Their Threshold Concentrations of Malodorous Objectionability (TCMO) Limits on Age
Bands and Gender: Contingency Table Analysis

Table 1 shows a listing of the numbers of study participants in each age group who
presented with oral cavity concentrations of H2S, CH3SH and/or (CH3)2S in excess of
the TCMO values specified above. A χ2 contingency test conformed that there was no
significant association between age group and VSC nature regarding the numbers of
participants scoring levels which were higher than the specified TCMO thresholds (p = 0.57).
A corresponding contingency table analysis testing the non-independence of genders was
also not significant (p = 0.50).

Table 1. Frequency listing of numbers of study participants in each age band with oral cavity VSC
levels greater than their threshold concentrations of malodorous objectionability (TCMO) limits.

Age Band
VSC

Total
H2S CH3SH (CH3)2S

18–30 5 2 4 23

31–40 5 2 3 16

41–50 7 4 3 27

51–60 3 8 5 22

61–70 2 2 3 14

>71 0 1 0 14

Total 22 19 18 116

Of the n = 18 participants with (CH3)2S concentrations greater than the TCMO cut-
off value, 12 of these values were higher than those of both H2S and CH3SH, and this
may indicate non-oral sources for this VSC in these individuals. Moreover, for 5 of these
participants, (CH3)2S was the only VSC detectable. A total of n = 30 participants had no
VSCs detectable whatsoever; there was no significant association of the frequencies of these
with age band (p = 0.75).

Preliminary plots of raw oral cavity VSC concentrations versus participant ages indi-
cated very poor correlations between all VSCs determined and participant ages (Figure 1),
none of which were found to be statistically significant (i.e., p > 0.05).
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Figure 1. Plots of (a) H2S, (b) CH3SH and (c) (CH3)2S oral cavity air concentrations versus partici-
pant age for females (red) and males (blue) in the outlier-free dataset (n = 114). Correlation coeffi-
cient (r) values for these plots (combined male and female datasets) are provided, and these were 
all found not to be statistically significant. 

2.3.2. Preliminary Statistical Investigations: Correlations with Age and Gender  
Mean ± standard error of the mean (SEM) H2S, CH3SH and (CH3)2S levels found in 

oral cavity air samples were 80.4 ± 17.4, 8.2 ± 3.2 and 18.8 ± 9.1 ppb respectively prior to 
removal of the 2 possible sets of outlier values, and 64.4 ± 12.1, 5.4 ± 1.5 and 9.5 ± 2.0 ppb 
thereafter. Hence, outlier removal diminished SEM values by about 30%, 53% and 78% 
respectively. Plots of VSC concentrations versus participant ages for both males and fe-
males in the outlier-audited dataset confirmed that there were no significant linear corre-
lations between these variables for each VSC determined. Ranges for oral cavity H2S, 
CH3SH and (CH3)2S concentrations before outlier removal were 0–1464, 0–337 and 0–1044 
ppm respectively, and 0–751, 0–128 and 0–169 ppm respectively, after. 

Plots of H2S, CH3SH and (CH3)2S concentrations versus age (Figure 1) revealed no 
significant dependence of these VSC levels on this parameter both prior and subsequent 
to removal of the 2 outlier samples, even when males and females were considered sepa-
rately. 

2.3.3. Analysis of Variance (ANOVA), Analysis of Covariance (ANCOVA) and Multivar-
iate Analysis of Variance (MANOVA) of the VSC Dataset 

ANOVA analysis of the VSC dataset demonstrated that there were no significant de-
pendencies of any oral cavity VSC levels on age bands, nor gender (p > 0.05, Figure 2), 
again for both outlier-containing and outlier-free datasets. Moreover, the first-order age x 
gender interaction effect was also not significant for all analytes. Similarly, performance 
of a corresponding ANCOVA model with the age variable as a quantitative explanatory 

Figure 1. Plots of (a) H2S, (b) CH3SH and (c) (CH3)2S oral cavity air concentrations versus participant
age for females (red) and males (blue) in the outlier-free dataset (n = 114). Correlation coefficient (r)
values for these plots (combined male and female datasets) are provided, and these were all found
not to be statistically significant.

2.3.2. Preliminary Statistical Investigations: Correlations with Age and Gender

Mean ± standard error of the mean (SEM) H2S, CH3SH and (CH3)2S levels found
in oral cavity air samples were 80.4 ± 17.4, 8.2 ± 3.2 and 18.8 ± 9.1 ppb respectively
prior to removal of the 2 possible sets of outlier values, and 64.4 ± 12.1, 5.4 ± 1.5 and
9.5 ± 2.0 ppb thereafter. Hence, outlier removal diminished SEM values by about 30%,
53% and 78% respectively. Plots of VSC concentrations versus participant ages for both
males and females in the outlier-audited dataset confirmed that there were no significant
linear correlations between these variables for each VSC determined. Ranges for oral cavity
H2S, CH3SH and (CH3)2S concentrations before outlier removal were 0–1464, 0–337 and
0–1044 ppm respectively, and 0–751, 0–128 and 0–169 ppm respectively, after.

Plots of H2S, CH3SH and (CH3)2S concentrations versus age (Figure 1) revealed no
significant dependence of these VSC levels on this parameter both prior and subsequent to
removal of the 2 outlier samples, even when males and females were considered separately.

2.3.3. Analysis of Variance (ANOVA), Analysis of Covariance (ANCOVA) and Multivariate
Analysis of Variance (MANOVA) of the VSC Dataset

ANOVA analysis of the VSC dataset demonstrated that there were no significant de-
pendencies of any oral cavity VSC levels on age bands, nor gender (p > 0.05, Figure 2), again
for both outlier-containing and outlier-free datasets. Moreover, the first-order age × gender
interaction effect was also not significant for all analytes. Similarly, performance of a corre-
sponding ANCOVA model with the age variable as a quantitative explanatory variable,
and incorporating the age × gender interaction effect, also found that none of the factors
tested offered any significant contributions towards the variance of all 3 VSCs. Addition-



Data 2021, 6, 36 8 of 27

ally, MANOVA analysis (described in Appendix B.1.1) of the full dataset confirmed that
none of the above effects contributed significantly towards any of the oral cavity VSC
concentrations (Wilks’ test p values ranging from 0.39 to 0.94).
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whereas the right-hand side one shows that following removal of these values. Data were generalized logarithmically 

Figure 2. Plots of least squares mean ± 95% confidence intervals for transformed oral cavity air concentrations of (a) H2S,
(b) CH3SH and (c) (CH3)2S for each age band and gender featured in the analysis-of-variance (ANOVA)-based experimental
design. For each VSC, the left-hand side bar diagram is that obtained prior to removal of n = 2 outlier sample points,
whereas the right-hand side one shows that following removal of these values. Data were generalized logarithmically
(glog)-transformed and autoscaled prior to analysis in view of significant deviations from age band and gender group
homoscedasticities noted for all raw dataset VSCs. Abbreviations: F, female; M, male.
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A monoclustering heatmap diagram for the each of the different study age-bands
is shown in Figure 3, with both up- and downregulated VSC levels indicated for all
participants recruited to the study. Clearly, no ‘between-age band’ differences between VSC
concentrations are visible in this diagram. However, application of the AHC technique to
these data provided evidence for the division of the VSC potential predictor variables into
two clusters, one consisting of a combination of H2S and CH3SH, the second with (CH3)2S
alone. In view of this, this clustering of these VSC variables was further explored using a
range of further MV and clustering analysis techniques (Sections 2.3.5 and 2.3.7).
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Figure 3. Agglomerative hierarchal clustering (AHC) monoclustering heatmap diagram based on Student’s t-tests applied
to the n = 114 outlier-free dataset displaying ‘between-participant’ variations in oral cavity VSC concentrations for each age
band investigated, which are colour-coded on the far right-hand side of the diagram. VSC levels were glog-transformed
and autoscaled prior to analysis. Transformed VSC catabolite concentrations are shown on the right-hand side ordinate axis:
deep blue and red colourations represent extremes of low and high levels respectively. The left-hand side of the plot shows
results arising from an AHC analysis of the 3 VSC variables monitored, which reveals 2 major clusterings of these: the first
containing a combination of H2S and CH3SH, the second (CH3)2S alone.

2.3.4. Correlations between Oral Cavity VSC Levels

Plots showing results from the regressions of CH3SH on H2S, (CH3)2S on H2S and
(CH3)2S on CH3SH are shown in Figure 4a–c respectively. Clearly, there is a strong linear
correlation between CH3SH and H2S (r = 0.755, p ≤ 10−21), but only a weak, albeit still
statistically significant relationship between (CH3)2S and H2S (r = 0.258, p < 0.006); that be-
tween (CH3)2S and CH3SH concentrations (r = 0.045) was not significant. This is confirmed
by the correlation heatmap shown (Figure 4d), which also shows two correlation-based
clusterings containing (1) a composite of CH3SH and H2S, and (2) (CH3)2S alone. This
again provides evidence for differential physiological site sources of these VSC clusters.
A corresponding correlation matrix is displayed in Table 2. Both Pearson and partial
correlation coefficients are listed therein.

Table 2. Pearson (n−1) correlation matrix (r values) for the raw oral cavity VSC concentration dataset
(partial correlation coefficients are provided in brackets). Significant r values are depicted in bold.
* p < 0.006; ** p < 2 × 10−22.

VSC Variables H2S CH3SH (CH3)2S

H2S 1 0.755 (0.770) ** 0.258 (0.342) *

CH3SH 0.755 (0.770) ** 1 0.045 (−0.236)

(CH3)2S 0.258 (0.342) * 0.045 (−0.236) 1

Predictions of quantitative age and gender score ‘response’ variables using OLS
regression analysis featuring all 3 VSC levels as potential predictor variables were all
unsuccessful, with none of these variables proving to be statistically significant in both
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cases. Incorporation of the three first-order VSC interaction effects in the model failed to
improve this.

Data 2021, 6, x  10 of 29 
 

 

 
(a) 

 
(b) 

Figure 4. Cont.



Data 2021, 6, 36 11 of 27
Data 2021, 6, x  11 of 29 
 

 

 
(c) 

 
(d) 

Figure 4. Plots of (a) CH3SH versus H2S, (b) (CH3)2S versus H2S, and (c) (CH3)2S versus CH3SH concentrations for the 
complete oral cavity VSC dataset. Dotted and solid lines represent 95% CIs for mean values and observations, respectively. 
(d) Correlation heatmap diagram showing a strong positive correlation between CH3SH and H2S, but much less so for any 
other matched set of 2 VSCs. The correlation of H2S with (CH3)2S is clearly stronger than that observed between CH3SH 
and (CH3)2S. Also shown is a correlation-based AHC analysis of these 3 ‘predictor’ variables (left-hand ordinate axis), 
again demonstrating two significant clusterings, the first comprising a H2S/CH3SH admixture, the second (CH3)2S alone. 

Figure 4. Plots of (a) CH3SH versus H2S, (b) (CH3)2S versus H2S, and (c) (CH3)2S versus CH3SH concentrations for the
complete oral cavity VSC dataset. Dotted and solid lines represent 95% CIs for mean values and observations, respectively.
(d) Correlation heatmap diagram showing a strong positive correlation between CH3SH and H2S, but much less so for any
other matched set of 2 VSCs. The correlation of H2S with (CH3)2S is clearly stronger than that observed between CH3SH
and (CH3)2S. Also shown is a correlation-based AHC analysis of these 3 ‘predictor’ variables (left-hand ordinate axis), again
demonstrating two significant clusterings, the first comprising a H2S/CH3SH admixture, the second (CH3)2S alone.
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2.3.5. Application of Multivariate Analysis Techniques: Principal Component Analysis
(PCA), Partial Least Squares-Discrimination Analysis (PLS-DA), Partial Least
Squares-Discrimination Regression (PLS-R), Orthogonal Partial Least
Squares-Discrimination Analysis (OPLS-DA), Principal Component Regression (PCR) and
ANOVA-Simultaneous Component Analysis (ASCA)

PCA and PLS-DA scores plots confirmed that there were no significant MV distinc-
tions between any age bands, nor between gender classifications—PCA scores plots for
the investigation of possible differences between different age bands and genders are
shown in Figure 5a,b respectively. PLS-DA Q2 values of −0.04 and −0.35 were found for
2-component models considering age bands and genders as qualitative output factor classi-
fications respectively (a value of +0.50 serves as a threshold cut-off value for an acceptable
level of predictive classification success). Similarly, OPLS-DA also demonstrated that VSC
concentration variables did not offer any ability to distinguish between participant age
bands and genders. Likewise, both PLS-R and PCR analyses, with ages and gender scores
as quantitative response variables, confirmed that none of the three VSC variables, nor the
2 components arising therefrom, served as significant features for predicting participant
ages or gender scores.

A two-factor ASCA model, again considering the age band and gender factors, and
their corresponding first-order interaction, as potential contributory sources of variation,
similarly demonstrated that none of these effects were statistically significant; permutation
testing p values obtained for these effects were 0.12, 0.57 and 0.70 respectively.

Notwithstanding this, PCA demonstrated that the 3 VSC variables were effectively
segregated into two clear orthogonal components, the first containing a linear combination
of H2S and CH3SH (loading vectors 0.92 and 0.95 respectively), the second (CH3)2S alone
(loading vector 0.99), as shown in Figure 6 and Table 3. The PC loadings vectors of variables
represent their degree of correlation with specific PCs; values of these which are lower
or greater than the threshold values of −0.40 (for negative correlations with that PC) or
+0.40 (for positive correlations with that PC), respectively, are generally accepted as ‘cut-off’
thresholds for significance.

Table 3. Principal component (PC) loadings vectors obtained from a PCA model of the complete
VSC dataset following Varimax rotation and Kaiser normalization (squared cosines of these loadings
are provided in brackets). Loadings vectors in bold indicate those which are considered to be very
highly significant (i.e. ≥0.40). These data indicate a common oral-based source for H2S and CH3SH,
and an orthogonal extra-oral one for (CH3)2S, which is presumably predominantly blood-borne. An
explanation of the Varimax rotation and Kaiser normalization processes is provided in Appendix B.1.2
of Appendix B.

PC Loadings after Varimax Rotation

VSC PC1 PC2

H2S 0.92 (0.84) 0.22 (0.050)

CH3SH 0.95 (0.90) −0.05 (0.003)

(CH3)2S 0.07 (0.005) 0.99 (0.99)

Consistently, eigenvalues (i.e., the mean number of VSC variables loading on each PC)
for PC1 and PC2 were 1.81 and 0.97 respectively, i.e., very close to their optimal values
of 2.00 and 1.00, respectively, for a perfect model with two VSCs loading on PC1, and a
single one loading exclusively on PC2. These results are fully compatible with the sources
of these malodorous agents, i.e., H2S and CH3SH from the oral environment, and (CH3)2S
from an extra-oral source. However, the very weak loading of the latter VSC on PC1 may
indicate that a small proportion of it also arises from the oral environment.

These VSC variable component loadings were confirmed with the PLS-R and PCR
analysis strategies applied, in addition to the PLS-DA approach. Indeed, the PLS-R and
PLS-DA models developed exhibited strong loadings of H2S and CH3SH on component 1
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(54.4% and 51.4% of total variance explained for datasets with and without outlier samples
included, respectively), and (CH3)2S alone on PC2 (27.3% and 30.6% of total variance
explained, respectively).

2.3.6. Logistic Regression Analysis Models

Subsequently, logistic regression analysis (logRA) was applied as an alternative pro-
tocol in an attempt to predict age bands and gender scores of participants. Models were
developed both with and without the consideration of VSC interaction effects, and also
the use of a PCR-logistic regression variant (logPCR) for the binary gender score variable.
However, all forms of logRA were completely ineffective in predicting the multinomial
gender age band variable, and both this and the logPCR approach were unsuccessful in
distinguishing the binary gender score variable. Indeed, overall classification success rates
were only 26.4% and 27.4% for the logRA technique applied to age bands without and with
the inclusion of first-order VSC interaction effects, respectively, Moreover, corresponding
success rates for binary gender score classification were only 48.3% and 50.0%. Bar dia-
grams of standardized coefficients for VSCs and their corresponding 95% CIs for gender
score prediction models, with and without the incorporation of second-order interaction
effects, are shown in Figure 7. Clearly, none of the VSC variables were found to contribute
towards gender score variances significantly.
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= 114 datapoints in total), whereas in (b), these outliers were retained (n = 116 in total). Estimated variance contributions of
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2.3.7. Agglomerative Hierarchal Clustering (AHC) Analysis Model Conducted with
Truncation Threshold Limit Setting

Finally, an additional AHC analysis model performed with the computation of an
automatic entropy truncation threshold limit confirmed resolution of the VSC predictor
variables into two highly-significant clusterings: (1) an H2S/CH3SH composite, and (2)
(CH3)2S exclusively (Figure 8). Indeed, the dotted horizontal truncation limit displayed in
this figure indicates a clear dissimilarity between these two clusters, but not between H2S
and CH3SH. As expected, AHC analysis of the samples themselves failed to facilitate the
clustering of the oral cavity air samples collected into differential participant age band, nor
gender, classifications.

A repeat of this AHC analysis conducted following removal of the n = 2 possible
outlier samples gave rise to exactly the same independent H2S/CH3SH combination and
(CH3)2S only clustering results (data not shown).
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Figure 6. Correlation circle diagram displaying correlations between all explanatory variables
considered, and principal components 1 and 2 (PC1 and PC2 respectively) in a PCA model applied to
the complete VSC dataset (active VSC variables are indicated in red). Total % variance contributions
for PC1 and PC2 are indicated: these are consistent with two VSCs loading on PC1 (H2S and CH3SH),
and one on PC2 ((CH3)2S).

2.4. Discussion of Results Obtained

Results acquired in this study provided evidence that for a large group of healthy, or
perceivably healthy human participants, there was no statistically significant dependence
of oral cavity VSC concentrations on the demographic variables ages and gender. Moreover,
there was also no age band- or gender-related differences between the frequencies of these
healthy participants with oral cavity H2S, CH3SH and (CH3)2S levels above their specified
TCMO limits (approximately 20% for each one). From the OralChroma™ manufacturer, a
significant oral malodour condition exists when the oral cavity concentrations of H2S or
CH3SH exceed 112 and 26 ppb respectively, the former being very similar to that specified
in [15], although the latter is 2-fold higher. Nevertheless, the possibility that perhaps some
the about 15% of healthy participants with (CH3)2S levels above the TCMO limit having
unknown or unspecified extra-oral conditions giving rise to these high concentrations
cannot be ruled out. Notably, in a related baseline study, Snel et al. [20] found that the
median oral cavity (CH3)2S level in the morning awakening breath of a group of healthy
subjects was 20 ppb (range 0–217 ppb), a value very similar to its TCMO value of 24 ppm.

Further support for the lack of age- or gender-dependencies of oral cavity VSC contents
was provided by each of the data analysis strategies applied, which were of a highly
rigorous nature, and which included the tracking of sample outliers. Factorial ANOVA
coupled with the MV analysis techniques PCA, PLS-DA and OPLS-DA confirmed that all
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VSC concentrations determined were independent of both age band and gender. Indeed,
all these MV statistical techniques applied, along with AHC analysis, clearly demonstrated
that the VSC predictor variables were partitioned into two clear orthogonal components,
the first containing orally-generated and strongly correlated H2S and CH3SH levels, the
second only extra-orally-formed (CH3)2S concentration, which was found to be much less
correlated or uncorrelated with those of H2S and CH3SH. These VSC variable component
loadings were confirmed using the PLS-R, PCR and logPCR strategies applied, with age
and gender score used as quantitative response variables.

Such a conclusion would not be readily derivable from the application of UV statistical
analysis techniques alone such as OLS and logRA since these methods are unable to cater
for variable multicollinearities. Hence, it appears that MV methods of statistical evaluation
rather than ordinary least squares (OLS) and logRA multiple regression techniques are best
suited to the analysis of relatively simple VSC models featuring only 3 ‘predictor’ variables.
In addition to the powerful positive correlation of H2S and CH3SH concentrations observed
here, multicollinearity variance inflation factor (VIF) statistics for VSC variables in OLS
models constructed, which varied from 1.14–2.63 for the n = 116 raw VSC dataset, and
1.14–1.30 for the n = 114 glog-transformed and autoscaled one without 2 likely outlier
samples, were considered to be statistically significant (VIF values of 1–5 usually indicate
moderate, albeit significant correlations) [21]. This again fully justifies the use of more
complex MV analysis approaches for analysis of the VSC dataset acquired here.
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However, since it is certainly conceivable that not all (CH3)2S arises from a non-oral,
blood-borne source, the marginal correlation of H2S level with it found here (r = 0.258, and
0.342 for its corresponding partial correlation coefficient), which was also highly statistically
significant (p < 0.006), may indicate this.

The oral generation of malodorous VSCs and other bacterial catabolites is commonly
linked to microbial infiltration on or within the tongue dorsum. dental and mucosal
surfaces, and periodontal pockets, predominantly that of gram-negative proteolytic bacteria.
Notably, the major source of such microbial-derived metabolic by-products is residual food
fragments which adhere to oral surfaces. However, the fermentation of proteins available
in oral fluids, and in lysed and desquamated cells, represents a less frequent source [22].

In 2011, Porter et al. [23] reviewed the influence and reciprocity of diet and gas-
trointestinal (GI) tract disease on oral malodour. Although the consumption of selected
odiferous foods such as garlic or onions, etc., gives rise to a transiently-modified, often
adverse breath odour, established halitosis conditions predominantly result from relatively
common oral diseases, e.g., gingivitis or periodontitis. Notwithstanding, there is now
some evidence available that oral malodour may also arise from diseases of the upper GI
tract, and that future therapeutic strategies for halitosis may be facilitated by the influence
of selected dietary agents which have the ability to inhibit the production of VSCs by
bacterial enzymes.
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Figure 8. Agglomerative hierarchal clustering (AHC) dendogram of VSC variables revealing clear distinctions between
clusters arising from an orally-sourced combination of correlated oral cavity H2S and CH3SH levels, and that of uncorrelated
(orthogonal) extra-oral (CH3)2S. The AHC model involved a consideration of maximum dissimilarities from Euclidean
distances, and a computed two-factor model was found to represent the most significant and effective one. The dissimilarity
threshold limit (horizontal broken line) was determined via an automatic entropy truncation method, and this confirmed a
clear distinction between the H2S/CH3SH composite cluster and that of (CH3)2S. The dataset analysed was autoscaled
prior to analysis.

Snel et al. [20] also reported the morning breath VSC contents of a group of healthy con-
trol participants, and for this purpose their study involved the collection of 3 samples per
individual at different time-points following morning wake-up, specifically immediately
after waking, and then before and after a breakfast meal; all 3 samples were collected within
an estimated 1 h period. Samples collected immediately following waking (morning breath)
were found to contain the highest VSC levels, followed by significant reductions thereafter.
However, no significant differences in VSC levels between the pre- and post-breakfast
samples were found.

Hence, on considering study timelines, it would appear that the pre-breakfast samples
collected during the reference investigation reported in [20] probably best approximates
those collected in the current study, and mean levels determined in these were about
50, 40 and 20 ppb for H2S, CH3SH and (CH3)2S, respectively. These values certainly do
not differ significantly from those found in the current study, in datasets both with and
without outlier sample inclusion. Ref. [20] also found that H2S levels were very significantly
correlated with those of CH3SH (r = 0.65), but not between (CH3)2S concentration and
either H2S or CH3SH. Hence, these results are entirely consistent with those found in our
study (corresponding r value 0.755, Table 2).
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Again, Snel et al. [20] found no significant correlations of any VSC level with par-
ticipant ages, as observed here. However, statistically significant increases in H2S and
CH3SH concentrations, albeit with p values only <0.05, were found in female participants
over those of males, but not so for (CH3)2S. However, this effect may be limited to early
morning breath samples only. Nevertheless, the influence of gender on oral cavity VSC
concentrations remain somewhat controversial. Indeed, in a very large group of 2672
daily-sampled Japanese adults, no significant gender-mediated differences in VSC levels
were found in a wide series of age groups tested [2].

From reference [20], it was also concluded that early morning breath should be recog-
nised as a surrogate objective for therapeutic interventions focused on improvements in
breath quality. Moreover, these researchers also found a considerable day-to-day variation
in VSC levels that were not associated with dietary (breakfast) intake.

2.5. Conclusions

In conclusion, no evidence for the dependencies of oral cavity VSC concentrations
on participant donor ages, nor genders, was obtained for a healthy cohort of human
participants. MV data analysis provided evidence that oral cavity VSCs may indeed arise
from different localizations, the first intra-oral sources, i.e., from Gram-negative bacterial
preponderance at tongue dorsal. dental and mucosal surfaces, and/or within periodontal
pockets (a combination of H2S and CH3SH), the second an extra-oral, presumably blood-
borne one ((CH3)2S alone). Such data analysis techniques are, therefore, recommended
for future investigations of halitosis and its VSC origins in a range of human diseases,
both oral and extra-oral. Intriguingly, excessive oral cavity air (CH3)2S levels may serve as
valuable indicators of extra-oral disease pathogeneses.

2.6. Potential Limitations and Strengths of the Study

One limitation of this study is the absence of a full clinical assessment to evalu-
ate the oral health status of participants, although potential participants were excluded
from the study if they indicated that they have had any current or recurring serious oral
health/dental condition, or if they had undergone any treatment for one within 6 months
of the pre-specified study sampling day. Moreover, it should also be acknowledged that
self-reporting participant bias may also have exerted a significant impact on our research
findings. However, the exclusion criteria listed were very rigorous (Section 3.1).

Another complication is that the resting salivary flow-rate of participants was not
determined in this study; this parameter, along with probing pocket depths of ≥5 mm,
bleeding on pocket probing, and elevated tongue coating scores are also considered to
represent powerful contributory criteria which influence oral malodor findings [24].

One additional consideration is that only a single set of 3 VSC determinations was
made per participant in view of study time constraints. Notwithstanding, if two consecutive
determinations were made per participant, unfortunately they would not represent exactly
matching duplicates since an 8 min. period was required for complete VSC analysis, and
hence the second ‘replicate’ oral cavity air sample for analysis would not be collected until
about 10 min. later.

A further limitation is that this study was restricted to healthy or perceivably healthy
control participants only without any potentially confounding serious chronic medical or
oral health conditions. However, a major expansion of this halitosis study to participants
with a wide variety of clinical conditions is planned for the near future. This future study,
with a meticulously planned protocol and experimental design, will conceivably provide
valuable information regarding relationships between the presence and/or severity of
such conditions (e.g., non-communicable chronic diseases such as cancer, cardiovascular
disorders and diabetes) and patterns of oral cavity VSC levels, which may be extended to
an evaluation of halitosis incidence and VSC sources in such patients.

The strengths of this study largely arise from the relatively large sample size (>100 par-
ticipants) and the very favourable response rate of requested participation. Indeed, this
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permitted and facilitated the application of a series of MV statistical analysis techniques,
which assisted with the control of potentially confounding factors. Moreover, this large
sample size facilitates extrapolation of the results acquired to populations with similar
demographic attributes.

3. Methods
3.1. Exclusion Criteria

Participants were excluded from the study if they were pregnant; were aged <18 years;
had any serious or chronic medical condition such as diabetes, cardiovascular diseases or
cancer, etc.; were tobacco smokers; had any recorded respiratory tract infections 2 years
prior to the sampling test day; had any systemic disease associated with oral malodour,
including renal illness, gastrointestinal disorders and cirrhosis, etc.; had a record of dental
decay; had any periodontal or dental caries treatment within the previous 6 months; had
an absolute minimum of 12 teeth; had any form of removable or fixed dental prosthe-
ses; were not under any medication which may interfere with VSC generation for the
previous 6 months, e.g., antibiotics, antidepressants and/or antihistamines. Participants
were also excluded from the investigation if they had received any form of medication
during the 7 days prior to or on their VSC testing day. There was no upper age limit for
study participation.

On their VSC assessment testing day, eligible participants were requested to forgo
their early morning breakfast meal, and all further oral activities 4 h prior to sample
collection, including their usual oral hygiene practices (including the use of toothpastes,
oral rinses and breath fresheners), chewing gum and tobacco smoking. Participants were
also requested to avoid eating odorous foods and drinking alcoholic beverages within a
48 h period prior to their assessment day.

3.2. Details of VSC Measurements

Oral cavity VSC measurements were made at 09.00–10.00 am on all sampling days
involved (n = 116 participants). VSC determinations were conducted on an OralChroma™
portable GC monitoring system. Participants were requested to sit back on an appropriate
stable chair. Primarily, a sterile plastic 1.00 mL volume syringe was inserted deep into their
oral cavities, which was then retained there for a duration of 3.0 min. whilst participants
closed their mouths tightly. Subsequently, the plunger was slowly pulled, pushed in
again and then pulled to a 1.0 mL volume prior to removal from the mouth (care was
taken to avoid allowing the syringe to come into contact with the tongue or saliva). A
dedicated VSC analysis needle was then attached to the syringe unit. Sampled 1.0 mL
volumes of oral cavity air were then reduced to exactly 0.50 mL via ejection, and these
aliquots were injected into an OralChroma™ device (duration between sampling and
GC analysis injection loading ≤5 s). The analysis was then commenced automatically.
Participants refrained from talking for 5 min. prior to measurement, and also consented
to breathe through their noses during the collection of oral cavity air samples via syringe
insertion. Results were recorded as ppb oral cavity H2S, CH3SH and (CH3)2S concentrations
(Table S1).

Although the specificity of VSC determinations made using this instrument may be
potentially influenced by interfering levels of oral cavity acetaldehyde and isoprene [25],
previous investigations have noted that they do not affect VSC analysis results significantly
in view of their relatively very low concentrations in this environment [15,26]. The sensi-
tivity of VSC determinations made by the OralChroma™ instrument is reported as about
3 ppb [17].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/data6040036/s1, Table S1: Complete VSC dataset with gaseous oral cavity H2S, CH3SH and
(CH3)2S concentrations (ppb).

https://www.mdpi.com/article/10.3390/data6040036/s1
https://www.mdpi.com/article/10.3390/data6040036/s1
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Appendix A

Brief Historical Review of the Development and Applications of Methods for Evaluating Oral
Malodour in Humans

Determinations of the precise molecular nature and magnitude of oral malodour
principally require reliable, sensitive, accurate and precise experimental and instrumental
techniques, and previously reported strategies available for the monitoring of VSCs include
organoleptic (subjective) methods [27,28], their direct determination by conventional gas
chromatography (GC) combined with flame-photometric detection systems [29], a compos-
ite of the above two approaches [30], cryo-osmoscopy [31], or the time-consuming, onerous
culture of periodontal pocket and plaque exudates in selected bacteriological culture me-
dia [13]. Notwithstanding this, to date there are only a limited amount of experimental
data available on the applications, reliabilities and reproducibilities of such bioanalytical
strategies, and there are sometimes many complications experienced with the exclusion of
potentially interfering participant factors, such as the menstrual cycle, variations in oral
hygiene control, circadian variation, smoking habits, and climate in general [32]. Further-
more, subsequent to evacuation of malodorous gases from the oral cavity, their restoration
rate and extent to this environment remain debatable.

However, in the early 1990s a portable industrial H2S/CH3SH-specific VSC monitor
(halimeter) became available, and early reports outlining its successful application in clini-
cal practice are available in [33,34]. Indeed, highly significant correlations between these
measurements and those achieved via synchronous organoleptic assessments completed
by a series of rating judges have been reported [33]. The electrochemical VSC monitor
involved consisted of a voltammetric sensor which drew a sample of oral cavity air across
an electrocatalytic sensing electrode operating at a potential of +0.50 V; this operating
potential is sufficient to ensure effective and reliable responses from the oxidation of
electron-donating VSC thiol equivalents, i.e., those of CH3SH and H2S; redox potentials
(Eo) of thiol/disulphide couples generally lie within the −0.20 to +0.40 V range. These
electrochemical processes give rise to an electric current, the magnitude of which is di-
rectly proportional to total chemically-reducing, oral cavity air VSC levels. This current is
transformed to a voltage, which, is subsequently transferred to a meter which provides
gaseous VSC levels in parts-per-billion (ppb) over a 0–1000 ppb calibration range. No-
tably, oral cavity VSC measurements made with this device have been shown to be more
precise and reproducible than those obtained by subjective, organoleptic panel methods.
Moreover, there is evidence that they exhibit a greater sensitivity to diminutions in VSC
concentrations induced by oral healthcare product treatments [33,35]. However, as noted
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above, a disadvantage of this device was that it was only able to monitor the combined
reducing activity of only two VSCs, namely H2S and CH3SH, and not that of (CH3)2S.
Another early example of the rigorous employment of this device can be found in the study
described in [36], in which it was employed to monitor the ability of a series of oral health
formulations to suppress oral cavity VSC (combined H2S and CH3SH) concentrations in a
group of n = 6 participants, who underwent no fewer than 7 treatment regimens; halimeter
response measurements were made at 5 diurnal time-points.

Advantageously, since 2011, a more specific, non-stationary gas chromatographic
VSC determination instrument has been made available (OralChroma™, Nissha Co., Ltd.,
Nakagyo-ku, Kyoto 604–8551, Japan), reviewed in [37]). This device offers many advan-
tages over the above halimeter facility, and has the ability to specifically determine ppb oral
cavity ppb concentrations of H2S, CH3SH and CH3SCH3 concomitantly in a measured vol-
ume of air directly sampled from the oral cavity via a disposable plastic syringe; each level
is displayed on a convenient display panel. An example of its use, which demonstrates its
ability to determine the longevity of the VSC-neutralising actions of an oral rinse product,
is available in [38]. Of course, this VSC monitor offers many bioanalytical benefits over
more complex, traditional GC-based methods, the routine use of which are prohibitively
restricted at most ‘point-of-care’ clinical sites, such as dental surgeries, health centres or
pharmacies, in view of their preclusively large sizes, costs, and requirement for specialist,
dedicated technical staff for their management and operation. Hence, further advantages
offered by this readily portable VSC determination instrument include markedly lower
costings than those required for the purchase, sample processing and operation of more
conventional large GC facilities, rapid sample throughput, facile ‘on-site’ use in clinical
settings, no demands for specialist support technical staff, and the ease of oral cavity air
sample collection for analysis. In view of these benefits, this OralChroma™ facility was
employed for the purpose of oral cavity VSC determinations in this study.

Appendix B

Appendix B.1 Short Outlines of the Principles and Applications of Multivariate (MV)
Analysis Techniques

Employed in Chemometrics and Metabolomics Investigations.
For the benefit of readers who are unfamiliar with MV statistical analysis tech-

niques frequently employed in ‘state-of-the-art’ metabolomics and chemometrics investiga-
tions, an outline of some of the more commonly used approaches are provided below in
Appendices B.1.1–B.1.6, Readers are referred to refs. [39,40] for further information.

Appendix B.1.1 Multivariate Analysis-of-Variance (MANOVA)

MANOVA represents a generalisation of ANOVA which extends to the study of
several outcome variables simultaneously, and is generally applicable to datasets which
have several inter-related outcome variables which cannot be satisfactorily addressed by
consideration of only a single variable. In such cases where the outcome variables are
correlated, analysis of these independently as single variable systems usually provides
models which are highly unsatisfactory, and therefore an alternative analysis, which
considers all response variables simultaneously, is required. Hence, when applied to
such systems, MANOVA serves to explore MV outcomes observed for all explanatory
variables considered, for example age band/age, gender/gender score and their first-order
interaction effects as possible contributors to 3 molecularly-distinct VSC levels as in this
study. If any of the above 3 omnibus MV evaluations (specifically, the main factor effects
of gender score/gender and age band/age, together with the gender band/gender x age
band/age interaction sources of variation) are statistically significant, subsequent post-hoc
tests may be performed to determine the sources of group differences (Wilks’ test employed
here is one example).
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Appendix B.1.2 Principal Component Analysis (PCA)

PCA is an unsupervised MV analysis process which involves the computation of a
relatively small number of principal components (PCs) from datasets usually containing
large numbers of possible individual ‘predictor’ variables. Each PC consists a linear
combination of a series of such predictors which are correlated with each other, either
positively or negatively, and either strongly or moderately so. The first, most prominent
PC (PC1) accounts for the greatest amount of dataset variation, and this is then followed by
the second PC (PC2), which contains a second set of correlated variables and is orthogonal
to (i.e., completely uncorrelated with) PC1, and which accounts for the second largest
amount of dataset variation, Likewise for the third, fourth and fifth PCs (PC3, PC4 and
PC5 resepctively), along to the nth PC value. Hence, PCA is a technique that can condense
medium, large or very large-sized datasets, sometimes with several thousand possible
predictor variables, to a much smaller number of uncorrelated PCs, each one containing a
combination of n correlated, possible predictor molecules. Hence, this strategy, and also
that of factor analysis, has the ability to determine differential sources of or explanations
for orthogonal PCs. Variables such as biomolecule concentrations which load strongly on
the same PC often provide similar or related information, diagnostic or otherwise, since
they are correlated with each other and, therefore, they may arise from the same source,
for example the same metabolic pathway in metabolomics investigations. Hence, PCA is
used to effectively alter the basis of complex large predictor variable datasets, frequently
by employing only the first 2, 3 or 4 PCs and disregarding the remainder.

PCA is often used for the purpose of exploratory data analysis, for generating valuable
predictive models, and as a primary MV analysis approach for dataset ‘policing’, the latter
including the detection of statistical ‘outlier’ samples, i.e., those which do not ‘fit-in’
with, or appear ‘foreign’ to, the bulk of those remaining. The dimensionality reduction
achieved via the projection of sample data points (e.g., individual VSC concentrations
as in this study) onto up to 5 or less of the first, most important PCs results in a much
lower-dimensional dataset, whilst maintaining as much of the original’s total variation as
possible. PC1 can alternatively be viewed as a ‘direction’ which maximizes projected data
variance, while {\displaystyle iˆ{\text{th}}}PC2 may be perceived as a direction ‘orthogonal’
to {\displaystyle i-1}PC1, which likewise also maximizes projected dataset variance.

In this investigation, which is actually a very simple dataset because it features a
total of only 3 VSC variables, both H2S and CH3SH strongly loaded onto PC1 since they
were strongly positively correlated, whereas (CH3)2S, which was largely uncorrelated with
both these PC1-loading VSCs, loaded onto PC2 alone. In PCA, eigenvalues represent the
mean number of original variables loading onto PC1, PC2, PC3, etc., and hence for the
dataset explored here, this parameter was 1.81 (close to 2.00) for PC1, which contains
2 strongly-loading VSCs (H2S and CH3SH), whereas for PC2, the eigenvalue was 0.97, a
value very close to 1.00 since only 1 VSC strongly loads thereon ((CH3)2S alone). In more
complex PCA models with larger or much larger numbers of potential predictor variables,
the significance of individual variables loading on selected PCs is usually determined by a
consideration of their PC loadings vectors: those lower or greater than generally accepted
threshold limit values of –0.40 (for negative correlations with that PC) or +0.40 (for positive
correlations with that PC), respectively, are viewed as significant. Corresponding squared
cosine values of these loadings are also used for this purpose.

In PCA, a Varimax rotation represents a modification of coordinates which maximizes
the sum of the variances of squared variable loadings. Therefore, this rotation procedure
gives rise to loadings coefficients (vectors) which are usually high or close to zero, with
only a limited number of intermediate values. This process is clearly suited to datasets
containing only a few explanatory variables, such as the VSC dataset explored here which
has 3 variables, and clear Pearson or partial correlations between only 2 of them. The
major objective of this approach is to link each variable to a single PC only, so that the
interpretation of PCA models are simplified.
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Kaiser normalization is a method focused on the attainment of solution stabilities
throughout all samples collected and analysed. With this approach, variable loadings are
rescaled back to their original size following rotation, i.e., equivalent weights are given to
all variables on rotation performance.

Appendix B.1.3 Principal Component Regression (PCR), Partial Least-Squares-Regression
and -Discriminant Analysis (PLS-R and PLS-DA respectively), and Orthogonal Projections
to Latent Structures-Discriminant Analysis (OPLS-DA)

Principal component regression (PCR) is a MV analysis technique which is built on
PCA, and is employed for determining the statistical significance of independent explana-
tory (predictor) variables and estimating their regression coefficients in an OLS regression
model designed to predict a quantitative dependent variable, e.g., actual participant age
or gender score (0 for females and +1 for males) in the reported investigation. However,
instead of regressing the dependent quantitative variable on the explanatory variables
directly, sample PC score values of PCs arising from the individual explanatory variables
are employed as regressors in the regression equation. However, typically only a sub-set
of the most important PCs is used for this purpose, so that PCR is a regularized system,
which also serves as a class of shrinkage estimator.

PLS-R represents a technique that is related to both PCA and PCR MV analysis strate-
gies, and is focused on seeking maximum variance hyperplanes between a quantitative
response and often many, independent, albeit explanatory variables which again are re-
duced in dimensionality in the form of potentially predictive orthogonal components.
Indeed, it fits a linear regression model by projecting predictable quantitative (y) and
known observed variables (xi) onto a new ‘space’. In view of this, PLS can be classified as a
bilinear factor model. Partial least squares-discriminant analysis (PLS-DA) is a variant of
PLS-R which is very commonly used in metabolomics investigations when the dependent
response variable or score is qualitative rather than quantitative, for example positive or
negative for a particular medical condition.

PLS-R or -DA are utilised to determine fundamental relationships between explanatory
variable xi and response variable y matrices, and serves as a latent variable strategy for
modelling the covariance structures within these two spaces. PLS models assist researchers
by discovering the multidimensional direction in the x space that expounds the maximal
multidimensional variance direction in the y space. These techniques are particularly
valuable when the matrix of potential explanatory x variables is larger in size than the total
number of observations made (n), and particularly when there is a multicollinearity (i.e.,
multi-correlation) amongst the x predictor variables, which is certainly not an unusual
event in metabolomics investigations. As we might expect, unless careful regularisation
is applied, standard multiple regression (OLS) approaches completely fail to provide
successful predictive models in such situations.

Notwithstanding this, a more recently developed MV analysis strategy is orthogonal
projections to latent structures-discriminant analysis (OPLS-DA), and this involves resolu-
tion and separation of a continuous explanatory variable xi dataset into two factors, one
containing predictive data, the other containing uncorrelated, unpredictive information,
when employed to determine the nature of a discrete variable such as a disease classi-
fication. This process gives rise to an enhanced level of diagnostics in metabolomics or
biomarker research, along with a more easily understandable visualization system for these
effects. However, this development only improves the interpretabilities, and not the pre-
dictivities, of PLS models. Like PLS-DA, this technique is also employed extensively in the
diagnosis of human diseases from datasets encompassing the biomolecular compositions
of biofluids and/or tissues, and also for their prognostic stratification.

Appendix B.1.4 ANOVA Simultaneous Component Analysis (ASCA)

The MANOVA analysis strategy is the generalized application of an ANOVA-based
experimental design to the analysis of multiple variable datasets. Although fully acceptable



Data 2021, 6, 36 25 of 27

for investigations involving relatively small numbers of determined variables such as the
3 VSC ones explored here, the MANOVA technique is not directly applicable to more
complex metabolomics datasets, which may involve very large numbers of such variables,
in view of complications arising from unfulfilled assumptions and covariance matrix singu-
larities. Moreover, in PCA, individual PCs often fail to provide well resolved information
on the factors or effects involved in a UV experimental design, or their interactions; indeed,
the first 3 or so PCs isolated may not be successful in capturing effects arising from any of
the factors featured in the experimental design.

ASCA is a technique which is again based on PCA, and which effectively partitions
total variance, and then enables interpretation of each of these partitioned variances by a si-
multaneous component analysis (SCA) strategy. Therefore, it serves as a MV augmentation
of ANOVA, which splits variance into orthogonal model and independent (unassigned,
residual) portions, the former including, for example, the possible effects ascribable to the
age band and gender factors, and the age band x gender interaction contribution, investi-
gated here. The technique involves (1) sequential decomposition of dataset variance in the
context of the ANOVA-based experimental design involved; (2) application of PCA to the
decomposed dataset; (3) application of corrections for data in unbalanced designs, where
appropriate; and (4) selection of methods for testing the statistical significance of each
effect investigated. ASCA protocols can readily cater for experimental design structures of
complex MV datasets, for example those arising from metabolomics investigations with
perhaps >100 potential contributory variables. With more than one emergent, differential
classification system or factor for consideration, ASCA estimates such effects so that they
remain uncorrelated.

Appendix B.1.5 Agglomerative Hierarchical Clustering (AHC)

Hierarchical clustering is quite widely utilised in MV data mining and statistical
analysis, and is a form of cluster analysis which constructs a cluster hierarchy. One strategy
for hierarchical clustering is the agglomerative ‘bottom-up’ approach, whilst another
is the divisive ‘top-down’ strategy. In AHC ‘bottom-up’ analysis, as employed in this
study, observations are primarily placed in their own distinct clusters, and subsequently
cluster pairs are cumulatively merged on traversing up the hierarchy, However, in divisive
hierarchical clustering analysis (DHC), all data points commence within the same large
cluster, which then undergoes a successive series of splitting executions on moving down
the hierarchy. For both types, clustering of the samples analysed into disease or other
classification groups, or the biomolecular explanatory variables themselves (as in this study
for the VSCs), may be conducted.

For AHC, cluster combinations are determined by a measure of dissimilarity between
sets of observations, and this is attained via the employment of a suitable metric, i.e., a
measure of distance of a line segment between 2 observation points, and known as the
Euclidean distance for the analysis conducted in this study. Moreover, a linkage threshold,
which defines the dissimilarity of sets as a function of the pairwise distances of observation
data points in the sets, is also required. Results arising from hierarchical clustering analyses
are often presented as a dendrogram, such as that shown in Figure 8 in the current study.

Appendix B.1.6 Logistic Regression Analysis (logRA)

LogRA is a MV technique which was originally developed for dichotomous response
variable outcomes, and is generally valuable for use in clinical trial and health science
models involving categorically-defined dependent outcome variables, e.g., disease state
(diseased versus healthy) and decision making (yes or no). In logRA the logarithm of
the odds of a positive outcome are derived (where positive is represented by y = 1, and
negative by y = 0), and an algebraic manipulation process then converts this into the
probability of this outcome (in our use of this technique to categorise gender, scores of
y = 0 and 1 were employed for females and males, respectively). However, multinomial
logRA is applied for models with dependent variables with more than two categorical
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outcomes, as also employed in the current study for our attempted categorization of
participant age bands from oral cavity VSC concentrations. As noted for other regression
types, multinomial logRA may involve nominal and/or continuous independent variables,
and relevant interactions between these explanatory variables may also be considered for
improvements to the dependent variable prediction model constructed.

As with other MV techniques, although the introduction of more variables would be
expected to generate a model with a better fit to the dataset, the use of an excessive number
of these may improperly affect the estimated model coefficients, a process resulting in
‘overfitting’. For such binary outcome logRA models, one basic rule is that the number
of the less common of the two possible outcomes divided by the number of explanatory
independent variables should be≥10 or more. Obviously, the lower the number of possible
events for variables, the less reliable are regression coefficient estimates; the veracity of
coefficient variances and CIs will also be unduly affected.

Interactions may be included as the product of two predictor variables, although
their full consideration is usually determined by prior knowledge of the experiments and
datasets involved. In this halitosis investigation, the logRA, logPCR and OLS models
developed were all conducted with and without incorporation of the H2S × CH3SH,
H2S × (CH3)2S and CH3SH × (CH3)2S first-order, two-factor interaction effects (although
none of these were found to contribute towards the age/age band nor gender score/gender
response outcomes, as also noted for these VSC variables when evaluated alone. For logRA
models, multicollinearities of predictor variables, as observed for the strong correlation
of CH3SH and H2S concentration variables involved, presents major problems. However,
in such cases, the logPCR method may be applied—as with PCR, this strategy applies
the logRA strategy to an analysis of orthogonal components rather than the individual
predictors themselves, in this case the first consisting of a linear combination of correlated
CH3SH and H2S, the second (CH3)2S alone.
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