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Abstract: This research investigates the micro-aggregation problem in secure statistical databases by
integrating the divide and conquer concept with a genetic algorithm. This is achieved by recursively
dividing a micro-data set into two subsets based on the proximity distance similarity. On each
subset the genetic operation “crossover” is performed until the convergence condition is satisfied.
The recursion will be terminated if the size of the generated subset is satisfied. Eventually, the
genetic operation “mutation” will be performed over all generated subsets that satisfied the variable
group size constraint in order to maximize the objective function. Experimentally, the proposed
micro-aggregation technique was applied to recommended real-life data sets. Results demonstrated
a remarkable reduction in the computational time, which sometimes exceeded 70% compared to the
state-of-the-art. Furthermore, a good equilibrium value of the Scoring Index (SI) was achieved by
involving a linear combination of the General Information Loss (GIL) and the General Disclosure
Risk (GDR).

Keywords: micro-aggregation techniques; genetic algorithm; secure statistical databases; information
loss; disclosure risk

1. Introduction

A large number of users, clients, and customers access data and information, which
raises concerns regarding the confidentiality of data [1,2]. Accessing statistical summaries
is obligatory in several public and private entities [3,4], threatening data security and
privacy. Several statistical agencies worldwide aim to provide useful statistical summaries
without breaking the confidentiality requirements. Assessment of the confidentiality and
utility of the data is studied using various methods and strategies [4].

“Micro-Aggregation” is a perturbative method that critically partitions the micro-data
file into groups of either a fixed-size k or variable-size k ≤ size ≤ 2k− 1, where k is a
predefined threshold set by the data protector [4]. If the size of the group is satisfiable,
then Micro-Aggregation Technique (MAT) discloses the mean values of the group as a
replacement of the original micro-records.

The Micro-Aggregation Problem (MAP) belongs to the NP-hard class problems,
which aims to obtain the optimal partition of the micro-data file. It is defined as follows.
A micro-data set U = {U1, U2, . . . , Un} is defined as n multi-variate individuals, namely
the Ui’s. Each of them is a data vector that has p continuous variables. Micro-aggregation
involves partitioning the n data vectors into m groups in order to reach the optimal
k-partition, such that each group, Gi of size, ni, contains either exactly k data vectors
(fixed-size case), or k ≤ ni ≤ 2k − 1 (data-oriented case). The best k-partition is the
partition that minimizes between-group similarity and maximizes within-group similarity.
The similarity of each group is measured as the Sum of Squares Error (SSE) calculated
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using the Euclidean distances of each individual data vector Xij to the mean of the group
Gi it belongs to [5]. It is given by:

SSE =
m

∑
i=1

ni

∑
j=1

(Xij − X̄i)
T(Xij − X̄i). (1)

Analogously, the between-group is computed as the Sum of Squares Among the
groups (SSA) reflecting the squared deviations of the means from the data total mean [5].
It is given as:

SSA =
m

∑
i=1

ni(X̄i − X̄)T(X̄i − X̄). (2)

The Total Sum of Squares (SST) is designated by SST = SSA + SSE. Information
Loss (IL) is a metric expressed as a ratio of SSE to SST. The value of IL falls in the range
of 0 and 1 as given [5]:

IL =
SSE
SST

. (3)

The primary contribution of this work is to apply the divide and conquer concept to the
state-of-the-art Enhanced Genetic Multi-variate Micro-Aggregation Technique (EGMMAT) [6]
to reduce the computational time and to enhance the value of the IL and Disclosure Risk
(DR) (Disclosure risk presents the probability that an intruder can obtain some information
about the original micro-data from the published one.) by imposing a variable group-size.
The applicability of integrating the divide and conquer concept and genetic algorithm to
the MAT provides a favorable strategy for preserving sensitive data in the micro-data file
and compromising the contradiction between the IL and the DR.

This research article presents an introduction in Section 1; a brief survey about the
reported MATs in Section 2 and, particularly, the EGMMAT strategy. Section 3 illustrates
the informal and algorithmic expressions of the newly proposed MAT. Section 4 shows
results of experiments performed on real benchmark data sets. Finally, the conclusions are
drawn in Section 5.

2. Micro-Aggregation

Micro-aggregation is applied to preserve statistical databases and to protect the in-
dividual records [2]. This technique seeks to group the micro-records in the original file
into k ≤ groups of size ≤ 2k− 1 and then disseminates the average values instead of the
original micro-record values. To preserve the privacy of original data before publishing,
the records should be placed in a group whose size equals k or more [4]. The MATs are
classified based on [7]:

• The degree of the micro-data file, which represents the number of attributes used
in the micro-aggregation process that determines the aggregation method, namely
whether it is uni-variate or multi-variate. The uni-variate method covers using a
principle component, choosing a particular variable, or calling the sum of z-scores [8],
whereas the multi-variate method covers unprojected multi-variate data or projected
multi-variate data on a single axis [9].

• The cardinality of micro-records per group [5,10–12] determines its size, and whether
it is fixed or variable. The fixed group-size (k) is known as classical-micro-aggregation,
while the variable group size (between k and 2k − 1 inclusive) is known as data-
oriented micro-aggregation.

• The type of solution. The optimal uni-variate MAT solves MAP as the shortest path
problem on a graph with a polynomial complexity [13]. However, there is no optimal
MAT for multi-variate MAP known as an NP-hard problem [5,7]. Thus, researchers
have shown great interests in heuristic MATs that provide approximate solutions near
the optimal, by employing genetic algorithms [14–16], hierarchical clustering [10,17],
automata theory [12], neural networks [2,18], graph theory [19,20], or fuzzy-logic [21].
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This paper will focus on the Maximum Distance to Average Vector (MDAV) technique [10]
and the Enhanced Genetic Multi-variate Micro-Aggregation Technique (EGMMAT) [6] as
examples of the state-of-the-art. Therefore, a summary of each one will be proposed.

The MDAV is one of the simplest and the most attractive techniques. It is designed to
generate a fixed group size constraint. MDAV begins by computing the mean of the whole
data set, and then searching for the farthest record from the mean, called (s). After that, it
obtains the farthest record from (s), called (r). Then, the technique finds the closest k− 1
records to the s and the closest k− 1 records to r in order to form two groups. The records
in these two groups are deleted from the original data set. The above steps are continuously
repeated until the number of records in the data set is less than k records. The remaining
records have to be grouped to the closest group to them [10]. Finally, the means of each
group are published [22].

The EGMMAT is one of the MATs that employs a genetic algorithm to solve MAP [6].
Firstly, the micro-data file is divided into a number of domes based on the proximity
distance similarity. All domes have equal size, which is pre-defined by the data protector.
The genetic operations, namely crossover and mutation, are independently invoked in every
dome and repeated until the convergence condition is satisfied. The latter condition is
defined to reach a stable fitness value defined as the value of IL. Secondly, all domes are
merged into one single dome to refine the final results by reinvoking the genetic operations
in the whole micro-data file. Further details can be found in [6]; as mentioned earlier,
the micro-data records/genes are divided into a number of sub-domes L, with size equal
to N/L. The authors of [6] reported that choosing the number of domes to be between
k2 and k3 leads to the optimal value of the IL. The best value of L may belong to a large
range; therefore, guessing the optimal size of these sub-domes is not an easy task. Another
disadvantage of this MAT is that it requires substantial computational time to generate and
disclose the micro-aggregated file. It is worth addressing here that the EGMMAT belongs
to the fixed size group MAT type where all groups/chromosomes share the same size,
which is equal to k. This will lead to an increase in the value of the Disclosure Risk (DR).

3. Recursive Genetic Micro-Aggregation Technique (RGMAT)

We developed a recursive and plausible mechanism, referred to as the Recursive Ge-
netic Micro-Aggregation Technique (RGMAT), for minimizing the required computational
time of the entire data set and providing us with a favorable value of the Scoring Index
(SI)(The scoring index is a metric that trades off between the achieved level of protection
(privacy) and the correctness of the results that the users could obtain (utility).) besides
generating a variable group-size constraint for the aggregated micro-individuals. Our
methodology is as follows: rather than splitting the entire micro-data file into a number of
domes by invoking the EGMMAT method, we propose that the entire data in a single orig-
inal dome be recursively sub-divided into two smaller sub-domes. The genetic operation
“crossover” is performed on each sub-dome independently until the convergence condition
is satisfied. The recursion is successfully terminated, if the generated sub-dome size is
between k and 2k− 1 inclusive. Lastly, the genetic operation “mutation” is performed over
all generated sub-domes to maximize the objective function. We stress that the smaller
sub-domes should not be obtained as the result of invoking the EGMMAT on the original
dome. This recursive sub-division cannot be “arbitrary” (it must be based on a meaningful
criterion). It must utilize the underlying clustering philosophy by applying the genetic
concept. Moreover, we suggest that every sub-dome is independently micro-aggregated.
Finally, the micro-aggregated records are combined in order to obtain the published file.

The algorithm that implements the RGMAT can be formalized as follows. Let the
input of the micro-data set be given by InSet with a size of N and the output micro-
aggregated records be OutSet.

The process is initiated with normalizing the micro-data file (InSet) to give equal
weights for all variables [5–7]. The similarity between records/genes is estimated by
building the similarity distance matrix based on “Euclidean distance” [5,12].
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Instead of micro-aggregating the individual records using genetic algorithm by divid-
ing the vast dome into L domes where each dome size is equal to N/L in EGMMAT, we
apply the divide and conquer concept to partition the original dome (InSet) set into two
mutually exclusive sub-domes (i.e., LS and RS), satisfying the variable group size constraint.

The InSet is ready to be micro-aggregated if the size of InSet, N, is between k and
2 ∗ k− 1 inclusive. Nevertheless, if the size of InSet, N, is equal to or greater than 2 ∗ k,
then the InSet is recursively invoked into two mutually exclusive sub-domes. It is worth
mentioning that before recursive calls, the RGMAT seeks to reach the optimal size of the
two sub-domes LS and RS represented by left.dome.size and right.dome.size, respectively. We
converge to this optimal size for both sub-domes by initializing the left.dome.size to half the
original dome size (N/2). Then we check if the left.dome.size is divisible by two and, simul-
taneously, divisible by k. If the above condition is satisfied, then we successfully determine
the optimal size of the LS. Otherwise, we keep decreasing the left.dome.size by one until
the above condition is satisfied. After converging to the optimal size of the left.dome.size,
the right.dome.size is directly assigned to be equal to the remaining genes/records in the
original dome (right.dome.size = N − left.dome.size). Secondly, and more importantly, this
procedure utilizes the underlying clustering philosophy by applying the genetic operations.
This is done by computing the mean of the original dome InSet, and then searching for
the furthest record/gene from the computed centroid called xr, using this xr to create
an LS sub-dome of a size equal to left.dome.size. The LS consists of xr and the nearest
left.dome.size−1 genes/records. After removing these genes/records from the original
dome InSet, we assign the remaining records/genes to the RS sub-dome.

The objective function is to maximize the homogeneity of the records/genes in the
generated sub-domes. The goal is to simultaneously maximize the within-group and
minimize the between-group similarity of records/genes in each sub-dome LS and RS. This
is done by applying the genetic learning process to 10, 000 epochs. Each epoch is started
with computing the fitness value (i.e., the sum of square error) of the LS and RS sub-domes.
Then, the crossover process is set in progress by choosing a set of records/genes based on
the crossover ratio (CorRatio) predefined by the data protector. Then, a random pair of
records/genes is selected from the chosen set to swap the predefined percentage of the
CorRatio between them. Consequently, this impacts the fitness value of both sub-domes
LS and RS. If the fitness value decreased, then the swap action takes place, otherwise, it is
cancelled. Accordingly, the pair (original genes) is deleted from the chosen set. The whole
crossover process is repeated when the chosen set is not empty.

After performing the crossover operation, the total value of the fitness function is
computed. If there is a change compared to the old computed value, a new generation
will take place. Otherwise, a recursive call will be invoked for each sub-dome LS and RS.
The reason behind the recursive calls is converging to the desired underlying cluster in LS
and RS.

The mutation operation does not immediately start after the crossover step in each
level of recursion. This mutation step will only take place at the leaves level by creating
a chosen mutation set of records/genes from the rightmost sub-dome to the leftmost
sub-dome based on the mutation ratio (MuRatio) defined by the data protector. Then,
a random record/gene is selected from the chosen mutation set to migrate one record/gene
from the most RS to other sub-domes without violating the variable group-size constraint.
The total fitness value of all sub-domes at the leaves levels will be affected by this migration
process. Thus, if the total fitness value decreased, then the migration action takes place;
otherwise, it is cancelled. Accordingly, the migrated record/gene is deleted from the chosen
mutation set. The whole mutation process is repeated while the chosen set is not empty.
Finally, the aggregated file is created and disclosed. The above description is formulated in
Algorithms 1 and 2.
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Algorithm 1 The RGMAT Scheme for the MAP
Input:

InSet: Set of micro-data records.
N: Number of records.
d: Number of dimensions of dataset.

Output:
IL: The value of the Information Loss

Note:
k: Security Threshold is a constant value.
CorRatio: Constant value of crossover ration.
MuRatio: Constant value of mutation ration.

Method:
1: Normalizing dataset.
2: Building similarity distance matrix,D.
3: OutSet=REC−Split(InSet,N).
4: Calculate the IL value from the Outset
5: Return The value of the IL.
6: End Algorithm The RGMAT Scheme

Time is not a crucial factor in genetic algorithms; as consequence, the most important
criterion is the accuracy of the results. It is well-known that the genetic algorithm runs
iteratively in a polynomial degree that depends on the number of generations, the size of
the data set, and the inner genetic operations. A set of solutions is randomly generated,
thus forming the initial population. The cost of each reachable solution includes the cost of
crossover, mutation and selection. The best k solutions are kept. Then the genetic algorithm
is continued as previously explained to either reach maximum number of generations,
or to successfully converge to the sub-optimal fitness value measured by SSE. After the
last iteration, the optimal partition is found.

The main advantage of the new RGMAT is to micro-aggregate the micro-data set
in substantially less time without sacrificing neither the IL nor the DR values. Another
advantage of the proposed technique is that such a strategy is applicable in multi-processor
machines, and particularly shared-memory systems (where there is no need to plan the
communication of data between different processors). Additionally, the memory caches
will be used efficiently because the subset size is small enough to be stored in the cache
and then the partitioning can be achieved without accessing the slower main memory.
Integrating the divide and conquer approach with the genetic algorithm will reduce the
required time.

As mentioned earlier, imposing a recursive strategy does not only lead to an evident
saving of time, but also it preserves the minimization of the IL and DR values. This is
achieved by invoking the base (terminating) step, where the IL is minimized for each atomic
partition. The beauty of this RGMAT is to aggregate the genes in different chromosome
sizes that satisfy the variable group size constraint.
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Algorithm 2 REC-Split(InSet,N)
Input:

InSet: Set of micro-records.
N: Number of micro-records.

Output:
OutSet: The micro-aggregated records.

Note:
k: Security Threshold is a constant value.
CorRatio: Constant value of crossover ration.
MuRatio: Constant value of mutation ration.

Method:
1: if (k > N) then
2: Print “Error”.
3: Exit().
4: else if ((k ≤ N) and (N < 2 ∗ k)) then
5: Aggregated group/chromosome.
6: Return aggregated group.
7: else
8: left.dome.size = N/2.
9: while ((left.dome.size is not divisible by k)or (left.dome.size is not divisible by 2)) do

10: Decrease left.dome.size by one.
11: end while
12: right.dome.size = N − left.dome.size.
13: Select the furthest record/gene, xr, to the centriod of InSet.
14: Add xr to the left subdome, LS.
15: Put the (left.dome.size −1) nearest records/genes to xr in LS.
16: Put the remaining records/genes in the right subdome, RS.
17: repeat
18: for (each subdome LS and RS) do
19: Fitness Evaluation().
20: Crossover().
21: end for
22: until (Convergence criterion is satisfied)
23: REC−Split(LS,left.dome.size).
24: REC−Split(RS,right.dome.size).
25: Mutation().
26: end if
27: End Algorithm REC-Split

4. Experimental Results

The RGMAT was thoroughly tested, and the results are encouraging. It was tested on
the Tarragona data set (834 records and 13 variables) and the Census data set (1080 records
and 13 variables) [5,10].

The strength of the newly developed RGMAT is profound when it is used with a
variable group size constraint. The RGMAT has the talent of implementing a recursive
division of the whole data set into two groups/chromosomes based on the distance prox-
imity between the individual micro-records/genes. The recursive step is terminated when
the number of genes per chromosomes is between k and 2k− 1. The main objective of the
RGMAT function is to minimize the value of the fitness function by varying the number of
chromosomes from one generation to another in each recursive step. It is worth mentioning
that using 10, 000 epochs is enough to maintain the diversity between generations. Addi-
tionally, sequentially invoking the crossover process per recursive step and performing
the mutation process once before aggregation gives a positive contribution to the variation
between generations. The values of the CorRatio and MuRatio were set to be equal to 0.7
and 0.3, respectively.
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Table 1 presents the results of using the newly proposed RGMAT on multivariate
data sets. The experiments of testing RGMAT were performed with various values of k
to investigate the effect of increasing the number of genes per chromosome. Increasing
the number of genes/micro-records per chromosome/groups tends to increase the com-
putational time and the value of the IL. Although the value of IL obtained by RGMAT is
comparable (either equal or less than) to the value obtained by EGMMAT, the required
computational time was always less than the required computational time in EGMMAT.
Splitting the single dome into two sub-domes continuously until satisfying the variable
group size constrain reduced the required computational time by up to 70%. It is essential
to highlight that RGMAT did not involve optimizing the dome size at all, as is the case
in the EGMMAT. Within the context of this work, the computational time represents the
time needed for obtaining the micro-aggregated file with a specified dome size. This does
not cover the total computational time for all dome sizes between k2 and k3 (to find the
best value of IL).

Table 1. Comparison of the value of IL between the state-of-the- art EGMMAT and RGMAT as an
average of 100 runs by using the Tarragona and Census data sets on various values of k.

Data k EGMMAT RGMAT

Set Value IL Dome Size Time (S) IL Time (S)

3 15.5358 18 328 15.5359 86

Tarragona 4 18.3463 20 359 18.3463 103

5 21.4701 20 392 21.4700 113

3 5.62643 9 268 5.5787 103

Census 4 7.40552 16 273 7.40552 108

5 8.87224 45 284 8.8678 113

The experiments were performed to test the applicability of the proposed algorithm
to balance the two conflicting criteria of GIL and GDR [23,24], which were evaluated by
calculating the Scoring Index (SI) value for the MDAV, EGMMAT, and RGMAT on both
the Census and Tarragona data sets as shown in Table 2.

Table 2. Scoring the MDAV, EGMMAT, and RGMAT by combining the values of GIL and GDR to calculate the SI for
different values of k as an average of 100 runs on the Tarragona and Census data sets.

Data Creterion
k = 3 k = 4 k = 5

MDAV EGMMAT RGMAT MDAV EGMMAT RGMAT MDAV EGMMAT RGMAT

GIL 28.60866 28.49277 28.27607 33.25432 33.13305 33.12851 38.67248 39.21647 38.11960

RLD 60.71330 60.46690 60.32290 49.70570 49.87700 49.05100 42.09810 42.71080 42.44210

Census ID 1.98148 1.54630 1.78704 0.73148 0.75925 0.70370 0.26852 0.15741 0.16667

GDR 31.34739 31.00660 31.05497 25.21859 25.31813 24.87735 21.18331 21.43410 21.30438

SI 29.97803 29.74969 29.66552 29.23646 29.22559 29.00293 29.92789 30.32529 29.71199

GIL 75.98087 76.27831 73.95006 52.36572 52.33175 51.69467 66.47553 66.07935 63.68698

RLD 33.85100 33.94670 35.15900 24.90940 24.92730 25.11270 20.40380 20.55200 22.00250

Trragona ID 0.731415 0.75540 0.77937 0.38369 0.35971 0.38369 0.40767 0.45563 0.25179

GDR 17.29121 17.35105 17.96919 12.64655 12.64350 12.74820 10.40574 10.50382 11.12715

SI 46.63604 46.81468 45.95962 32.50613 32.487628 32.22143 38.44063 3 8.29158 37.40706

General Information Loss (GIL): The value of IL approximates how much of the data
was generically damaged when using the MAT [8,10,13,25,26]. We now assess the impact
of MAT on the original file’s data utility. Our goal is to evaluate the difference between the
masked aggregated file and the original one. This is generally measured by demonstrating
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how the statistics have been structurally modified and how large is the modification [5].
The statistical characteristics of the original file are essential to be protected. This is usually
measured by calculating the mean variation of the data (M1), the mean variation of the
means (M2), the mean variation of the variances (M3), the mean variation of the covariance
(M4), and the mean absolute error of correlations (M5). The overall GIL is defined as
follows: GIL = 100 ∗ M1+M2+M3+M4+M5

5 [5,7,9]. These calculations will undoubtedly
provide a better understanding of the performance of the MATs [5]. More information
on measuring the GIL can be found in [25,27–30]. In general, the GIL’s value is directly
proportional to the number of genes per chromosome (records per group) represented by
the value of k. For the Census data set, the GIL’s best value for all three MATs was at k
equal to 3. Specifically, the GIL value for the MDAV was 28.60%, EGMMAT was 28.49%,
and RGMAT was 28.27%. By contrast, the best value of GIL in the Tarragona data set
for all three MATs was at k equal to 4. The GIL value for MDAV was 52.37%, EGMMAT
was 52.33%, and RGMAT was 51.69%. These results clearly indicate that the RGMAT
method saved the data utility more efficiently than MDAV and EGMMAT. Therefore,
the RGMAT outperformed the state-of-the-art methods in term of GIL.

General Disclosure Risk (GDR): Analyzing the effect on the confidentiality of dissemi-
nating the micro-aggregated file must also be comprehensively studied. The reason is that
the DR depends on the data and the intruder’s prior knowledge about the data. Therefore,
we have to quantify the risk of having extra information that can link a masked record
in the masked file with the corresponding original record in the original file. This also
evaluates the risk of accurately estimating the original records’ values from the published
masked records [12,18,28,31]. The DR will be evaluated as the average value of two
different recommended strategies, the Record Linkage Disclosure technique (RLD) and
the confidential Interval Disclosure (ID) as follows: GDR = RLD+ID

2 .
Record Linkage Disclosure Technique (RLD): The Euclidean distance is calculated

between every single micro-record in the generated micro-aggregated masked file with
all micro-records in the original file. Then the “the first nearest” and “the second nearest”
micro-records for each micro-record in the masked file are marked. If the marked micro-
record in the original file has the same index record as in the masked file, a “Match” is
counted [12,23,27,32–34]. The number of matches over the number of micro-records in
the original file defines the RLD. This technique estimates the number of masked micro-
records whose identity can be re-identified by the invader [12]. Applying this technique
requires an assumption that “an intruder has an external file containing a subset of the
key variables that are common with the published file”. The intruder tries to pair-match
a subset of common shared variables in the external file with the published file to infer
more information about the original micro-record. Therefore, The RLD is calculated as
the average of the overall possible combinations as (S

C) = S!
C!(S−C)! combinations, such

that S represents the number of key variables in the micro-data file and C represents the
number of selected variables known to the intruder in the external file. Namely, seven key
variables are used based on the literature, including: Var1, Var2, Var3, Var5, Var10, Var11,
and Var12 [18,28,31]. The results shown in Table 2 illustrate that using RLD to estimate
the risk of disclosing the confidentiality of the information is decreased with increasing
genes per chromosome for a given k value. Herein, we found that the MDAV scored the
minimum value of the estimated risk of using the RLD on the Tarragona data set, while
RGMAT scored the minimum value of the estimated risk of using the RLD on the Census
data set.

Confidential Interval Disclosure Technique (ID): This technique is not attentive to
define the exact original value; it has interest only in finding an approximate value [32].
The ID independently ranks each attribute and defines an interval for each ranked attribute
based on the neighborhood of the value that the attribute takes on for a specific micro-
record, say r. The rank of this value should not be more than P% of the size of the original
micro-file, and the value of that attribute in the micro-record, r, should correspond to the
value of the center of the interval. In other words, it is assumed that a specific variable is



Data 2021, 6, 53 9 of 12

independently sorted, and r is the value taken by that variable in a certain micro-record.
Then, the lower and the upper bounds of the interval are equal to RankLb = Rank(r)− P%
and the value RankUb = Rank(r) + P%, respectively. The match occurs when values of
all variables in the micro-record fall into the corresponding computed intervals. Further
details can be found in [5,23,32,35].

The invader estimates each interval size by using the ID. A large interval indicates
a large value for the confidence. The average confidence is calculated by using a specific
fixed determined range of percentage (between 1 and 10%) of the micro-records. Clearly,
if P has a large value, then a larger value of DR will be obtained and a small amount of
information is disclosed [5]. The percentage value of ID was measured as the average
values at the various settings of P(1%, 2%, . . . , 10%) on the Census and Tarragona data sets,
as shown in Table 2.

Finally, the GDR values were calculated for all of the MATs and presented in Table 2.
Evaluating the scoring index for this proposed RGMAT is an urgent demand in order

to compare its performance with the state-of-the-art EGMMAT and MDAV. It is well-
known that every MAT disturbs the original dataset in two fronts: privacy and utility.
To the best of our knowledge, it is inappropriate to focus on one of them and ignore the
other. Additionally, the direct comparison between privacy and utility is not reasonable for
several technical and philosophical reasons. The most important reason is that privacy is
an individual concept, while utility is an aggregate concept. The masked dataset will not be
disseminated unless the privacy for each individual is protected and the utility gain adds
up when multiple pieces of knowledge are learned. Secondly, when publishing a masked
dataset, only the individuals whose data are included have potential privacy loss, while
others have potential utility gain. Therefore, the Scoring Index, SI, is a measure that focuses
on the two conflicting criteria General Information Loss (GIL) and General Disclosure Risk
(GDR); a decrease in one of them results in an increase in the other one. Estimating the SI
is a recommended practice since each criterion measures a totally different perspective
for the MAT. For that reason, there is a serious requisite to utilize a rational index that
linearly combines DR and IL as follows: SI = XGIL + (1− X)GDR, where X is set to be
equal to 0.5 to give both criteria an equal weight [5]. The lower score value implies a better
performance [36,37]. From Table 2, the RGMAT technique has comparable performance to
the state-of-art MDAV and EGMMAT techniques in terms of the GIL and GDR at different
k values.

A motivating task includes studying how the RGMAT, EGMMAT, and MDAV are
compared when the conflicting criteria come to production at the same time. This can be
achieved by plotting the GIL versus the GDR for the Census data set, as shown in Figure 1,
for all schemes. A set of paired values of GIL and GDR for the particular technique at various
values of k ranging from 3 to 5 were plotted. The user will witness the effect of the k values
on a masked method. From the curve we observe that the RGMAT successfully balances
these conflicting criteria in an excellent way comparable to the MDAV and EGMMAT
methods. This small difference has a significant impact on trading off between the two
conflicting criteria GDR and GIL. Finding the optimal combination of these two measures is
a difficult and challenging task [38]. This confirms the difficulty of improving the measure.
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Figure 1. The effect of invoking the MDAV, EGMMAT, and RGMAT on the GIL and GDR indices
when k = 3, 4, and 5 for the Census data set.

5. Conclusions

In this research, we discussed the problem of designing MAT for secure statistical
databases. The originality of the developed technique involves integrating the divide
and conquer concept with a genetic algorithm. This incorporates proximity information
between individual micro-data. Experimentally, the newly proposed MAT showed good
results in obtaining a comparable value of IL to the state-of-the-art (either same or less than)
with a reduction in the required computational time of up to 70%. This strategy presents
an excellent tool for solving the micro-aggregation problem in the statistical disclosure
control field. The disadvantages of this strategy are an integral part of the disadvantage
of any micro-aggregation technique, which may suffer from obscuring useful statistical
information of some presented information in the published file. In addition, adding or
deleting certain micro-records is considered a very expensive operation. The proposed
MAT can be applied in other contexts—for example, redesigning the proposed MAT to
form parallelism. To the best of our knowledge, focusing on designing a fast parallel
algorithm for the micro-aggregation problem has not been explored yet.
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