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Abstract: Due to the huge amount of data obtained from students’ academic results in most tertiary
institutions such as the colleges, polytechnics and universities, data mining has become one of
the most effective tools for discovering vital knowledge from students’ dataset. The discovered
knowledge can be productive in understanding numerous challenges in the scope of education and
providing possible solutions to these challenges. The main objective of this research is to utilize the
J48 decision algorithm model to test, classify and predict the students’ dataset by identifying some
important attributes and instances. The analysis was conducted on the final year students’ academic
results in C# programming amongst five universities which was imported in csv excel file dataset
in WEKA environment. These training datasets contained the scores obtained in the examinations,
grade remarks, grades, gender, and department. The knowledge extracted for the prediction model
will help both the tutors and students to determine the success grade performance in the future.
Flow lines, J48 decision trees, confusion matrices and a program flowchart were generated from
the students’ dataset. The KAPPA value obtained from the prediction in this research ranges from
0.9070–0.9582 which perfectly agrees with the standard for an ideal analysis on datasets.

Keywords: data mining tools; WEKA; J48 algorithm; KAPPA value; predict; confusion matrix; csv

1. Introduction

The students’ academic performance is an important aspect in most tertiary educa-
tional system, particularly the higher learning institutions. The excellent records achieved
amongst students’ academic performances in examinations have become one of the key
factors in considering tertiary institutions on the highly ranked Q.S world university rating
system [1]. In the world today, a huge amount of students’ data increases daily which makes
it very critical to perform analysis on data to discover and retrieve useful information like-
wise knowledge from this data. There are numerous techniques that have been proposed
in the evaluation (which involves testing, prediction and knowledge discovery of dataset)
of students’ academic performance. Data mining is one of the most common techniques
utilized to analyze the academic performance of students and it has been recently applied
in a vast approach regarding the educational sectors [2]. Data mining, also known as
Knowledge discovery from data (KDD), can be defined a process of discovering interesting
patterns and knowledge from stored data. Data Mining has various methods for used
analyzing which include classification, clustering, and association rules [3]. Data mining
could also be referred to as data dredging, which is a multidisciplinary field that obtains
relevant information from large amount of data at the confluence among other specializa-
tions which includes artificial intelligence, statistics, databases, and information science [4].
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In the educational sectors, one of the major objectives is to provide learning processes that
allow for understanding students and their learning paths, termed as Educational Data
Mining and Learning Analytics (EDM/LA). Educational Data Mining (EDM) is a discipline
that focuses on extraction of useful information and knowledge from huge educational
database, thereby utilizing this useful information and knowledge dredged to predict
students’ academic performance [5]. Apart from extracting and analyzing educational
data, Educational Data Mining can enhance and develop students’ performance in the
teaching and learning domain [6]. There are several works in Educational Data Mining and
Learning Analytics (EDM/LA) which has been devoted to prediction methods of student
performance. According to [7], the authors compared different decision trees based on
the students’ academic performance for prediction. The decision trees were able to reveal
the total number of students with excellent grades and those with failed grades, as this
prediction effectively improved both the teaching/learning process in the institution and
mitigated the failure rate amongst the students.

WEKA is a Data Mining tool used for managing the experimental analysis for data min-
ing process such as (predictions, classification, clustering, association rule and evaluation);
it also provides a flexible support for machine learning research and serves as a tool for
introducing people to machine learning in the educational environment [8]. This research
work focuses on using the J48 decision tree Classification model in WEKA to analyze
the students’ academic performance of Information Technology (I.T) department in five
universities across five countries which includes Iraq, Sudan, Nigeria, South Africa, and
India. The data was obtained from the records of the undergraduate students in the final
year study of the five countries in the second semester of examinations. The authors in [9]
revealed the taxonomy for Data mining approaches and this was illustrated pictorially, see
Figure 1.
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The research conducted in [10] revealed that the authors substantiated and built
methodology for an ensemble classification of individual students’ performance and col-
lective performance quantification. According to [11], educational data mining involves
four development phases which are filtering process of the students’ data: selection of
attributes or variables relating to their performance; extraction of knowledge for the filtered
students’ data; interpretation and evaluation. The research study by the authors in [12]
was conducted by predicting successfully binary academic performance on school students
who had number of passed test as 40–60% in both mathematics and computer science with
the aim of obtaining correlation between the scores to investigate the student’ cognitive
abilities. The J48 algorithm is one of the best machine learning algorithms which can exam-
ine educational data categorically and continuously; it has been used by most researchers
for classification of students’ dataset and it usually obtains accurate results [13]. According
to research study conducted in [14], the J48 algorithm was utilized for classification on
students’ dataset also comparing their performances with evaluation principles such as
accuracy and implementation time. It revealed that the performance of classification tech-
niques differs with datasets. The study also showed that factors such students’ datasets,
number of instances, attributes and the type of attributes enhanced the classifier’s perfor-
mance. J48 came out with better results on most educational dataset [13,14]. Researchers
have applied decision tree utilizing the J48 classification algorithm to predict academic
performances of students in the tertiary institution by simply testing this algorithm on
unseen dataset to calculate accuracy. They intend to use this algorithm build model that
can be used by the university to predict student performance, evaluate the teaching skills
adopted by the lecturers and improve the learning potentials of the students in the other
academic specializations [15].

2. Dataset Description

The data of the students’ academic record analyzed in WEKA utilized the J48 classifica-
tion algorithm method to test and predict from the students’ future learning outcome using
final year students’ dataset record from five countries. The analysis was conducted on the
students’ academic results in C# programming language examinations with a total grade
of 100%. The departments considered include Computer Science in Lagos State University
Nigeria; Computer Science in University of Kirkuk Iraq; School of computers and systems
science in Jawaharlal Nehru University New Delhi India; College of Computer Science
and Information Technology in Sudan University of Science and Technology, Khartoum
Sudan; and Computer Sciencein University of Cape Town South Africa. The students’
dataset obtained consist of five attributes which are “scores obtained in the C-SHARP (C#)
examinations”, “grade remarks”, “grades”, “gender” and “department”. For the purpose
of the J4.8 algorithm analysis in WEKA, only “grades” columns to produce a detailed
accuracy class reading. The grades were classified into A (70–100) marks, B (60–69) marks,
C (50–59) marks, D (40–49) marks and F (0–39) marks which depicts excellent, very good,
average, poor and failed, respectively. The functional requirements for the analysis of the
students’ data conducted in WEKA can be illustrated pictorial with the aid of program
flowchart. Program Flow charts (Figure 2) are data flow that describes the sequence of data
operations and decisions for a particular program or algorithm [16].
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3. Methods

The J48 Decision Algorithm is a predictive machine learning model that the dependent
variables also known as target value of a new sample based on various attribute values
of the data available [17]. The node of a J48 decision tree denotes the different utilized
attributes [18]. With the aid of tree classification algorithm, the essential distribution of data
become easier to understand and flexible to implement. J48 is an extension of ID3 and it
develops a decision node utilizing the expected estimations of the class. J48 algorithm deals
with decision trees pruning, lost or missing attribute estimations of the data and varying
attribute costs [19]. The J48 algorithm can be generated via the following three stages [20]:
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• Stage 1: If an instance belongs to similar class, the leaves are labeled with a similar class;
• Stage 2: For each attribute, the potential data will be figured and the gain in this data

will be attained from the test conducted on attribute;
• Stage 3: Finally, the best attribute will be selected in regard to the current selection parameter.

3.1. Students’ Dataset Analysis in WEKA

The J48 tree generated in WEKA for the students’ academic dataset across the 5 countries
utilized 50% percentage split with training set: 25% for the test data and the remaining 25%
for validate to obtain the classifier model. The J48 decision tree classifier output algorithm
obtained from the students’ result for the five universities analyzed is displayed in the
Appendix A section of this work.

3.2. Calculations of the Evaluation Measures of the Detailed Accuracy Class Table

In the data analysis conducted, the three standard measures used in the evaluation
of the classification qualities include the Recall, Precision and F-Measure. Precision is the
ratio of the correctly classified cases of total number of misclassified cases and correctly
classified cases [21]. The recall is the ratio of correctly classified samples to the total number
of unclassified instances and correctly classified cases. The F-measure is the aggregate
of the values of recall and precision [21,22]. Other measures used in the obtaining and
evaluation of results include the execution time, TP rate, FP rate, ROC area, PRC area and
confusion matrix [23].

The calculations of the precision, F-measure, recall values can be obtained using the
Equations (1)–(3), respectively:

Precision =
TP

TP + FP
(1)

F − Measure = 2 × Recall × Precision
Recall + Precision

(2)

Recall =
TP

TP + FN
(3)

The TP represents the values of the true positive rate; the FP represents false positive
rate value, and the FN represents the false negative rate. The precision, F-measure and the
Recall values are some of the evaluation parameters generated in WEKA in the detailed
accuracy by class table.

3.3. Outcomes of J48 Decision Tree Generated from Students’ Dataset Analysis

This section shows the J48 decision trees generated from the students’ academic
result imported in WEKA environment platform for the analysis. See Figures 3–7.
The Grade_Remarks Attribute Platform for Students’ dataset is shown in Appendix A
of this research.
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4. Results and Discussion

The results for the analysis, based on the Kappa statistical values, mean that absolute
error, recall, Precision, and F-Measure obtained from the five universities can be computed
in tabular form. Table 1 shows the values obtained from the student’s dataset analysis.
The Kappa interpretation obtained revealed a range of 0.9070–0.9582 which perfectly agrees
with the general values for most analysis.

Table 1. Values obtained for the Students’ dataset across the five universities.

Countries Mean Absolute Error Kappa Recall Precision F-Measure

India 0.02 0.9313 0.700 0.850 0.7677

South Africa 0.1489 0.9070 0.950 1.000 0.9744

Sudan 0.04 0.9582 0.950 1.000 0.9744

Iraq 0.02 0.9308 0.650 0.700 0.6741

Nigeria 0.1114 0.9296 0.900 0.967 0.9323

4.1. Plots of Evaluation Parameters from the Analysis Conducted on the Students’ Dataset

The parameters (TP Rate, FP Rate, Precision, Recall, F-Measure, MCC, ROC-Area and
PRC-Area) obtained in this research work based on detail accuracy class analysis revealed
from WEKA, we plotted flow lines that illustrate these parameters for the purpose of ob-
taining knowledgeable patterns to be displayed in a statistical perspective. These flow lines
were illustrated based on values of the evaluation parameter derived from the WEKA anal-
ysis conducted on the five universities considered as case study in this work. Figures 8–12
illustrates the plots of the parameters for the five universities.
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4.2. Analysis of J48 Decision Trees Generated in WEKA for the Five Universities

The Figures 3–7 shown in this research study illustrates the J48 decision trees generated
in WEKA for the five universities. In this section, we provided a detailed explanation of
the J48 tree generated in the Section 3.3 of this work. The J48 decision tree classifier
shown in Figure 3 illustrates that 11 students had grade A and passed with scores greater
than 69 marks; 6 students had grade B, passed with scores greater than 59 marks and
less than equal to 69 marks; 7 students had grade C and passed with scores less than or
equal to 59 marks; 7 students had grade D and failed with scores greater than 39 marks;
and 9 students had grade F with scores less than or equal to 39 marks. In general, a
total of twenty-four students were in the category of those who passed while total of
sixteen students were in the category of those failed. The J48 decision tree classifier shown
in Figure 4 illustrates that 9 students had grade A and passed with scores greater than
69 marks; 7 students had grade B, passed with scores greater than 59 marks and less than
equal to 69 marks; 10 students had grade Cand passed with scores less than or equal to
59 marks; ten students had grade D and failed with scores greater than 39 marks; and
4 students had grade F with scores less than or equal to 39 marks. In general, a total
of twenty-six students were in the category of those who passed while total of fourteen
students were in the category of those who failed. The J48 decision tree classifier shown
in Figure 5 illustrates that 2 students had grade A and passed with scores greater than
66 marks; 8 students had grade B, passed with scores greater than 59 marks and less than
equal to 66 marks; 9 students had grade Cand passed with scores less than or equal to
59 marks; 12 students had grade D and failed with scores greater than 39 marks; and nine
students had grade F with scores less than or equal to 39 marks. In general, a total of
nineteen students were in the category of those who passed while total of 21 students
were in the category of those who failed. The J48 decision tree classifier shown in Figure 6
illustrates that 13 students had grade A and passed with scores greater than 67 marks;
4 students had grade B, passed with scores greater than 59 marks and less than equal to
67 marks; 4 students had grade C and passed with scores less than or equal to 59 marks;
4 students had grade D and failed with scores greater than 37 marks; and 15 students



Data 2022, 7, 67 12 of 18

had grade F with scores less than or equal to 37 marks. In general, a total of twenty-one
students were in the category of those who passed while total of 19 students were in the
category of those who failed. The J48 decision tree classifier shown in Figure 7 illustrates
that 4 students had grade A and passed with scores greater than 69 marks; 9 students
had grade B, passed with scores greater than 57 marks and less than equal to 69 marks;
10 students had grade Cand passed with scores less than or equal to 57 marks; 12students
had grade D and failed with scores greater than 37 marks; and 5 students had grade F with
scores less than or equal to 37 marks. In general, a total of twenty-three students were in
the category of those who passed while total of seventeen students were in the category of
those who failed.

5. Conclusions and Future Scope

As a result of the rapid increase in extraction of useful knowledge from data, data min-
ing has significantly contributed to most educational institutions in many countries today.
The test and prediction conducted on students’ academic performance has really helped
both learners and educators to improve their learning and teaching skills, respectively.
This research work uses the WEKA data analytics platform to perform J48 classification
algorithm on the students’ result across five universities in five countries on the basis of
the Execution time, TP rate, FP rate, Precision, Recall, ROC Area, PRC Area, MCC and
the F-measure. WEKA took different attributes based on the stratified cross validation via
the J 48 tree algorithm to obtain the correctly classified instances, the incorrectly classified
instances and others (which includes the mean absolute, root mean squared, relative abso-
lute and root relative squared) error values. Confusion matrixes were generated for the
students’ dataset with A, B, C, D and F representing the class labels. The Kappa values
obtained from the analysis revealed a range of 0.907–0.9582, which is the perfect reading for
most analytical values. Plots such as flow lines and Bar charts were generated on both the
evaluation parameters and the attributes, respectively. We discovered that the J48 algorithm
provided better results and, in future, we intend to extend our research using different
parameters in a different analytic environment.
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Nomenclatures

TP-rate True Positive Rate
FP-rate False Positive Rate
FN-rate False Negative Rate
ROC Area Receiver Operating Characteristics Area
PRC Area Precision Recall Curve Area
MCC Matthews Correlation Coefficient
PPV Positive Predictive Value
KDD Knowledge Discovery in Database
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WEKA Waikato Environment for Knowledge Analysis
EDM/LA Educational Data Mining and Learning Analytics
ID3 Iterative Dichotomiser 3
J48 Java 48

Appendix A
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