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Abstract: Wildland fire is one of the most causes of deforestation, and it has an important impact on
atmospheric emissions, notably CO2. It occurs almost every year in Indonesia, especially during the
dry season. Therefore, it is necessary to identify the burned areas from remote sensing images to
establish the zoning map of areas prone to wildland fires. Many methods have been developed for
mapping burned areas from low-resolution to medium-resolution satellite images. One of the popular
approaches for mapping tasks is a deep learning approach using U-Net architecture. However, it
needs a large amount of representative training data to develop the model. In this paper, we present
a new dataset of burned areas in Indonesia for training or evaluating the U-Net model. We delineate
burned areas manually by visual interpretation on Landsat-8 satellite images. The dataset is collected
from some regions in Indonesia, and it consists of 227 images with a size of 512 × 512 pixels. It
contains one or more burned scars or only the background and its labeled masks. The dataset
can be used to train and evaluate the deep learning model for image detection, segmentation, and
classification tasks related to burned area mapping.

Dataset: https://data.mendeley.com/datasets/fs7mtkg2wk/4

Dataset License: CC-BY.

Keywords: dataset; burned area; deep learning; U-Net; Landsat-8; remote sensing; satellite image; Indonesia

1. Summary

Indonesia is a tropical country that has a large forest area. Based on the data from the
Indonesian Ministry of Environment and Forestry, the total Indonesian forest area in 2019
was 94.1 million ha, or around 50.1% of the total land area [1]. Globally, Indonesia ranks
third in the world as a country with the largest tropical rainforest area after Brazil and the
Republic of the Congo [2,3]. However, the rate of wildland fires in Indonesia is relatively
high. For example, over the past five years, Indonesia’s most significant forest fire rate was
in 2019, which was 1.64 million ha [4]. Several provinces affected by fires in that year were
Riau, Jambi, South Sumatra, Central Kalimantan, South Kalimantan, West Kalimantan, East
Nusa Tenggara, and Papua.

Data of burned areas are important for monitoring forest conditions and calculating
the annual rate of deforestation [5–7]. However, due to the large forest area in Indonesia, the
monitoring of forest condition will certainly be difficult if based only on field survey results.
The use of satellite remote sensing images for burned landscape mapping facilitates the
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calculation of fire-affected areas and assessment of burn severity [8]. In addition, satellites’
temporal resolution capability enables them to carry out periodic monitoring to see the
development of deforestation.

Generally, the mapping technique in the remote sensing field can be conducted by
two approaches: visual interpretation and digital classification. The visual interpretation
of satellite images is precise and accurate but can be costly and time intensive [9,10]. On
the contrary, modern digital classification, such as machine learning and deep learning, is
relatively fast, cost effective, and able to give a result with high accuracy [11,12]. However,
it requires a large number of representative training data of burned areas to build the model.
In this paper, we contribute to fulfilling this need by presenting a dataset of the burned area
particularly designated for building convolutional neural network (CNN) models, such as
U-Net and ResUNet. We delineate burned areas manually based on visual interpretation of
Landsat-8 satellite images. Our dataset is collected from some regions in Indonesia with
a total of 227 images subsets and their annotation images. This dataset can be used to
develop and evaluate the performance of deep learning models for burned area detection,
segmentation, and classification tasks.

2. Data Description

The dataset presented in this paper consists of three categories: image subsets, burned
area masks, and quicklooks. The specification of the dataset is generally summarized in
Table 1 and will be described in detail in each subsection.

Table 1. Specification of the dataset.

Specification Image Subsets Burned Area Masks Quicklooks

Image size (in pixel) 512 × 512 512 × 512 512 × 512
Number of bands 8 1 3

Bit depth 16 bit
(unsigned integer)

8 bit
(unsigned integer)

8 bit
(unsigned integer)

File format GeoTIFF GeoTIFF GeoTIFF
Georeferenced Yes Yes Yes
Total number 227 227 227

2.1. Image Subset

The image subsets are derived from Landsat-8 scenes taken between the years 2019
and 2021. Each image has a size of 512 × 512 pixels and consists of eight multispectral
bands, as shown in Table 2. The sequence of band names, from band 1 to band 7 of the
image subset, is the same as the sequence of band names of the Landsat-8 scene [13], except
for band 8 of the image subset, which is band 9 (cirrus band) in the original Landsat-8 scene.
The image subsets are saved in GeoTIFF file format with the latitude–longitude coordinate
system and World Geodetic System (WGS) 1984 as the datum. The spatial resolution of
image subsets is 0.00025 degrees, and the pixel values are stored in a 16-bit unsigned integer
with a range of values from 0 to 65,535.

The total of the dataset is 227 images containing the object of burned area surrounded
by various ecological diversity backgrounds, such as forest, shrub, grassland, waterbody,
bare land, settlement, cloud, and cloud shadow. In some cases, there are some image subsets
with the burned areas covered by smoke due to the fire that was still active. Some image
subsets also overlap each other to cover the area of the burned scar, which is too large.

2.2. Burned Area Mask

The burned area mask is a binary annotation image that consists of two classes: burned
area as the foreground and non-burned area as the background. These binary images are
saved in an 8-bit unsigned integer, where the burned and non-burned areas are indicated
by the pixel value of 255 and 0, respectively. The burned area masks in this dataset contain
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only burned scars and are not contaminated with thick clouds, shadows, and vegetation.
Samples of them are depicted in Figure 1.

Table 2. Bands sequence of image subset.

Band Names Wavelength [µm] Resolution (Degree)

Band 1—Coastal/Aerosol 0.43–0.45 0.00025
Band 2—Blue 0.45–0.51 0.00025
Band 3—Green 0.53–0.59 0.00025
Band 4—Red 0.64–0.67 0.00025
Band 5—Near Infrared (NIR) 0.85–0.88 0.00025
Band 6—Short Wave Infrared
(SWIR-1) 1.57–1.65 0.00025

Band 7—Short Wave Infrared
(SWIR-2) 2.11–2.29 0.00025

Band 8—Cirrus 1.36–1.38 0.00025
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subsets with the burned areas masked in black color (b,f,j), image subsets with background masked 
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Figure 1. Sample of three image subsets (a,e,i) in false color composite (R = 7, G = 5, B = 4), image
subsets with the burned areas masked in black color (b,f,j), image subsets with background masked
in black color (c,g,k), and the burned area masks in binary images (d,h,l).

The information on image distribution based on the coverage percentage of burned
areas is described in Table 3 below. Among 227 images, 206 images contain burned areas,
whereas 21 images contain only the background. In addition, the highest number of images
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in this dataset is dominated by images with a coverage percentage of the burned area
between 0 and 10 percent.

Table 3. Distribution of images according to the coverage percentage of burned areas.

Percentage of Burned Area (%) Number of Images

0 21
0–10 145

10–20 36
20–30 18
30–40 2
40–50 2
50–60 1
60–70 2
>70 0

Total 227

2.3. Quicklook

Our dataset also provides quicklook image as a quick preview of the image subset.
It offers a fast and full-size preview of the image subset without opening the file using
any GIS software. The quicklook images can also be used to train and evaluate the model
as a substitute for image subsets. The image size is 512 × 512 pixels, same as the size
of the image subset and the annotation image. It consists of three bands as a false color
composite image, with a combination of band 7 (SWIR-2), band 5 (NIR), and band 4 (red).
We stretched the quicklook images contrast to enhance image visualizations using the
parameters described in Table 4. The quicklook images are stored in GeoTIFF file format
with an 8-bit unsigned integer.

Table 4. The stretching parameters for creating the quicklooks.

Composite Band Minimum Maximum

Red (Band 7) 3500 15,000
Green (Band 5) 11,000 27,000
Blue (Band 4) 5000 18,000

3. Methods

Generally, there are three stages for generating the dataset of burned areas: (1) scene
selection, (2) pre-processing, and (3) burned area masking.

3.1. Scene Selection

The burned area dataset was created from Landsat-8 OLI multispectral images with a
spatial resolution of 30 m. We used Landsat-8 scenes from L1GT and L1TP product levels
that have been geometrically corrected [14]. The process of scene selection was carried
out by manually checking one-by-one from many Landsat-8 scenes taken between the
years 2019 and 2021. As a result, 81 Landsat-8 scenes were selected from several regions in
Indonesia with various ecological diversity backgrounds, such as forest, shrub, grassland,
waterbody, bare land, and settlement. The selected scenes are spread over 43 path row
locations, as depicted in Figure 2.

3.2. Pre-Processing

First, we conducted radiometric correction for the selected Landsat-8 scenes before
being used for creating the dataset. We performed top of atmosphere (ToA) correction to
eliminate the undesirable atmospheric effects [15]. It was carried out by converting the
digital number of images to the ToA planetary reflectance using the conversion parameters
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available in the metadata. The ToA reflectance values were then rescaled to a 16-bit
unsigned integer with a range of values from 0 to 65,535.
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Then, the selected Landsat-8 scenes were re-projected from the Universal Transverse
Mercator (UTM) map projection to geographic projection with the datum of WGS 1984
(EPSG:4326). The result was Landsat-8 scenes in the latitude–longitude coordinate system,
with the size of the pixels being resampled to 0.00025 degrees using cubic convolution
interpolation method. Finally, the pre-processing stage was performed using the GDAL
library in python.

3.3. Burned Area Masking
3.3.1. Delineation Process

The burned area polygons were delineated by four GIS experts using Quantum GIS
software. The delineation process was carried out manually on Landsat-8 images using
SWIR-2, NIR, and red band combinations. This combination was determined because it
looked the most visually clear and suitable for mapping burned area and burn severity [16].
The visualization of Landsat-8 images was enhanced using contrast stretching to assist
delineators during the visual interpretation process. The stretching parameters used for
enhancing the images were the same as the stretching parameters for creating the quicklook
of the images (see Table 4). Through this Landsat-8 image visualization, the burned areas
appear dark red or maroon, while active fire areas appear orange. The other ground
features similar to burned areas, such as settlements and bare land, appear pink to normal
red. The delineation process was performed carefully by drawing polygons along the
border of burned areas without including the background, such as bare land, vegetation,
thick cloud, and shadow into the burned area polygons (Figure 3). In some cases, there
were some burned areas covered by smoke and small clouds, and it is, in fact, possible for
the delineators to estimate the boundaries of burned areas under the clouds; however, the
delineators did not draw the polygon over the clouds. The final product of the delineation
process was a vector file containing a set of burned area polygons for each scene image.
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Figure 3. The polygons (blue line) are delineated along the border of burned areas without including
the background, such as bare land, vegetation, thick cloud, and shadow.

3.3.2. Cropping and Rasterizing

The dataset was cropped from the Landsat-8 scenes based on the burned area polygon
location determined in the previous stage. Before cropping the Landsat-8 scenes, we
prepared a square polygon used as a frame for cropping. The frame polygon was fitted
for cropping the dataset in 512 × 512 pixels size. The frame polygon can be duplicated
and moved to some burned area locations that will be cropped (Figure 4). The following
process is cropping and rasterizing, which is implemented using the GDAL library in
python. The process of cropping generates image subsets and quicklooks, whereas the
process of rasterizing generates burned area masks. The distribution of the dataset based
on the location of the path row is described in Table 5.
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Table 5. The distribution of the dataset according to the path row location.

Path/Row Number of Images Path/Row Number of Images

100/066 1 121/059 2
109/062 1 121/060 10
111/059 1 121/061 16
112/063 2 122/059 10
112/066 2 122/060 7
113/061 2 123/057 1
113/062 1 123/063 1
113/066 1 124/061 1
113/067 1 124/062 3
114/061 1 125/059 7
114/062 1 125/060 8
116/058 4 125/061 20
116/062 1 125/062 2
117/057 1 126/059 7
117/059 1 126/060 7
117/060 11 126/061 1
117/062 30 127/059 16
117/063 6 127/060 1
118/062 17 128/058 2
119/062 3 128/059 3
120/060 3 131/057 1
120/062 10

3.4. Validation

The quality of delineation results depends on the delineators’ prior knowledge. How-
ever, the ground features related to the burned area are not always easy to identify in
the satellite images. For instance, some features, such as settlements and bare lands, look
similar to the burned area. Therefore, other GIS experts were involved as validators to
evaluate delineation results to resolve this issue.

We used the agreement between delineators and validators to assess the consistency
of delineation results. Three validators were involved in inspecting delineation results and
correcting the delineators’ polygon vector. The validation process was carried out together
with the delineators to agree on the boundaries of the burned area. The polygons identified
by the delineators and validators were then evaluated and assessed quantitatively using
evaluation metrics, such as precision, recall, F1-score, and accuracy [17] (see Table 6). The
evaluation metric was calculated based on the number of pixels categorized as true positive
(TP), true negative (TN), false positive (FP), and false negative (FN), as described in Table 7.

Table 6. Metrics used to assess the dataset.

Evaluation Metric Equation

Precision (P) P = TP
(TP+FP)

Recall (R)
R = TP

(TP+FN)

F1-Score (F1) F1 = 2 × (P×R)
(P+R)

Accuracy (A) A = (TP+TN)
(TP+TN+FP+FN)
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Table 7. The confusion matrix.

Validator Result

Burned Area Non-Burned Area

Delineator Result
Burned Area True Positive (TP) False Positive (FP)

Non-Burned Area False Negative (FN) True Negative (TN)

The number of images associated with the mentioned metrics is summarized and
simplified in Table 8. The percentage of overlap between the polygons identified by the
validators and delineators is also calculated. The polygons identified by the delineators
and validators are almost perfectly matched with 218 images. These images have an
overlapping area in the range of 90 to 100 percent. Moreover, more than 200 images score
above 90 percent for precision, recall, accuracy, and F1-score.

Table 8. The number of images associated with the performance metric.

Percentage (%) Overlap Precision Recall F1 Score Accuracy

90–100 218 223 206 223 210
80–90 7 3 12 4 13
70–80 1 1 9 0 4
60–70 1 0 0 0 0
50–60 0 0 0 0 0
<50 0 0 0 0 0

Total 227 227 227 227 227

3.5. The Training Performance on the Dataset

To test the performance of the dataset, we have also used our dataset for training the
model of U-Net (Figure 5). We trained the model using quicklook images of 512 × 512 pixels
containing band SWIR-2, NIR, and red as its color composite. Each image was rotated by
90, 180, and 270 degrees during the data augmentation process before it passed through
the model. Eighty percent of the dataset was used for the training and twenty percent for
the validation. During network training, we used the Jaccard coefficient as the evaluation
metric and Adam as the optimizer, with an initial learning rate of 0.0001.

Data 2022, 7, x FOR PEER REVIEW 8 of 11 
 

 

Accuracy (A) 𝐴 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

Table 7. The confusion matrix. 

 
Validator Result 

Burned Area Non-Burned Area 

Delineator  

Result 

Burned Area True Positive (TP) False Positive (FP) 

Non-Burned Area False Negative (FN) True Negative (TN) 

The number of images associated with the mentioned metrics is summarized and 

simplified in Table 8. The percentage of overlap between the polygons identified by the 

validators and delineators is also calculated. The polygons identified by the delineators 

and validators are almost perfectly matched with 218 images. These images have an over-

lapping area in the range of 90 to 100 percent. Moreover, more than 200 images score 

above 90 percent for precision, recall, accuracy, and F1-score. 

Table 8. The number of images associated with the performance metric. 

Percentage (%) Overlap Precision Recall F1 Score Accuracy 

90–100 218 223 206 223 210 

80–90 7 3 12 4 13 

70–80 1 1 9 0 4 

60–70 1 0 0 0 0 

50–60 0 0 0 0 0 

<50 0 0 0 0 0 

Total 227 227 227 227 227 

3.5. The Training Performance on the Dataset 

To test the performance of the dataset, we have also used our dataset for training the 

model of U-Net (Figure 5). We trained the model using quicklook images of 512 × 512 

pixels containing band SWIR-2, NIR, and red as its color composite. Each image was ro-

tated by 90, 180, and 270 degrees during the data augmentation process before it passed 

through the model. Eighty percent of the dataset was used for the training and twenty 

percent for the validation. During network training, we used the Jaccard coefficient as the 

evaluation metric and Adam as the optimizer, with an initial learning rate of 0.0001. 

 

Figure 5. U-Net model architecture with characteristics of layer and filter sizes used in our model.

We trained the model for 200 epochs, where each epoch comprised 46 batches with
5 images per batch, as shown in Figure 6, where the left side is the curve of metric change
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of the model on the training set and the validation set, and the right side is the curve of
loss change. Our dataset can support the training of U-Net model with the loss value and
the Jaccard index of 0.07 and 0.93, respectively.
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4. User Notes

This dataset could be used for training, testing, and validating a deep learning model,
such as U-Net and ResUNet, for the purposes of mapping or monitoring burned areas.
The specification of the dataset has been described in the previous section. The additional
information for implementing this dataset is the following:

• The released dataset is organized into three folders: “images”, “masks”, and “quick-
looks” folders that contain the image subsets, burned area masks, and quicklook
images, respectively.

• The name of each file in this dataset indicates the image derived from such a scene.

File name of image subset: L8_PPPRRR_DDMMYY_XXX.tif
File name of burned area mask: L8_PPPRRR_DDMMYY_XXX_mask.tif
File name of quicklook: L8_PPPRRR_DDMMYY_XXX_ql.tif

where:

n L8 = Landsat-8
n PPP = WRS path
n RRR = WRS row
n DDMMYY = Acquisition date (Day, Month, Year)
n XXX = Collection number of dataset (001, 002, . . . )
n mask = Indicates burned area mask file
n ql = Indicates quicklook file

• This dataset provides all multispectral bands of Landsat-8 image (see Table 2) to
facilitate the users in selecting input bands to obtain the best performance from
their model. They may choose one band or more to be used as input for training
their model, or a combination of bands using spectral indices, such as Normalized
Difference Vegetation Indices (NDVI), Normalized Burn Ratio (NBR), etc.

• The quicklook can also be used as an alternative substitute for image subset if the users
only need bands SWIR-2, NIR, and Red for their model input. However, it should
be noted that the quicklook is a false composite image of band combination SWIR-2,
NIR, and Red, which has been performed contrast enhancement using the parameters
described in Table 4.

• The dataset can be used by researchers and professionals working on remote sens-
ing or computer vision-based models for image segmentation, object detection, and
classification related to the burned area. However, this dataset only supports binary
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classification for mapping burned areas and non-burned areas. Users are free to utilize
the dataset and to contribute by improving the existing dataset or adding new ones.

• The dataset has been collected from some path row locations in Indonesia. Therefore,
it can represent different conditions in some regions of Indonesia.

• Finally, some of the data may not be accurate and have errors in interpretation due to
visual human error.
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