Calculation of Low-frequency and High-frequency Measures

We used the methodology detailed in Eckert et al., 2012, 2019 studies for calculating the low- and high-frequency hearing measures for our secondary analyses. The steps to derive these measures are listed as follows: (1) Each participants' pure-tone thresholds for each ear (from 0.25 to 8 kHz frequencies) were standardized to the mean and standard deviation of the corresponding pure-tone threshold from the 852 older adults (columns 2 and 3 in Supplementary Table A, reproduced from Eckert et al., 2012). For example, a participant with a 30-dB HL threshold at 250 Hz would have a standardized score for that threshold equal to 1.047 (x = [30 - 17.37]/12.06). (2) This standardized score was then multiplied by the corresponding low- and high-frequency component coefficient from the factor analysis (columns 4 and 5 in Supplementary Table A, reproduced from Eckert et al., 2012). For example, the same participant from above would have a weighted low-frequency score equal to 0.424 (x = 1.047 * 0.405) and a weighted high-frequency score equal to -0.145 (x = 1.047 * -0.139) for the threshold at 250 Hz. (3) We then summed these weighted values across frequencies (0.25 to 8 kHz) for each component, and thus, created the low- and high-frequency hearing measures. (4) Based on the ear which had better PTA, we used better ear low-frequency and high-frequency measures. For example, if a participant had better PTA in the right ear, then we used the low- and high-frequency measures of the right ear.

Descriptive statistics and factor analysis coefficients that can be used to estimate low and high frequency hearing threshold components						
Frequency (Hz)	Mean	SD	Component score coefficient matrix			
			Low frequency component	High frequency component		
250	17.37	12.06	0.405	-0.139		
500	17.70	13.29	0.420	-0.137		
1,000	20.05	15.48	0.316	-0.039		
2,000	29.44	19.97	0.096	0.137		
3,000	38.63	22.81	-0.065	0.253		
4,000	47.14	23.98	-0.112	0.280		
6,000	55.31	24.19	-0.101	0.273		
8,000	58.57	23.69	-0.081	0.248		

Supplementary Table S1. Values for Calculation of Low- and High-Frequency Measures.

From Eckert et al., 2012. (Table 1, pg. 707). Reprinted with Permission from the Springer Nature Customer Service Center GmbH: Springer Nature. Eckert, M. A., Cute, S. L., Vaden, K. I., Kuchinsky, S. E., & Dubno, J. R. (2012). Auditory cortex signs of age-related hearing loss. JARO - Journal of the Association for Research in Otolaryngology, 13(5), 703-713. https://doi.org/10.1007/s10162-012-0332-5. Copyright Clearance Center, License Number 5010440403768 February 15, 2021.

	Low-frequency hearing measure	High-frequency hearing measure
Cognitive Flexibility		
Category Fluency	28	.05
COWAT - Letter Fluency	06	11
TMT-B (s)	.16	.30
Stroop mixing cost	.17	26
Inhibition		
Stroop color-word interference (s)	.13	.46*
SC NoGo error (%)	.14	.17
OA NoGo error (%)	.24	.28

Supplementary Table S2. Correlations between Low- and High-frequency Hearing Measure and Cognitive Control.

Cells represent zero-order correlation coefficients. COWAT = Controlled Oral Word Association Test [70]; TMT = Trail Making Test [71]; SC = Single-Car Task; OA = Object-Animal Task. *p < .05

Supplementary Table S3. Correlation after Controlling for Trail Making Test-A.

	Binaural QuickSIN score			
TMT-B	.57*			
Cell represents partial correlation coefficient after controlling for completion time on TMT-A				
Out al CINE Out als Canada in Marine I(0), TMT	$\Gamma_{n+1} M_{n+1} M_{n+1} = T_{n+1} [T_{n+1}] * n < 0 \Gamma$			

QuickSIN = Quick Speech-in-Noise [68]; TMT = Trail Making Test [71]. **p* < .05

Supplementary Figure S1. Non-Significant Relationships between Hearing and Cognitive Control Variables. PTA (dB HL) = Pure-Tone Average (decibels hearing level); QuickSIN = Quick Speech-in-Noise [68]; COWAT = Controlled Oral Word Association Test [70]; SC = Single-Car Task; OA = Object-Animal Task.