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Abstract: Emerging evidence suggests that atypical changes in driving behaviors may be early signals
of mild cognitive impairment (MCI) and dementia. This study aims to assess the utility of naturalistic
driving data and machine learning techniques in predicting incident MCI and dementia in older
adults. Monthly driving data captured by in-vehicle recording devices for up to 45 months from
2977 participants of the Longitudinal Research on Aging Drivers study were processed to generate
29 variables measuring driving behaviors, space and performance. Incident MCI and dementia cases
(n = 64) were ascertained from medical record reviews and annual interviews. Random forests were
used to classify the participant MCI/dementia status during the follow-up. The F1 score of random
forests in discriminating MCI/dementia status was 29% based on demographic characteristics (age,
sex, race/ethnicity and education) only, 66% based on driving variables only, and 88% based on
demographic characteristics and driving variables. Feature importance analysis revealed that age
was most predictive of MCI and dementia, followed by the percentage of trips traveled within
15 miles of home, race/ethnicity, minutes per trip chain (i.e., length of trips starting and ending at
home), minutes per trip, and number of hard braking events with deceleration rates ≥ 0.35 g. If
validated, the algorithms developed in this study could provide a novel tool for early detection and
management of MCI and dementia in older drivers.

Keywords: aging; Alzheimer’s disease and related dementias; artificial intelligence; dementia;
driving patterns; machine learning; mild cognitive impairment; naturalistic driving study; random
forests; screening
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1. Introduction

As aging of the US population accelerates, the number of older drivers continues to rise.
According to the US Census Bureau, there were over 49 million older adults (aged 65 years
and older) in the United States in 2016, accounting for 15% of the population [1]. The
number of older adults with a driver’s license in the United States is expected to increase
from 42 million (or 85% of the older adult population) in 2016 to 63 million in 2030 [2].
While driving allows older adults to meet their mobility needs and to stay independent,
age-related functional declines, medical conditions, and side effects of medications can
compromise driving abilities and lead to heightened crash risk. In addition, atypical
changes in driving behaviors may be early signals of cognitive function declines and
dementia. To determine whether a recent history of unsafe driving was associated with
cognitive impairment, Ott et al. [3] recorded traffic violations and crashes in the previous
3 years for middle-aged and older patients of an outpatient memory clinic who were
cognitively normal or diagnosed with mild cognitive impairment (MCI) or Alzheimer’s
disease (AD). In addition to the diagnostic categories, all study participants were classified
according to levels of brain amyloid deposits. A significant positive association between
the history of crashes and violations with amyloid brain burden was observed at levels
below the usual threshold corresponding with moderate to frequent amyloid plaques. In
a series of studies based on driving data, Roe and colleagues [4–7] assessed associations
between driving difficulties and AD biomarkers in older adults rated as cognitively normal
based on a Clinical Dementia Rating score of 0. Their initial data indicated that levels of
brain amyloid burden and cerebrospinal fluid (CSF) biomarkers of neurofibrillary tangles
were positively correlated with the number of driving errors during a 12-mile parking
lot and road test [5,6]. By repeating the road test annually over a 3.5-year period for
the same cohort, Roe et al. [4] and Babulal et al. [8–10] showed that the CSF biomarkers
predicted time to the participant’s driving test being rated as marginal or a failure. It is
worth noting that amyloid biomarkers appear to be associated with driving performance
but not with global cognitive test scores, implying that the assessment of driving may be a
useful strategy for the early detection of cognitive declines.

Several studies have demonstrated that atypical changes in driving performance
and driving behaviors could be detected in older drivers with preclinical AD [4–6] and
early-stage dementia [11], and that these changes may progress throughout the trajectory
of AD [4–7,12]. In recent years, naturalistic driving study designs have been used for
understanding driving behaviors in older adults with preclinical AD [7] and early-stage
dementia [11]. Reported changes in older drivers with preclinical AD or early-stage
dementia include declines in driving performance, such as increased incidence of getting
lost in traffic [11], increased risk of failing a driving test [5,6] and reduced spatial navigation
ability [13], and atypical driving behaviors, such as decreased driving exposure (e.g.,
fewer driving trips, driving days, driving destinations, nighttime driving and rush-hour
driving) [7], restricted driving space (e.g., less freeway driving and more driving within
5–10 miles of home) [7,11], and reduced unsafe driving behaviors (e.g., fewer hard braking
events and speeding events) [10].

While these naturalistic driving studies help to link driving behavior changes to
the risk of MCI/dementia, they are largely limited to piloting data with small sample
sizes and short follow-up durations. The AAA Longitudinal Research on Aging Drivers
(LongROAD) project is the largest naturalistic driving study of older drivers in the United
States [14]. Using preliminary data from the LongROAD project and machine learning
techniques, we assessed the utility of objectively measured driving variables in predicting
MCI and dementia in older adults. If confirmed, our findings may help to improve early
detection and management of MCI and dementia.
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2. Materials and Methods
2.1. LongROAD Study

The LongROAD study is a multisite prospective cohort study of 2990 active drivers
aged 65 to 79 years at the time of enrollment. The LongROAD study includes five data
collection sites: Ann Arbor, MI; Baltimore, MD; Cooperstown, NY; Denver, CO; and San
Diego, CA. Eligibility criteria were established to ensure that study participants were
relatively healthy, active drivers aged 65–79 years at the time of enrollment, who would
likely be available to be assessed annually through the duration of the study. Among those
excluded from the LongROAD study were drivers with Six-Item Screener score < 4, having
significant cognitive impairment or being diagnosed with degenerative medical conditions,
such as AD, Huntington’s disease, and Parkinson’s disease [14].

The data used in this study spanned the time period from August 2015 through March
2019. Naturalistic driving data were available for 2977 participants, among whom 33 were
newly diagnosed with MCI and 31 with dementia up to April 2019. These incident MCI
and dementia cases were ascertained from the review of participants’ medical records and
the annual interviews [14]. As dementia is a progressive disease and follow-up interviews
were conducted annually, it was not possible to delineate the month when the conversion
from MCI to dementia occurred. Thus, we classified the MCI/dementia status as a binary
variable (yes/no).

The driving behavior profile contains 29 variables that were aggregated monthly and
derived from the in-vehicle recording device “DataLogger” (Danlaw, Inc., Novi, MI, USA).
Their definitions and the statistics are detailed in Table 1.

Table 1. Variable definitions and statistics.

Variable Name Definition
Statistics

Min Max Mean SD

Diagnosis_labels MCI/Dementia

One’s disease level in a month
(0-Healthy; 1-Mild Cognitive
Impairment
(MCI)/Dementia/Alzheimer’s

0 1 - -

Demographic characteristics

Age in years Age Age at enrollment 65 79 71.1 4.1

Sex Sex Male; Female NA NA NA NA

Race/Ethnicity Race

Alaska Native, Native Hawaiian,
Pacific Islander; American Indian,
Asian; Black (non-Hispanic); White
(non-Hispanic); Hispanic; Other

NA NA NA NA

Education Education

Associate degree; Bachelor degree;
Master, professional, or
doctoral degree; Some college but
no degree; Vocational, technical,
business, or trade school (beyond high
school level); Other

NA NA NA NA

Driving variables

1 Miles_n Miles Total number of miles driven in month 0 15,783 762.2 587.8

2 Trips Trips Total number of trips in month 1 2341 115.8 64.6

3 TripsLt15Miles No. trips < 15 miles
of home

Number of trips traveled in month
within 15 miles of home 0 1953 95.5 58.4

4 PercentDistLt15Miles_n % trip < 15 miles of
home

Percent of trips traveled in month
within 15 miles of home 0.0 100.0 64.9 28.9

5 TripsLt25Miles No. trips < 25 miles
of home

Number of trips traveled in month
within 25 miles of home 0 1953 101.7 59.7

6 PercentDistLt25Miles_n % trip < 25 miles of
home

Percent of trips traveled in month
within 25 miles of home 0.0 100.0 76.5 26.4
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Table 1. Cont.

Variable Name Definition
Statistics

Min Max Mean SD

7 MilesPerTrip_n Miles per trip
Total number of miles driven in
month divided by total number of
trips in month

0.0 74.5 6.7 4.1

8 MinutesPerTrip_n Minutes per trip
Total driving minutes in month
divided by total number of trips in
month

0.1 137.7 14.9 5.9

9 TripMinutes_n Total trip minutes Total minutes of driving in month 0.1 16,645.0 1633.4 1083.6

10 TripsInDay No. trips during
day

Number of trips in month not
classified as nighttime 0 1279 107.2 57.4

11 PercentTripsInDay_n % trips during day Percent of trips in month not
classified as nighttime 0.0 100.0 93.1 8.0

12 TripsAMPeak No. trips in AM
peak

Number of trips in month during
7–9 AM on weekdays 0 167 8.6 9.4

13 PercentTripsAMPeak_n % trips in AM
peak

Percent of trips in month during
7–9 AM on weekdays 0.0 100.0 7.3 6.9

14 TripsAtNight No. trips at night

Number of trips during which at
least 80% of a trip was during
nightime in month (Nightime was
defined as civil twilight or a solar
angle greater than 96 deg)

0 1143 8.7 16.6

15 PercentTripsAtNight_n % trips at night

Percent of trips during which at
least 80% of a trip was during
nightime in month (Nightime was
defined as civil twilight or a solar
angle greater than 96 deg)

0.0 100.0 6.9 8.0

16 TripsPMPeak No. trips in PM
peak

Number of trips in month during
4–6PM on weekdays 0 150 10.9 9.5

17 PercentTripsPMPeak_n % trips in PM peak Percent of trips in month during
4–6PM on weekdays 0.0 100.0 9.3 6.7

18 LeftTurnCount No. left turns Number of left turns made in
month 0 2592 261.6 159.9

19 RightTurnCount No.right turns Number of right turns made in
month 0 2751 242.6 150.1

20 RightToLeftTurnRatio_n Right to left turn
ratio

Ratio of all right-hand to left-hand
turning events for a driver in
a month

0.0 7.0 0.9 0.2

21 TripsVgt60 No. trips on high
speed roads

Number of trips in month where
20% of distance travelled was at a
speed of 60 MPH or greater

0 226 13.9 15.0

22 PercentTripsVgt60_n % trip on high
speed roads

Percent of trips in month where
20% of distance travelled was at a
speed of 60 MPH or greater

0.0 12.6 100.0 12.3

23 SpeedGt80mphCount No. speeding
events

Number speeding events in month
(speed > 80 MPH sustained for at
least 8 s)

0 3300 7.3 31.3

24 DecelCntLtN3pt5Mps2

No. hard braking
events with
deceleration rates
≥ 0.35 g

Number of events with a
deceleration rate ≥ 0.35 g in
a month

0 1112 3.8 8.2
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Table 1. Cont.

Variable Name Definition
Statistics

Min Max Mean SD

25 DecelCntLtN4pt0Mps2

No. hard braking
events with
deceleration rates
≥ 0.40 g

Number of events with a
deceleration rate ≥ 0.4 g in a
month

0 734 0.9 4.2

26 DecelCntLtN7pt5Mps2 No. hard braking
events ≥ 0.75 g

Number of events with a
deceleration rate ≥ 0.75 g in a
month

0 24 0.005 0.2

27 TripChains Trip chains
Number of trip chains in month
(Note: chain is a series of trips
starting and ending at home)

0 180 8.2 7.8

28 MilesPerChain_n Miles per chain
Total miles of chains in month
divided by total number of trip
chains in month

0.00 4273.3 100.7 121.1

29 MinutesPerChain_n Minutes per chain
Total driving minutes for chains
divided by total number of trip
chains in month

0.0 6606.3 222.0 219.8

NA, not applicable.

2.2. Monthly Record Classification

To fully utilize all time-dependent driving data, we treated each monthly record as an
independent data point. The data point sizes of health and MCI/dementia were 89,380
and 1063, respectively, with a total of 90,443 data points. Each data point, x, included
33 covariates (i.e., 4 demographic variables and 29 driving variables). The disease status,
y, was defined as 0 if healthy or 1 if MCI/dementia. We aimed to develop a classifier to
predict the disease status y using data point x.

2.3. Five Classification Models

A robust classification technique that involves building multiple decision trees, ran-
dom forests (RFs) were used to classify the disease status for a given data point. All the
analyses were performed in the R environment with Version 1.3.1056.

For each model, we tried five groups of covariates, one with age only, one with demo-
graphic characteristics (i.e., age, sex, race/ethnicity, and education) only, one with driving
variables only, one with age and driving variables, and one with demographic character-
istics and driving variables. Building upon these groups of covariates, we quantitatively
assessed the relative contributions of age and other demographics and driving variables to
the RF model performance in classifying disease status.

2.4. Random Forests

We used RFs for 3 reasons: (1) RF is a versatile and powerful ensemble learning
classifier capable of fitting complex datasets; (2) RF is more computationally efficient than
other classification models, such as artificial neural networks; and (3) RF provides highly
interpretable results through importance rankings of covariates.

2.4.1. Performance Metrics

To evaluate the performance of the classification models on test datasets, we focused
on 3 metrics: precision, recall, and F1 score. These metrics measure different aspects of
the performance of the classifier and are better suited to different outcomes. For example,
if our goal is to train a classifier to detect those with potential dementia symptoms in
order to intervene at an early stage and allow them to be treated in time, then a classifier
that captures almost all participants exhibiting early signs of dementia (i.e., high recall
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or sensitivity) at the expense of some false positives is preferable. If the goal is to train
a classifier to inform those who are likely to develop dementia without misidentifying
too many of those who are likely not, then a classifier that minimizes the false positives
(i.e., a healthy participant is identified for dementia) and has high precision (i.e., positive
predictive value) is preferable. If the goal is to demonstrate the feasibility of using driving
variables to detect MCI and dementia, then recall and precision should be balanced. The
F1 score, which is the harmonic mean of recall and precision, was used to measure the
overall performance of the classifier. A classifier with a high F1 score could be valuable for
early detection of MCI/dementia as well as for improving driving safety. In addition, we
calculated the area under the receiver operating characteristic curve (AUC) as a measure of
validity for model discrimination.

To train RF classifiers, we needed to first divide the dataset into a test dataset and a
training dataset.

2.4.2. Test Data Selection

We randomly selected 77 healthy and 102 MCI/dementia data points as the test or
validation data, which were used to evaluate RF classifiers with performance metrics. We
deliberately selected more MCI/dementia points than healthy points to ensure adequate
data for assessing the accuracy of the RF classifiers.

2.4.3. Training Data Rebalance

The training data were the remaining data points after the selected test data were
removed from the total dataset. As the total dataset was highly imbalanced (with many
more healthy data points than MCI/dementia points) and could cause training bias, we
needed to first rebalance the training data.

The data were highly skewed from both the perspective of drivers and monthly records.
Of the 2977 participants included in this study, only 64 (2.1%) developed MCI/dementia
during the follow-up. Of the 90,443 monthly data records, 89,380 were healthy points
(labeled as 0) and 1063 were MCI/dementia points (labeled as 1). The monthly data had
a healthy versus MCI/dementia class ratio of 84:1. In other words, the MCI/dementia
monthly data accounted for only 1.2% of the entire dataset.

To mitigate the imbalance issue, we applied the synthetic minority oversampling tech-
nique (SMOTE) to oversample the dementia data points such that the amount of dementia
class was comparable to that of the healthy class without compromising the total sample size
too much. We oversampled the dementia data points and generated synthetic MCI/dementia
samples using existing MCI/dementia data while undersampling the healthy points to make
the healthy–MCI/dementia class ratio close to 0.95:1. This was carried out using the R func-
tion “SMOTE” in the package “DMwR”. After rebalancing, the training dataset contained
39,401 records with 19,220 healthy and 20,181 MCI/dementia records.

2.4.4. Parameter Tuning

Parameter tuning helps to control the training process and improve the result. The
tuned parameters were divided into 2 types: RF parameters and prediction cutoff threshold.
In RF training, the key parameter was “mtry” (i.e., number of variables randomly collected
to be sampled at each split node). In the prediction stage, RF could predict a crisp class
label or a continuous probability score. In the latter case, an optimal “decision threshold”
would be crucial to convert from a probability score to a crisp class label. For a balanced
dataset, 0.5 is often used as the optimal threshold. However, for imbalanced classification,
the optimal threshold needs to be tuned.

To tune these parameters, 10-fold cross-validation was employed. In other words,
the training set was split into 10 folds where a RF model was trained with nine folds
and evaluated on the remaining fold. A grid search was performed on a combination of
parameter values and the optimal ones were selected based on the highest F1 score.
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3. Results
3.1. Model Comparison

Table 2 displays the performance metrics and confusion matrix of the five RF models
evaluated on the test dataset. Each row represents one classification model with one
particular group of covariates. Models 1, 2, 3, 4, and 5 refer to the ones with the covariate
of age only, demographic characteristics (i.e., age, sex, race, and education) only, driving
variables only, both age and driving variables, and both demographic characteristics and
driving variables, respectively.

Table 2. Performance of random forests models with different covariates in predicting incident mild cognitive impairment
or dementia.

Model Covariates Accuracy Precision
or PPV

Recall
or Sen-
sitivity

Specificity NPV F1
Score AUC

Out-of-Bag
Error Rate

Confusion Matrix

Predicted
Observed

% SD 0 1

1 Age only 0.46 1.00 0.06 1.00 0.45 0.11 0.56 6.00 0.01
0 77 96
1 0 6

2
Age, sex, race/ethnicity,
and education 0.53 1.00 0.17 1.00 0.48 0.29 0.64

0 77 85
4.27 0.01 1 0 17

3 Driving variables only 0.66 0.79 0.56 0.81 0.58 0.66 0.76 2.60 0.75
0 62 45
1 12 57

4 Age and driving variables 0.80 0.89 0.74 0.88 0.72 0.81 0.91 2.14 0.50
0 68 27
1 9 75

5
Age, sex, race/ethnicity,
education and driving
variables

0.86 0.86 0.90 0.81 0.86 0.88 0.90 2.07 0.57
0 62 10

1 15 92

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve.

Model 5 with combined demographic characteristics and driving variables achieved
the highest F1 score of 0.88, followed by Model 4, with a F1 score of 0.81. Contrasting
Model 4 with Model 1 revealed that adding driving variables increased the validity of the
MCI/dementia prediction from 0.11 based on age only to 0.81. Model 1 (with age only)
achieved a perfect precision (1.00) but a poor recall (0.06), while Model 3 (with driving
variables only) achieved a fair recall (0.56) and a moderate precision (0.79). Combining age
and driving variables, Model 4 demonstrated both a high precision (0.89) and a moderate
recall (0.74). Likewise, contrasting Model 5 to Model 2 revealed that adding driving
variables increased the validity in predicting MCI/dementia from 0.29 to 0.88.

3.2. Feature Importance Ranking

To assess the relative importance of each covariate in building RF classifiers, we
plotted the feature importance ranking in terms of “mean decrease accuracy”, shown in
Figure 1. Mean decrease accuracy measures a covariate’s importance by quantifying how
much the tree nodes that use the covariate at a split reduce predicted accuracy on average.
Age was the most important feature in developing the classifiers. Among driving variables
and other demographics, the top five covariates were: percent of driving distance less than
15 miles from home (PercentDistLt15Miles_n), race/ethnicity (Race), minutes per trip chain
(MinutesPerChain_n), minutes per trip (MinutesPerTrip_n), and number of hard braking
events with deceleration rates ≥ 0.35 g (DecelCntLtN3pt5Mps2). These covariates were
related to different aspects of driving: “PercentDistLt15Miles_n” reflecting the driving
space, “MinutesPerChain_n” and “MinutesPerTrip_n) representing driving time duration,
and “DecelCntLtN3pt5Mps2” indicating unsafe driving maneuver.
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Figure 1. Feature importance ranking.

4. Discussion

We trained five RF classifiers with two groups of covariates, demographic characteris-
tics (i.e., age, sex, race/ethnicity and education) and driving variables. The one with both
demographic characteristics and driving variables showed an overall predictive validity of
88%, implying that using both the knowledge of basic demographics and driving behavior
could accurately predict if one has MCI/dementia. However, even using driving variables
only achieved a reasonably good predictive performance, especially if our goal is to identify
those exhibiting early signs of MCI/dementia.

This study is among the first to assess the feasibility of using a large amount of nat-
uralistic driving data and machine learning techniques to detect MCI/dementia. The
usefulness of driving data in MCI/dementia classification could have important implica-
tions for the screening and early treatment of MCI and dementia. Early detection of MCI
and dementia may also help improve driving safety for older adults. It is worth noting that
this study assessed the value of driving behavior in predicting MCI/dementia rather than
the influence of MCI/dementia on driving behavior as shown in previous studies [3–13].

The novelty of this study also lies in the application of machine learning techniques
(i.e., random forests models) in a series of experiments based on naturalistic driving data to
investigate the relationship between changes in driving behaviors, space and performance
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and the risk of MCI/dementia. The classifiers with driving variables produce much higher
F1 scores than those with age and other demographic characteristics. Safe driving requires
essential cognitive and physical functions and perceptual motor skills. As a complex task
involving dynamic cognitive processes, naturalistic driving behavior features can be used
as comprehensive and reliable phenotypic markers to detect preclinical AD, MCI and
dementia [15].

A notable limitation of this study is the modest number of incident MCI and dementia
cases. As a result, we included driving behavior features across all the study participants
in the classification algorithms without specifying which records belong to whom, or
considering time-series sequences of those driving features. It is also noteworthy that MCI
is not necessarily a prodromal stage of dementia, although many MCI cases do progress
to dementia, with an annual conversion rate of about 12% in the general population [16].
As the LongROAD project was designed to study aging and driving safety, the research
protocol did not include collecting detailed diagnostic data related to MCI and demen-
tia, such as neurological tests and imaging biomarkers. Future research should develop
prediction models for MCI and dementia separately and for progression from MCI to
dementia. Another limitation of the study is that the random forests models were trained
and tested with oversampled MCI/dementia data points. Although rebalancing the dataset
is necessary for avoiding training bias, results from the random forest models may not be
entirely generalizable to the real-world setting as the actual dataset is highly imbalanced.

Nevertheless, the preliminary findings indicate that the performance of the random
forest model based on basic demographic characteristics and driving behavior features is
excellent, with a F1 score of 0.88 and an area under the receiver operating characteristic
curve of 0.90. When additional follow-up data become available, we will use individual-
level longitudinal driving data to develop a personalized time-dependent classifier to
predict the risk of MCI/dementia for each study participant. If the high accuracy of
the classifier is confirmed, the algorithm based on driving behavior features along with
basic demographic characteristics could be incorporated into a smartphone app and other
devices for early detection of MCI and dementia in older adult drivers.
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