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Abstract: Background: The impact of non-vitamin K antagonist oral anticoagulants (NOACs) on
platelet function is still unclear. We conducted a comprehensive ex vivo study aimed at assessing
the effect of the four currently marketed NOACs on platelet function. Methods: We incubated blood
samples from healthy donors with concentrations of NOACs (50, 150 and 250 ng/mL), in the range
of those achieved in the plasma of patients during therapy. We evaluated generation of thrombin;
light transmittance platelet aggregation (LTA) in response to adenosine diphosphate (ADP), thrombin
receptor-activating peptide (TRAP), human γ-thrombin (THR) and tissue factor (TF); generation
of thromboxane (TX)B2; and expression of protease-activated receptor (PAR)-1 and P-selectin on
the platelet surface. Results: All NOACs concentration-dependently reduced thrombin generation
compared with control. THR-induced LTA was suppressed by the addition of dabigatran at any
concentration, while TF-induced LTA was reduced by factor-Xa inhibitors. ADP- and TRAP-induced
LTA was not modified by NOACs. TXB2 generation was reduced by all NOACs, particularly at
the highest concentrations. We found a concentration-dependent increase in PAR-1 expression after
incubation with dabigatran, mainly at the highest concentrations, but not with FXa inhibitors; P-
selectin expression was not changed by any drugs. Conclusions: Treatment with the NOACs is
associated with measurable ex vivo changes in platelet function, arguing for antiplatelet effects
beyond the well-known anticoagulant activities of these drugs. There are differences, however,
among the NOACs, especially between dabigatran and the FXa inhibitors.

Keywords: oral anticoagulants; non-vitamin K antagonist oral anticoagulants; NOACs; direct oral
anticoagulants; DOACs; platelets; antiplatelet effects

1. Introduction

All anticoagulants are expected to have some indirect effects on platelet function
because they interfere with the generation or activity of thrombin, which is a potent platelet
agonist [1]. Interference of anticoagulants with platelet function can explain part of their
antithrombotic efficacy on the one hand, and additive or synergistic effects with antiplatelet
agents on the other.
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Previous studies showed that anticoagulants (direct or indirect thrombin inhibitors)
reduce markers of thrombin generation and, concomitantly, thrombin-induced platelet acti-
vation [2,3]. There are, however, very few data about antiplatelet effects of non-vitamin K an-
tagonist oral anticoagulants (NOACs). Both the direct thrombin inhibitor dabigatran—by in-
hibiting thrombin activity—and the direct factor (F) Xa inhibitors rivaroxaban and apixaban,
indirectly preventing thrombin production, have been shown to inhibit thrombin-mediated
effects and reduce the endogenous thrombin potential (ETP) in a concentration-dependent
manner [4–7]. Recent studies have also shown that both dabigatran and FXa inhibitors affect
platelet aggregation induced by thrombin [8,9] but also by tissue factor (TF) [10,11], which
indirectly stimulates platelet aggregation through thrombin generation via the extrinsic
coagulation pathway [12,13]. Moreover, dabigatran inhibited thrombin-induced platelet
activation and aggregation in a concentration-dependent fashion [14], but also appeared to
reduce platelet aggregation induced by thrombin receptor-activating protein (TRAP) [15],
while arachidonic acid- and adenosine diphosphate (ADP)-induced platelet reactivity was
not influenced [16]. In vitro studies have also demonstrated that dabigatran induces an
overexpression of protease-activated receptor-1 (PAR-1) on the platelet surface [17]. A recent
study conducted in patients with atrial fibrillation has confirmed that dabigatran treatment
increases thrombin receptor density on the platelet surface, enhancing platelet reactivity [18].
Platelet aggregation induced by arachidonic acid, ADP, collagen and epinephrine did not
appear to be affected, conversely, in patients taking apixaban and rivaroxaban, while TRAP-
induced aggregation was reduced [19–21]. As these studies with various anticoagulants
have been conducted in disparate experimental and clinical conditions, often in patients
chronically treated with aspirin and—occasionally—with inhibitors of glycoprotein (GP)
IIb/IIIa, all drugs that themselves affect platelet aggregation, the real impact of NOACs on
platelet function has not yet been fully clarified and compared.

We therefore conducted a comprehensive ex vivo study aimed at assessing the effect
of the four currently marketed NOACs—the thrombin inhibitor dabigatran and the FXa
inhibitors rivaroxaban, apixaban and edoxaban—on platelet function. In vivo comparisons
of the effects of NOACs on platelet function will be the subject of a complementary report.

2. Methods

This study was conducted at the Experimental Cardiology Unit and at the flow
cytometry facility of the Center for Advanced Studies and Technology (CAST) at the
G. d’Annunzio University of Chieti-Pescara, and at the Atherothrombotic Disease Unit,
Azienda Ospedaliero-Universitaria Careggi, University of Florence, Italy. The Center of
Chieti was involved with the experiments with dabigatran, rivaroxaban and apixaban,
the Center of Florence with the experiments with edoxaban. Experimental methods were
shared by the two centers and inter-reproducibility of the findings cross-checked.

The ex vivo experiments of this study consisted of incubation of blood samples from
healthy volunteers with varying concentrations of the NOACs. For this purpose, we
enrolled 20 healthy volunteers in Chieti for dabigatran, apixaban and rivaroxaban experi-
ments, and other 20 volunteers in Florence for edoxaban experiments. The two populations,
consisting of 17 males and 23 females, had overlapping characteristics, with a median age
of 30 (interquartile range 27–42), a median BMI of 22 (interquartile range 21–26), and with
blood group 0+ in 38%, A+ in 33%, B+ in 17%, 0− in 8%, and AB+ in 4% of volunteers.
They were also asked to abstain from non-steroidal anti-inflammatory drugs (NSAIDs)
the week before study, allowing paracetamol as the only antipyretic/analgesic drug in
case of need. We evaluated the generation of thrombin, platelet aggregation, generation
of thromboxane (TX)B2, and expression of PAR-1 (the main platelet thrombin receptor)
and of the marker of platelet activation P-selectin on the platelet surface. Anticoagulants
were tested at increasing concentrations of 50, 150 and 250 ng/mL, in the range of those
measured in the plasma of patients during chronic therapy [22–25], and after preliminary
testing of a wider range of intermediate concentrations from 30 to 300 ng/mL (30, 50, 75,
100, 150, 200, 250 and 300 ng/mL) in the initial experimental setups. In order to enable
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direct comparisons between molecules with different molecular weights, we also report
50, 150 and 250 ng/mL concentrations of each NOAC in molar units: dabigatran (79.66,
238.97 and 398.28 nmol/L, respectively), apixaban (108.81, 326.44 and 544.07 nmol/L,
respectively), rivaroxaban (114.71, 344.13 and 573.55 nmol/L, respectively) and edoxaban
(91.23, 273.69 and 456.16 nmol/L, respectively).

Dabigatran, rivaroxaban, apixaban and edoxaban pure substances were provided
by Boehringer Ingelheim (Ingelheim am Rhein, Germany), Bayer AG (Wuppertal, Ger-
many), Bristol Myers Squibb Company (New Brunswick, NJ, USA) and Daiichi Sankyo
(Chūō, Tokyo, Japan). Drug powders were reconstituted with dimethylsulfoxide (DMSO)
to form stock solutions according to manufacturers’ recommendations for non-clinical
investigations [12,26–28] and stored at −80 ◦C before use.

The study protocol was conducted in accordance with the principles of the Declaration
of Helsinki and approved by the Institutional Ethics Committees at both the Universities of
Chieti and Florence. Written informed consent was obtained from all study participants.

2.1. Blood Samples

Antecubital venous blood was drawn using a 21 G needle and collected in 3.2% (vol:vol)
citrated test tubes for the assessment of the endogenous thrombin potential, and for platelet
aggregation and flow cytometry analyses; glass serum test tubes were used for the TX
generation test.

2.2. Calibrated Automated Measurement of Thrombin Generation (CAT)

Citrated whole blood was centrifuged at 2000× g for 20 min (min) at 0 ◦C to obtain
platelet-poor plasma (PPP); samples were then stored at −80 ◦C until further process-
ing. The day of the experiment, increasing concentrations of the four NOACs (50, 150,
250 ng/mL), or vehicle without drug, were added to platelet-poor plasma (PPP, see below),
and incubated for 15 min at room temperature.

Thrombin generation—as a global measure of the whole clotting system’s capacity—was
assessed according to the method described by Hemker et al. [29], with a calibrated automated
thrombogram (CAT) using a Fluoroskan Ascent® microplate fluorimeter (Thermo Fisher
Scientific, Waltham, MA, USA). Fluorescence intensity was detected at wavelengths of 390 nm
(excitation filter) and 460 nm (emission filter). For this purpose, 80µL of PPP was dispensed into
the wells of round-bottomed 96-well microtiter plates. Next, 20 µL of a PPP reagent containing
5 pM tissue factor/4 µM phospholipids (Diagnostica Stàgo, Asnières sur Seine Cedex, France)
was added to the PPP samples. The starting reagent (20 µL per well) contained the fluorogenic
substrate (amino-methyl-coumarin, AMC) and CaCl2. A Thrombinoscope® software (version
3.0.0.26, Thrombinoscope BV, Maastricht, The Netherlands) enabled the calculation of thrombin
activity against the calibrator, and displayed thrombin activity against time. All tests were
carried out in duplicate, and measurements were completed within 90 min. Parameters derived
from the CAT were the endogenous thrombin potential (ETP, corresponding to the area under
the CAT curve, reflects the total amount of generated thrombin, and is expressed as nM × min),
the peak height of thrombin generation (corresponding to the maximum amount of thrombin
that can be generated by the plasma sample during the thrombin burst, and recorded in nM),
time to peak (representing the time course of the thrombin generation curve up to the formation
of the thrombin peak height, in min) and the lag time before the curve take-off (in min).

2.3. Platelet Aggregation Studies

Citrated plasma was immediately obtained from citrated whole blood (WB) with a two-
step centrifugation. For the first centrifugation, WB was centrifuged at 200× g for 15 min
to obtain platelet rich-plasma (PRP) as the supernatant, and this was then transferred to an
empty polypropylene sterile tube. The remaining WB underwent a second centrifugation
round at 2000× g for 20 min to obtain PPP. Platelet count in the PRP was checked by means
of a Multisizer 3 Coulter Counter (Beckman Coulter, Brea, CA, USA) and used to dilute
PRP with PPP if platelet count was >350.000/µL.
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Increasing concentrations of the four NOACs (50, 150, 250 ng/mL), or their vehicle
(dimethylsulfoxide, DMSO) without drug, were added to PRP and incubated for 15 min at
room temperature before performing aggregometry studies.

Light transmittance aggregometry (LTA) was evaluated according to Born’s method [30].
Platelet aggregation induced by adenosine diphosphate (ADP, 5 µM, Mascia Brunelli, Milano,
Italy), human γ-thrombin (THR, 1.5 ng/mL, Enzyme Research Laboratories, South Bend, IN,
USA), thrombin receptor-activating peptide (TRAP, 10 µM, Sigma Aldrich, St. Louis, MO,
USA) and tissue factor (TF Innovin, diluted 1:1.000, Siemens, Berlino, Germany) was then
measured in PRP using a light transmittance platelet aggregometer (Chrono-Log, Havertown,
PA, USA). Human γ-thrombin was used because it is a non-coagulant form of thrombin that
retains most of its platelet-activating capacity [31].

2.4. Thromboxane Generation

Increasing concentrations of the four NOACs (50, 150, 250 ng/mL), or their vehicle
as control, were added to 1 mL whole blood in glass tubes and incubated for 60 min
at 37 ◦C in order to evaluate TXB2 production as a platelet reactivity biomarker in the
presence of NOACs, in comparison to samples incubated with the vehicle representing
the physiological situation. Samples were then centrifuged at 2000× g at 0 ◦C for 15 min
and the upper layer collected and stored at −20 ◦C until analysis. Serum thromboxane
(TX) B2 was measured in duplicate using a TXB2 enzyme immunoassay (EIA) kit (Cayman
Chemical, Ann Arbor, MI, USA) according to the manufacturer’s instructions.

2.5. Flow Cytometry

Increasing concentrations of the four NOACs (50, 150, 250 ng/mL), or vehicle without
drug, were added to citrated whole blood and incubated for 15 min at room temperature.
Then, samples were incubated with fluorescent antibodies for CD41 [A-Human CD41a allo-
phycocyanin (APC), Becton Dickinson Biosciences, La Jolla, CA, USA], P-selectin (Becton
Dickinson) and PAR-1 expressed on the platelet surface. Due to the different periods of the
study, we used an indirect PAR-1 antibody (Zenon Alexa Fluor 488 Mouse Ig, Histoline
Laboratories, Milano, Italy) for the experiments conducted with dabigatran, and a direct
PAR-1 antibody (Human PAR 1 Alexa Fluor 488 MAb, R&D, Minneapolis, MN, USA)
for the experiments with rivaroxaban, apixaban and edoxaban. In a subset of samples
(n = 5), the two above-mentioned anti-PAR1 antibodies were compared to ascertain their
overlapping ability to stain the samples with respect to the related control samples, and the
signal-to-noise ratio was evaluated. Antibodies were added to 100 µL of whole blood. After
incubation for 30 min at room temperature in the dark, 1 mL of an erythrocyte-lysing solu-
tion (FACS Lysing Solution, Becton Diickinson, Franklin Lakes, NJ, USA) was added to each
sample and incubated 5 min at room temperature. We acquired 1 × 106 events/sample by
flow cytometry (FACSVerse, BD Biosciences—three laser-, eight color-configuration). Each
antibody/reagent was titrated (8-point titration) under the assay’s conditions. Reagent
titrations were calculated according to current guidelines [32].

Instrument performances, data reproducibility and fluorescence calibrations were
consistent throughout the study period and between the two laboratories involved in this
study, as checked by the Cytometer Setup & Tracking Module, and further validated by
the acquisition of Spherotech 8 peack Rainbow Beads (Becton Dickinson). In order to
evaluate non-specific fluorescence, Fluorescence Minus One (FMO) controls were used.
Compensation was assessed using CompBeads (Becton Dickinson), as recommended by
recent guidelines [32], and single-stained fluorescent samples. Data were analyzed using
FACSDiva v 6.1.3 (Becton Dickinson) and FACSuite v. 1.0.5 (Becton Dickinson) with FlowJo
v. 8.8.6 (Becton Dickinson). Concentrations of cell suspensions were obtained by volumetric
count. Data were reported as mean fluorescence intensity (MFI) ratios.
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2.6. Statistical Analyses

Results were expressed as median and interquartile range (IQR). To test for differences
among groups, we used the one-way ANOVA for repeated measures with Tukey’s multiple
comparison test for normally distributed variables. For data with a non-normal distribution,
we used the non-parametric Kruskal–Wallis test with Dunn’s test for multiple comparisons.

3. Results
3.1. Calibrated Automated Measurement of Thrombin Generation

Thrombin generation parameters are reported in Table 1. All NOACs reduced throm-
bin generation compared with controls in a concentration-dependent manner, although
with some differences between drugs in the measured parameters.

Table 1. Thrombin generation parameters without and with the addition of increasing concentrations
of dabigatran, rivaroxaban, apixaban and edoxaban.

Dabigatran Rivaroxaban
Control 50 ng/mL 150 ng/mL 250 ng/mL Control 50 ng/mL 150 ng/mL 250 ng/mL

median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR)
ETP (nM × min) 1918 (1202–2591) 965 (600–2048) § 808 (539 –1516) # 642 (406–1118) * 1919 (1203–2591) 1047 (773–1725) § 806 (647–1408) ◦ 765 (555–1342) *

Peak (nM) 240 (147–285) 133 (100–298) 200 (130–271) 181 (68–216) 227 (128–278) 67 (49–88) * 52 (36–88) * 49 (32–76) *
Time to peak (min) 6.2 (5.6–7.7) 4.7 (3.7–7.0) 4.7 (3.3–11.4) 4.0 (3.2–12.9) 6.2 (5.6–7.7) 13.0 (7.8–17.2) ◦ 12.5 (9.8–20.9) * 15.9 (13.2–18.6) *

Lag time (min) 1.33 (0.7–2.4) 2.3 (1.5–3.2) 2.3 (0.7–6.9) 2.0 (1.0–6.8) 1.3 (0.7–2.4) 3.0 (1.6–4.8) § 4.5 (2.9–6.5) * 5.8 (4.4–7.6) *

Apixaban Edoxaban
Control 50 ng/mL 150 ng/mL 250 ng/mL Control 50 ng/mL 150 ng/mL 250 ng/mL

median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR)
ETP (nM × min) 1918 (1202–2591) 1158 (780–1934) § 1100 (697–1482) # 949 (520–1295) ◦ 1218 (975–1794) 1118 (853–1720) 938 (805–1464) 819 (734–1039) §

Peak (nM) 227 (128–278) 77 (50–136) * 62 (40–88) * 49 (38–70) * 101 (85–142) 97 (63–182) 62 (53–96) § 50 (39–69) ◦
Time to peak (min) 6.2 (5.6–7.7) 10 (6.6–14.3) § 14 (9.8–20.6) * 15 (12–19) * 11 (9–13) 14 (12–17) § 18 (15–20) * 19 (17–22) *

Lag time (min) 1.3 (0.7–2.4) 2.7 (1.7–4.5) § 3.3 (1.6–6.0) # 4.3 (3.6–6.8) * 5.3 (4.9–7.8) 8.2 (6.0–10.2) § 11 (7.4–13.3) ◦ 12 (10.0–13.9) *

ETP = endogenous thrombin potential; IQR = interquartile range. * p < 0.0001 vs. control; ◦ p < 0.001 vs. control;
# p < 0.01; § p < 0.05 vs. control.

Dabigatran significantly reduced ETP at all tested concentrations, (p < 0.05 at 50 ng/mL,
p < 0.01 at 150 ng/mL, p < 0.0001 for 250 ng/mL vs. control) (Figure 1A), but did not
significantly affect peak of thrombin generation, time to peak or lag time.
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Figure 1. Thrombin generation parameters after the addition of increasing concentrations of dabiga-
tran, rivaroxaban, apixaban and edoxaban. Dot plots report all single values of endogenous thrombin
potential (ETP, panel (A)) and peak of thrombin generation (panel (B)). The horizontal lines represent
the mean values. * p < 0.0001, ◦ p < 0.001, # p < 0.01, § p < 0.05 vs. the corresponding controls.
C = control; 50 = 50 ng/mL; 150 = 150 ng/mL; 250 = 250 ng/mL.

Rivaroxaban and apixaban modified all thrombin generation parameters in a concentration-
dependent manner. Rivaroxaban significantly reduced ETP (p < 0.05 at 50 ng/mL, p < 0.001
at 150 ng/mL, p < 0.0001 at 250 ng/mL vs. control) (Figure 1A), peak of thrombin generation
(p < 0.0001 at all concentrations vs. control) (Figure 1B), time to peak (p < 0.001 at 50 ng/mL,
p < 0.0001 at 150 ng/mL and 250 ng/mL vs. control) (Figure 1, panel C) and lag time (p < 0.05
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at 50 ng/mL, p < 0.0001 at 150 ng/mL and 250 ng/mL vs. control). Apixaban significantly
reduced ETP at concentrations of 150 ng/mL (p < 0.01 vs. control) and 250 ng/mL (p < 0.001 vs.
control) (Figure 1A), and at all concentrations reduced peak of thrombin generation (p < 0.0001
at all concentrations vs. control) (Figure 1B), time to peak (p < 0.05 at 50 ng/mL, p < 0.0001
at 150 ng/mL and 250 ng/mL vs. control) and lag time (p < 0.05 at 50 ng/mL, p < 0.01 at
150 ng/mL, and p < 0.0001 at 250 ng/mL vs. control).

Edoxaban significantly reduced ETP at the concentration of 250 ng/mL (p < 0.05 vs.
control) (Figure 1A), peak of thrombin generation at 150 ng/mL (p < 0.05 vs. control) and
250 ng/mL (p < 0.001 vs. control) (Figure 1B), and at all concentrations reduced time to
peak (p < 0.05 at 50 ng/mL, p < 0.0001 at 150 ng/mL and 250 ng/mL vs. control) and lag
time (p < 0.05 at 50 ng/mL, p < 0.001 at 150 ng/mL and p < 0.0001 at 250 ng/mL vs. control)
in a concentration-dependent manner.

3.2. Platelet Aggregation

Percent values of platelet aggregation induced by ADP, thrombin, TRAP and TF are
reported in Table 2 and illustrated in Figure 2. ADP- and TRAP-induced LTA was not mod-
ified by the addition of any concentration of NOACs compared with control (Figure 2A,B).
Thrombin-induced LTA was completely inhibited by the addition of dabigatran at any
concentration (p < 0.0001 for all concentrations of drug vs. controls), but not by the other
agents (Figure 2C). TF-induced LTA was significantly inhibited by rivaroxaban (p < 0.0001
at all concentrations of the drug vs. control), apixaban (p < 0.0001 at all concentration of
the drug vs. control) and edoxaban (p < 0.01 at 150 ng/mL, and p < 0.0001 at 250 ng/mL
vs. control) (Figure 2D). TF was not used as an agonist to induce platelet aggregation in
samples treated with dabigatran, as this was a late addition to the set of aggregating agents
during the course of the present study.

Table 2. Platelet aggregation induced by different agents without and with the addition of increasing
concentrations of dabigatran, rivaroxaban, apixaban and edoxaban.

LTA (% of
Maximum) Dabigatran Rivaroxaban

Inducing Agent Control 50 ng/mL 150 ng/mL 250 ng/mL Control 50 ng/mL 150 ng/mL 250 ng/mL

median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR)
ADP 73 (50−77) 72 (30−76) 54 (39−80) 68 (24−83) 73 (38−82) 50 (31−82) 75 (35−82) 69 (34−84)

TRAP 70 (66−79) 76 (72−78) 71 (59−73) 72 (60−76) 80 (44−85) 49 (32−88) 36 (26−81) 80 (32−89)
Thrombin 82 (64−93) 0 (0−0) * 0 (0−0) * 0 (0−0) * 75 (65−90) 78 (72−85) 80 (75−88) 78 (70−84)

Tissue Factor NA NA NA NA 85 (80−91) 0 (0−60) * 0 (0−60) * 0 (0−70) *

LTA (% of
maximum) Apixaban Edoxaban

Inducing Agent Control 50 ng/mL 150 ng/mL 250 ng/mL Control 50 ng/mL 150 ng/mL 250 ng/mL

median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR)
ADP 73 (38−82) 73 (39−82) 80 (30−85) 78 (40−86) 76 (82−90) 82 (76−89) 86 (73−94) 79 (70−91)

TRAP 80 (44−85) 80 (34−88) 55 (23−82) 72 (34−81) 85 (80−98) 83 (80−93) 81 (73−93) 85 (78−96)
Thrombin 75 (65−90) 76 (73−82) 78 (70−82) 80 (76−84) 91 (77−97) 91 (80−96) 82 (70−96) 88 (78−97)

Tissue Factor 85 (80−91) 18 (0−59) * 10 (0−56) * 0 (0−31) * 81 (78−94) 66 (50−83) 53 (25−90) # 36 (7−56) *

ADP = adenosine diphosphate; IQR = interquartile range; LTA = light transmission aggregometry; THR = thrombin;
TF = tissue factor; TRAP = thrombin receptor activating peptide. * p < 0.0001 vs. control; # p = 0.01 vs. control.

3.3. Serum TXB2 Generation

The achieved concentrations of serum TXB2 generation is reported in Table 3 and illus-
trated in Figure 3. The addition of dabigatran in serum at the concentration of 250 ng/mL
significantly reduced the generation of TXB2 compared with control (p < 0.01). Rivaroxaban
determined a concentration-dependent reduction in serum TXB2 generation, particularly at
concentrations of 150 ng/mL (p < 0.05) and 250 ng/mL (p < 0.01). Apixaban and edoxaban
significantly reduced serum TXB2 generation at the concentration of 250 ng/mL (p < 0.05
and p < 0.01, respectively).



J. Cardiovasc. Dev. Dis. 2024, 11, 111 7 of 13

J. Cardiovasc. Dev. Dis. 2024, 11, 111 7 of 14 
 

 

Table 2. Platelet aggregation induced by different agents without and with the addition of increas-
ing concentrations of dabigatran, rivaroxaban, apixaban and edoxaban. 

LTA (% of Maximum) Dabigatran Rivaroxaban 
Inducing Agent Control 50 ng/mL 150 ng/mL 250 ng/mL Control 50 ng/mL 150 ng/mL 250 ng/mL 

 median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) 
ADP 73 (50−77) 72 (30−76) 54 (39−80) 68 (24−83) 73 (38−82) 50 (31−82) 75 (35−82) 69 (34−84) 

TRAP 70 (66−79) 76 (72−78) 71 (59−73) 72 (60−76) 80 (44−85) 49 (32−88) 36 (26−81) 80 (32−89) 
Thrombin 82 (64−93) 0 (0−0) * 0 (0−0) * 0 (0−0) * 75 (65−90) 78 (72−85) 80 (75−88) 78 (70−84) 

Tissue Factor NA NA NA NA 85 (80−91) 0 (0−60) * 0 (0−60) * 0 (0−70) * 
LTA (% of maximum) Apixaban Edoxaban 

Inducing Agent Control 50 ng/mL 150 ng/mL 250 ng/mL Control 50 ng/mL 150 ng/mL 250 ng/mL 
 median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) 

ADP 73 (38−82) 73 (39−82) 80 (30−85) 78 (40−86) 76 (82−90) 82 (76−89) 86 (73−94) 79 (70−91) 
TRAP 80 (44−85) 80 (34−88) 55 (23−82) 72 (34−81) 85 (80−98) 83 (80−93) 81 (73−93) 85 (78−96) 

Thrombin 75 (65−90) 76 (73−82) 78 (70−82) 80 (76−84) 91 (77−97) 91 (80−96) 82 (70−96) 88 (78−97) 
Tissue Factor 85 (80−91) 18 (0−59) * 10 (0−56) * 0 (0−31) * 81 (78−94) 66 (50−83) 53 (25−90) # 36 (7−56) * 

ADP = adenosine diphosphate;  IQR = interquartile range; LTA = light transmission aggregometry; 
THR = thrombin; TF = tissue factor; TRAP = thrombin receptor activating peptide. * p < 0.0001 vs. 
control; # p = 0.01 vs. control. 

 
Figure 2. Platelet aggregation induced by different agents after the addition of increasing concen-
trations of dabigatran, rivaroxaban, apixaban and edoxaban. Box and whiskers Tukey plot reporting 
the median, 25th and 75th percentile and range for values of platelet aggregation in platelet-rich 
plasma (optical transmittance, in percent of maximum aggregation) induced by ADP (A), thrombin 
receptor-activating peptide (TRAP) (B), gamma-thrombin (THR) (C) and tissue factor (TF) (D). The 
asterisk within the bars reports the mean values. * p < 0.0001, # p < 0.01, vs. corresponding controls. 

3.3. Serum TXB2 Generation 
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lustrated in Figure 3. The addition of dabigatran in serum at the concentration of 250 
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Figure 2. Platelet aggregation induced by different agents after the addition of increasing concentra-
tions of dabigatran, rivaroxaban, apixaban and edoxaban. Box and whiskers Tukey plot reporting
the median, 25th and 75th percentile and range for values of platelet aggregation in platelet-rich
plasma (optical transmittance, in percent of maximum aggregation) induced by ADP (A), thrombin
receptor-activating peptide (TRAP) (B), gamma-thrombin (THR) (C) and tissue factor (TF) (D). The
asterisk within the bars reports the mean values. * p < 0.0001, # p < 0.01, vs. corresponding controls.
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Figure 3. Serum TXB2 generation after the addition of increasing concentrations of dabigatran,
rivaroxaban, apixaban and edoxaban. Box and whiskers Tukey plot reporting the median, 25th and
75th percentile and range for values of serum TXB2. The asterisk within the bars reports the mean
values. # p < 0.01, § p < 0.05 vs. corresponding control.
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Table 3. Serum TXB2 generation without and with the addition of increasing concentrations of
dabigatran, rivaroxaban, apixaban and edoxaban.

Dabigatran Rivaroxaban
Control 50 ng/mL 150 ng/mL 250 ng/mL Control 50 ng/mL 150 ng/mL 250 ng/mL

median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR)
Serum TXB2 (ng/mL) 649 (500−708) 439 (258−1098) 457 (253−1070) 158 (129−470) # 581 (431−860) 467 (130−568) 373 (124−507) § 137 (88−338) #

Apixaban Edoxaban

Control 50 ng/mL 150 ng/mL 250 ng/mL Control 50 ng/mL 150 ng/mL 250 ng/mL
median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR)

Serum TXB2 (ng/mL) 581 (431−860) 514 (341−586) 332 (262−608) 354 (246−548) § 507 (318−627) 428 (319−624) 402 (278−555) 400 (239−488) #

IQR = interquartile range; TXB2 = thromboxane B2. # p < 0.01; § p < 0.05 vs. control.

3.4. Flow Cytometry

The MFI ratio values indicating the expression of PAR-1 and P-selectin on the platelet
surface from flow cytometry are reported in Table 4. The proportion of activated platelet
over the total according to the expression of P-selectin was not modified by the addition
of any of the tested drugs. We observed a concentration-dependent increase in PAR-1
expression with the addition of dabigatran, particularly at concentrations of 150 ng/mL
(p < 0.05 vs. control) and 250 ng/mL (p < 0.001 vs. control) (Figure 4). No significant change
in PAR-1 expression was observed with the addition of FXa inhibitors.

Table 4. PAR-1 and P-selectin expression without and with the addition of increasing concentrations
of dabigatran, rivaroxaban, apixaban and edoxaban.

Dabigatran Rivaroxaban
Control 50 ng/mL 150 ng/mL 250 ng/mL Control 50 ng/mL 150 ng/mL 250 ng/mL

median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR)
PAR-1 (MFI ratio) 22.1 (21.4−31.1) 74.2 (44.5−118.9) 127.8 (46.9−159.8) § 127.9 (48.4−186.5)

◦ 5.7 (4.6−7.0) 5.7 (4.2−7.4) 5.7 (5.0−8.0) 6.0 (3.9−7.3)
CD62+/CD41+ (MFI %) 0.6 (0.1−4.8) 0.8 (0.3−3.9) 0.6 (3.4−1.9) 0.5 (0.1−2.8) 22 (10−27) 16 (10−21) 15 (9−24) 17 (10−31)

Apixaban Edoxaban
Control 50 ng/mL 150 ng/mL 250 ng/mL Control 50 ng/mL 150 ng/mL 250 ng/mL

median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR) median (IQR)
PAR-1 (MFI ratio) 5.7 (4.6−7.0) 5.7 (4.5−7.9) 5.7 (4.3−6.8) 5.4 (4.3−6.7) 3.1 (2.0−4.7) 3.6 (2.0−4.8) 3.9 (2.1−4.8) 3.6 (2.1−4.6)

CD62+/CD41+ (MFI %) 22 (10−27) 19 (10−32) 18 (11−26) 16 (13−27) 27 (19−48) 30 (20−49) 32 (22−49) 33 (25−49)

CD41 = platelet GPIIb (IIb integrin); CD62 = P-selectin; IQR = interquartile range; MFI = mean fluorescence
intensity; PAR = protease-activated receptors. ◦ p < 0.001 vs. control; § p < 0.05 vs. control.
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Figure 4. Expression of PAR-1 on platelet surface using flow cytometry without and with the addition
of increasing concentrations of dabigatran. Box and whiskers Tukey plot reporting the median, 25th
and 75th percentile and range for values of mean fluorescence intensity (MFI) ratio. The «+» within
the bars indicate the mean values. ◦ p < 0.001 vs. control; § p < 0.05 vs. control.

4. Discussion

In this ex vivo study, we assessed the effect on platelet function of the four currently
available NOACs: the thrombin inhibitor dabigatran, and the FXa inhibitors rivaroxaban,
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apixaban and edoxaban. We tested increasing concentrations of 50, 150 and 250 ng/mL
of the drugs, reflecting the similar range of concentrations measured in patients’ plasma
during chronic therapy with all these NOACs [22–25]. We observed the following:

• All NOACs reduced thrombin generation measured by CAT; ETP is the parameter
more consistently affected by the addition of NOACs at different concentrations;

• Platelet aggregation induced by ADP and TRAP was not affected by the addition of
any NOACs; conversely, platelet aggregation induced by thrombin was significantly
reduced by the addition of dabigatran, and TF-induced platelet aggregation is inhibited
by FXa inhibitors;

• Serum TX generation was reduced by the addition of all NOACs;
• The expression of PAR-1 on the platelet surface, as evaluated by flow cytometry, was

increased by the addition of dabigatran in a concentration-dependent manner, without
an enhancement of platelet activation.

All three direct FXa inhibitors and the direct thrombin inhibitor dabigatran have
been shown to have a superior net clinical benefit compared with vitamin K antagonists
for the treatment of venous thromboembolic events and for the prevention of stroke in
patients with atrial fibrillation. However, landmark trials have also reported differences
in comparison with warfarin regarding the frequency of atherothrombotic and ischemic
events, raising concern, even in the absence of direct clinical comparisons, that NOACs are
not all equal and not fully interchangeable. Accordingly, in a recent cross-sectional study
analyzing the coagulation response to dabigatran, argatroban, rivaroxaban and apixaban,
added at a concentration of 1 µM in blood from 50 healthy donors, the authors underlined
some differences between NOACs and indicated that rivaroxaban was the most active
according to PT/INR, that BMI had an apparent impact on anticoagulant effects, and that
glucose and lipid levels had a direct influence on the effect of anticoagulant drugs ex
vivo [33].

An initial concern with dabigatran in patients with atrial fibrillation, showing higher
rates of myocardial infarction compared with warfarin-treated patients, has been partially,
but not totally dissipated [34–36]. To explain a possibly higher risk of myocardial infarction
in dabigatran-treated compared with warfarin-treated patients, hypotheses have been
raised for an augmented GP Ibα signaling downstream of von Willebrand factor bind-
ing [37], or enhanced platelet reactivity and increased platelet surface expression of PAR-1
and PAR-4 [18]. On the other hand, FXa-inhibitor landmark trials have reported numer-
ically fewer myocardial infarctions compared with warfarin [38–41], and basic science
studies have investigated potential mechanisms for this apparently protective effect, with
discrepant results [5,20,42]. Because platelets play an important role in the pathogenesis
of arterial ischemic events and in mechanisms of maintenance of normal homeostasis,
investigation on ex vivo effects of NOACs on platelet function and on global hemostasis
may help understand the differences between actions among these drugs.

As expected, all NOACs determined a reduced activation of coagulation, as measured
by a global coagulation test such as thrombin generation, a test reporting on the plasma
potential to generate thrombin. Although some discrepancies between drugs were ob-
served in the various thrombin generation parameters here investigated, the net amount
of thrombin generated from plasma appears to be reduced by all drugs, in agreement
with previous reports [4–7]. In particular, we observed that dabigatran inhibited ETP,
but did not significantly affect peak thrombin generation, time to peak or lag time. On
the other hand, FXa inhibitors modified all thrombin generation parameters: specifically,
rivaroxaban and apixaban did so at all concentrations tested, while edoxaban reduced
ETP only at the highest concentration (250 ng/mL) and the other parameters also at lower
concentrations. These findings are consistent with a recent report showing that dabigatran
inhibits thrombin generation in a manner different from FXa inhibitors: in patients treated
with NOACs, dabigatran reduced ETP, weakly decreased thrombin peak and did not in-
fluence the velocity index, while FXa inhibitors markedly reduced the thrombin peak and
velocity index, but had little (in the case of rivaroxaban) or no effect on ETP [43,44]. The au-
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thors of these studies proposed that such differences depend on the greater profibrinolytic
activity—evaluated by the clot lysis time after exposure to exogenous tissue plasminogen
activator—of dabigatran compared with the FXa inhibitors.

Our data overall demonstrate an inhibitory effect of NOACs on platelet function.
Platelet aggregation was affected by the NOACs according to their mechanism of action:
the direct thrombin inhibitor dabigatran completely suppressed platelet aggregation in-
duced by γ-thrombin, while FXa inhibitors all reduced platelet aggregation induced by TF,
due to the inhibition of thrombin generation as a consequence of blocking the upstream FXa
protease, consistent with previous studies [8,13]. In our ex vivo model, NOACs had no effect
on platelet aggregation induced by TRAP and ADP: this can be explained because TRAP
directly binds thrombin receptors on the platelet surface, bypassing the drug’s inhibitory
effect on thrombin generation, and because ADP activates platelets through mechanisms
not affected by the inhibition of thrombin or FXa. Otherwise, previous in vivo studies
demonstrated that TRAP-induced platelet aggregation was inhibited in patients treated
with dabigatran [15], apixaban and rivaroxaban [19–21], while ADP-induced platelet re-
activity was not influenced [16]. The different behavior of TRAP-induced aggregation
could be explained by the different experimental conditions, including the limited time of
exposure to the drugs in our ex vivo model.

Serum TXB2 generation, reflecting the maximal biosynthetic capacity of blood platelets
to generate TXA2 in response to endogenously formed thrombin, was significantly reduced
after the addition of dabigatran at the highest concentration of 250 ng/mL, nominally
consistent with the inhibition of thrombin by this drug, but conflicting with some in vivo
evidences [45,46]. However, apixaban and edoxaban at the same concentration, and rivarox-
aban even more substantially already at 150 ng/mL, also inhibited serum TXB2 generation.
These data are consistent with those of a study conducted on patients with atrial fibrilla-
tion, showing a significant reduction in 11-dehydro-TXB2, the main urinary metabolite of
TXB2, in patients treated with rivaroxaban and apixaban compared with warfarin [42]; that
finding was related to the shedding of soluble GPVI, letting the authors postulate a further
mechanism of antiplatelet effect by FXa inhibition.

The results of flow cytometry experiments documented a concentration-dependent
increase in PAR-1 expression on the platelet surface induced by dabigatran, but not by
FXa inhibitors, in the absence of platelet activation, as demonstrated by the unchanged
expression of P-selectin. This increased density of thrombin receptors on the platelet surface
was also observed in patients on long-term treatment with dabigatran [16,18], and can
be explained by an inhibitory effect of dabigatran on thrombin-induced PAR-1 cleavage,
activation, internalization and β-arrestin recruitment observed in some in vitro studies [17],
though little is known about the functional consequences of these “induced” receptors. The
augmented density of thrombin receptors may theoretically have a clinical impact during
anticoagulant therapy with dabigatran, particularly in conditions of enhanced thrombin
generation or when dabigatran concentrations are reduced due to drug interaction or poor
patient adherence to therapy.

Ours is the most comprehensive ex vivo study of the effects of the four currently
available NOACs on platelet function, showing similarities but also differences in the phar-
macodynamic characteristics of these drugs. None of the previous studies has conducted
such comprehensive investigations of platelet function parameters with all the currently
available NOACs. This study is now being complemented by parallel in vivo investigations,
which will be the subject of an independent report. Together, they will help explaining
similarities and differences in clinical outcomes with the currently available NOACs.

This study also has, however, limitations: an important one is a thorough understand-
ing of the clinical relevance of the sometimes subtle differences found among NOACs,
as here reported. Another limitation is that this study was conducted in two distinct
laboratories and at different times for the various drugs and this could have affected the
reproducibility of some results and the (minor) incompleteness of the entire set of tests
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during the study, with TF-induced platelet aggregation not performed in the initial blood
samples treated with dabigatran.

5. Conclusions

In conclusion, this study shows that treatment with these NOACs is associated with
measurable ex vivo changes in platelet function, arguing for antiplatelet effects beyond the
well-known anticoagulant activities of these drugs. Among the NOACs, dabigatran appears
to be associated with a concentration-dependent increase in PAR-1 expression, suggesting
the need for attention to the modulation of platelet-dependent atherothrombotic risk.
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