

Journal of Cardiovascular Development and Disease

Supplementary Materials

Transforming growth factor beta3 is required for cardiovascular development

Mrinmay Chakrabarti ¹, Nadia Al-Sammarraie ¹, Mengistu G. Gebere ¹, Aniket Bhattacharya ¹, Sunita Chopra ¹, John Johnson ¹, Edsel A. Peña ², John F. Eberth ¹, Robert E. Poelmann ³, Adriana C. Gittenbergerde Groot ³ and Mohamad Azhar ^{1,4,*}

- ¹ Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209; Mrinmay.Chakrabarti@uscmed.sc.edu (M.C.); Nadia.Al-Sammarraie@uscmed.sc.edu (N.A.-S.); Mengistu.Gebere@uscmed.sc.edu (M.G.G.); Aniket.Bhattacharya@uscmed.sc.edu (A.B.); sunita.chopra42@gmail.com (S.C.); John.Johnson@uscmed.sc.edu (J.J.), John.Eberth@uscmed.sc.edu (J.F.E.)
- ² Department of Statistics, University of South Carolina, Columbia, SC 290208; pena@stat.sc.edu
- ³ Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands;
- R.E.Poelmann@lumc.nl (R.E.P.); A.C.Gittenberger-de_Groot@lumc.nl (A.C.G.d.-G.)
 William Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209
- *Correspondence to: Mohamad.Azhar@uscmed.sc.edu

Figure S1. Systemic *Tgfb3* deletion disrupts ventricular myocardial development and leads to muscular VSD. **A–C**, H&E stained sections of wildtype and different *Tgfb3-+* fetuses (E15.5-16.5) showing abnormal size, shape, and myocardium of the right ventricle in *Tgfb3-+* (**B**,**C**, left arrow) and mitral valve thickening (**B–C**, arrowheads). The left ventricular myocardium in *Tgfb3-+* fetuses (B-C, right arrow) was also not normal. **D–E**, Cardiac muscle actin (clone HHF35) immunohistochemistry of cross sections of E14.5-15.5 fetuses showing myocardium of both right and left ventricles was affected in some *Tgfb3-+* resulting in muscular VSD (**E**, arrow). **F–G**, H&E stained sections of wildtype and *Tgfb3++* fetuses (E14.5-15.5) showing mild thinning of the right ventricular myocardium (**G**, left arrowhead) and moderately thickened left ventricular myocardium (**G**, right arrowhead) in *Tgfb3++* fetuses compared to wildtype heart (**F**). Scale bars: 200 µm for **A–G**. Abbreviations: rv, right ventrice; lv, left ventricle; tv, tricuspid valve; mv, mitral valve.

J. Cardiovasc. Dev. Dis. 2020, 7, x; doi: FOR PEER REVIEW

www.mdpi.com/journal/jcdd

J. Cardiovasc. Dev. Dis. 2020, 7, x FOR PEER REVIEW

Figure S2. *Tgfb3* deletion leads to pulmonary and aortic valve defects. **A–D**, Hematoxylin and eosin staining for E15.5 wildtype (**A**,**D**), *Tgfb3^{+/-}* (**B**,**D**), and *Tgfb3^{+/-}* (**C**,**F**) fetuses. *Tgfb^{+/-}* fetus displays thinning of vascular walls of aorta and pulmonary trunk (**B**, arrowheads), mild thickening of both pulmonary (**B**, arrow) and aortic (**E**, arrow) valves compared to wildtype fetus (**A**,**B**). Notably, *Tgfb3^{-/-}* ^{/-} fetuses develop severe forms of these cardiovascular defects (**C**,**F**). Scale bars: 200 µm for **A–F**.

Figure S3. Abnormal ascending aortic walls in *Tgfb3* knockout fetuses. **A-D**, Elastin autofluorescence (**C**,**D**) of hematoxylin and eosin-stained (**A**,**B**) sections. Compared to wildtype littermate (**C**), *Tgfb3-/-* fetus shows poorly formed elastic lamellae and disorganized vascular smooth muscle cells in the aortic wall (arrows, **D**). Fluorescence images (**C**,**D**) were taken from region of aorta indicated by boxes (**A**,**B**). Arrows indicate elastic fibers (**C**,**D**) and the white dotted lines demarcates the aortic wall from vaso vasorum (**D**). Scale bars = 100 µm for **A-B**; 25 µm for **C–D**.

 $2 \ {\rm of} \ 4$

Figure S4. Measurement of aortic valve volume in $T_g/b3$ knockout fetuses. **A–G**, Morphometric comparison and volume measurements using AMIRA 3D segmentation of aortic valves from wildtype (**A**,**C**,**E**) and $T_g/b3$ -/- (**B**,**D**,**F**) embryos (E15.5) showing non-coronary leaflets in red, left coronary leaflets in green, and the right coronary leaflets in yellow. The hyperplastic nature of the outflow tract cushions in $T_g/b3$ -/- embryos compared to the wildtype littermate embryos (**G**). Student's *t* test was used. *p*-values are indicated in the histogram. Numerical data are presented as scatter dot-plots with boxes, with the box denoting the mean; error bars identify the S.E.M (*n* = 3 per genotype).

3 of 4

.

Journal of *Cardiovascular Development and Disease*

Table S1. Cardiovascular defects in *Tgfb3* knockout mice (Embryonic Day 13.5–18.5 (*n* = 19).

Abnormal Part; Type of Abnormality	No. of Cases	% of Cases	No. of Cases affected, Summary	% of Cases, Summary	 Commented [MA2R1]: I re-formatted the table to fit in on a
Outflow tract			12	63.15	page and minimized multiple spaces
Vascular walls abnormalities	3	15.7			Commented [M1]: Please reformat the table (avoid using
Thickening of PV±AoV	12	63.15			multiple spaces)
DORV	1	5.2			
Septal defects			7	36.8	
OFT malalignment and perimembranous (DORV±VSD)	4	21			
Muscular VSD	3	15.7			
<u>AV valve</u>			8		
Thickening of TV±MV	8	42.1		42.1	
Ventricular myocardium			9	47.3	
Hypoplasia compact/trabecular					
RV	5	26.3			
LV	5	26.3			
RV/LV	5	26.3	26.3		
Hyperplasia					
RV	4	21	21		
LV	4	21			
RV/LV	4	21			
No abnormality	6	31.5		31.5	

J. Cardiovasc. Dev. Dis. 2020, 7, x; doi: FOR PEER REVIEW

www.mdpi.com/journal/jcdd