Next Article in Journal
Clinical Characteristics and Prognosis of Patients with Multi-Vessel Coronary Spasm in Comparison with Those in Patients with Single-Vessel Coronary Spasm
Previous Article in Journal
Medication Adherence and Belief about Medication among Vietnamese Patients with Chronic Cardiovascular Diseases within the Context of Implementing Measures to Prevent COVID-19
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

ICIs-Related Cardiotoxicity in Different Types of Cancer

1
Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
2
Medical College, Qingdao University, Qingdao 266003, China
3
Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
4
Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300070, China
5
Kent and Medway Medical School, Canterbury CT2 7FS, UK
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
J. Cardiovasc. Dev. Dis. 2022, 9(7), 203; https://0-doi-org.brum.beds.ac.uk/10.3390/jcdd9070203
Submission received: 10 May 2022 / Revised: 17 June 2022 / Accepted: 20 June 2022 / Published: 28 June 2022

Abstract

:
Immune checkpoint inhibitors (ICIs) are rapidly developing immunotherapy cancer drugs that have prolonged patient survival. However, ICIs-related cardiotoxicity has been recognized as a rare, but fatal, consequence. Although there has been extensive research based on different types of ICIs, these studies have not indicated whether cardiotoxicity is specific to a type of cancer. Therefore, we conducted a systematic review to analyze a variety of ICIs-related cardiotoxicity, focusing on different types of cancer. We found that the incidence of ICIs-related cardiac adverse events (CAEs) and common cardiotoxic manifestations vary with cancer type. This inspired us to explore the underlying mechanisms to formulate targeted clinical strategies for maintaining the cardiovascular health of cancer patients.

1. Introduction

Cardiovascular disease (CVD) and cancer are global health issues with high morbidity and mortality [1], and numerous published studies suggest that there is an overlap in epidemiology, risk factors, and pathophysiologic processes (Figure 1) [1,2,3,4,5].
With the widespread application of anticancer drugs, the survival of patients has significantly improved, but the related cardiotoxicity affects long-term therapeutic outcomes, and this has attracted considerable attention. Immune checkpoint inhibitors (ICIs), antibodies that target the checkpoints in immune cells, work to activate inhibited T-cells and other cells of the innate and adaptive arms, resulting in the robust activation of the immune system and productive antitumor immune responses. This new type of immunotherapy drug has significantly improved the survival of cancer patients [6,7,8]. ICIs have been widely used in the treatment of melanomas, non-small cell lung cancer (NSCLC), advanced renal cell carcinomas (RCCs), urothelial carcinomas, hepatocellular carcinomas (HCCs), and hematological malignancies [7,9,10,11,12]. However, their use is associated with adverse side effects involving different organs [13,14]. ICIs-related cardiotoxicity, which may develop even without a history of significant cardiac risk factors, includes myocarditis, pericarditis, heart failure, arrhythmias, and vasculitis [15]. In reported cases of adverse ICIs-related events, 6.2% were cardiac adverse events (CAEs), which can be the main determinants of quality of life and increased mortality [3,16,17]. Recent cohort data from a large healthcare network suggested that the most common CAEs were arrhythmia (9.3%) and myocarditis (2.1%) [18]. Cardiotoxicity associated with ICIs is known for its vast array of clinical presentations, which makes it unfavorable for an early diagnosis [19,20]. To date, there has been little agreement on the incidence or specific mechanisms of ICIs-related cardiotoxicity in different types of cancer. We hypothesize that ICIs may exhibit cancer-type-specific cardiotoxicity.

2. Methods

We systematically reviewed articles published up to 28 February 2022 in PubMed, Web of Science, and Google Scholar databases without any language restrictions. The keywords included “PD-1”, “PD-L1”, “CTLA-4”, “LAG-3”, “nivolumab (anti-PD-1 antibody)”, “pembrolizumab (anti-PD-1 antibody)”, “atezolizumab (anti-PD-L1 anti-body)”, “durvalumab (anti-PD-L1 antibody)”, “ipilimumab (anti-CTLA-4 antibody)” (with their chemical names and brand names), “cancer”, “tumor”, “carcinoma”, “neoplasm”, “malignancy”, “adverse events”, “complications”, and “cardiotoxicity”. The inclusion criteria of papers were (1) retrospective and prospective studies, case reports, meta-analysis, reviews involving PD-1, PD-L1, CTLA-4 and LAG-3 inhibitors for all cancers; (2) data on the rates of any ICIs-related adverse events associated with cardiac disorders. The exclusion criteria were as follows: (1) patients treated with anthracyclines (such as doxorubicin, daunorubicin, or idarubicin); (2) patients treated with tyrosine inhibitor kinase drugs, T-cell activated cells, activated dendritic cells, stem cell transplantation, or other antibodies; and (3) patients treated with ICIs with concomitant vaccines. A total of 549 papers were found of which 102 were kept for this review. Eventually, more than 40 clinical trials and case reports of 14 different cancers were collected.

3. Cardiotoxicity in Different Types of Cancer

3.1. Melanoma

In 16 studies, 24 of 6710 patients on ICIs [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] developed CAEs. This corresponded with an incidence of 0.20–4.93% in which grade 3–5 CAEs accounted for 41.7%. Commonly encountered cardiotoxicities included hypertension (50%), hypotension (16.7%), and myocarditis (8.3%). Treatment-related hypertension was linked to the application of lambrolizumab (58.3%) (PD-1). Nivolumab may have had a correlation with ICIs-related hypotension. Patients treated with a higher dose of ipilimumab, particularly 10 mg/kg × 4 doses/3 weeks, were more prone to fatal adverse events such as cardiac arrest (Table 1).

3.2. Lung Cancer

A total of 11 studies [37,38,39,40,41,42,43,44,45,46,47] included 5404 patients on ICIs, and 101 developed CAEs for an incidence of 0.15–37.78% in which grade 3–5 CAEs accounted for 55.4%. Commonly encountered cardiotoxicities included arrhythmia (32.7%), cardiac-related chest pain (24.8%), elevated cTnI or myocarditis (23.8%), cardiomyopathy (20.8%), pericardial disease (11.9%), and acute coronary syndrome (10.9%). One study indicated that major adverse cardiovascular events (MACEs) were dose-independent of nivolumab and pembrolizumab in lung cancer patients [37]. Those treated with a higher dose of durvalumab, particularly 10 mg/kg × 4 doses/2 weeks, were more prone to fatal adverse events such as a cardiac arrest and cardiogenic shock [41]. One patient treated with pembrolizumab at 10 mg/kg for 3 weeks underwent a myocardial infarction, which led to death (Table 2) [43].

3.3. Renal Cell Carcinoma

In seven studies [48,49,50,51,52,53,54] comprising 1971 patients with renal cell carcinomas on ICIs, 14 developed CAEs with an incidence of 0.20–2.19% in which grade 3–5 CAEs accounted for 35.7%. Commonly encountered cardiotoxicities included hypertension (85.7%) and myocarditis (7.1%). Treatment-related hypertension was linked to a nivolumab plus ipilimumab therapy (100%). Compared with melanomas and lung cancer, the ICI therapy caused mild cardiotoxicity in renal cell carcinomas. Fatal CAEs were not found (Table 3).

3.4. Urothelial Carcinoma

In Seven studies [55,56,57,58,59,60,61] 111 of 2550 patients with urothelial carcinomas on ICIs developed CAEs with an incidence of 0.22–10.60% in which grade 3–5 CAEs accounted for 52.3%. Commonly encountered cardiotoxicities included hypertension (28.8%), arrhythmia (14.4%) and hypotension (6.3%). The fluctuation of blood pressure was linked to treatment with atezolizumab. Hypertension was observed in 21 patients and hypotension was observed in 7 after application of atezolizumab. Patients treated with 200 mg pembrolizumab for 3 weeks (maximum 35 cycles) or at 1200 mg every three weeks were more prone to fatal adverse events such as a cardiac arrest (Table 4).
Table 1. Cardiotoxicity in melanoma.
Table 1. Cardiotoxicity in melanoma.
Author, YearStudy TypePhaseSample SizeDrugDose and FrequencyNon-CAECAEManifestation3–5 Grade CAE
Omid Hamid et al., 2017 [21]Prospective studyII528 (178 vs. 179 vs. 171)Pembrolizumab vs. Pembrolizumab vs. chemotherapy2 mg/kg/3 weeks vs. 10 mg/kg/3 weeks vs. standard dose528000
Caroline Robert et al., 2014 [22]Prospective studyIII418 (210 vs. 208)Nivolumab
vs. Dacarbazine
3 mg/kg/2 weeks vs. standard dose308 (153 vs. 155)5Hypotension 1 vs. 40
Jeffrey S Weber et al., 2015 [23]Prospective studyIII370 (268 vs. 102)Nivolumab vs. ICC (Dacarbazine al) 3 mg/kg/2 weeks vs. standard dose362 (181 vs. 81)000
Paolo A Ascierto et al., 2017 [24]Prospective studyIII726 (364 vs. 362)Ipilimumab10 mg/kg/4 doses/3 weeks vs. 3 mg/kg/4 doses/3 weeks514 (286 vs. 228)3Hypertension 1 vs. 0; Heart arrest 1 vs. 0; Pericarditis 1 vs. 03
F Stephen Hodi et al., 2016 [25]Prospective studyII142 (95 vs. 47)Nivolumab + Ipilimumab vs. Ipilimumab + placebo1 mg/kg + 3 mg/kg/4 doses/3 weeks vs. 3 mg/kg + placebo/4 doses/3 weeks140 (94 vs. 46)7Hypotension 3 vs. 0; Ventricular arrhythmia 1 vs. 0; Ventricular tachycardia 1 vs. 0; Atrial fibrillation 1 vs. 0; Myocardial infarction 1 vs. 05
Caroline Robert et al., 2015 [26]Prospective studyIII834 (278 vs. 277 vs. 256)Pembrolizumab vs. Pembrolizumab vs. Ipilimumab10 mg/kg/2 weeks/doses vs. 10 mg/kg/3 weeks/ doses vs. 3 mg/kg/3 weeks/4 doses610 (221 vs. 202 vs. 187)4Hypertension
3 vs. 1 vs. 0
2
J. Weber, M. et al., 2017 [27]Prospective studyIII906 (453 vs. 453)Nivolumab vs. Ipilimumab3 mg/kg/4 doses/2 weeks vs. 10 mg/kg/4 doses/3 weeks884 (438 vs. 446)000
J.D. Wolchok et al., 2017 [28]Prospective studyIII937 (313 vs. 313 vs. 311)Nivolumab +
Ipilimumab vs.
Nivolumab + p vs.
Ipilimumab + p
p(placebo)
1 mg/kg+3 mg/kg
/3 weeks/4 doses vs. 3 mg/kg/2 weeks + placebo vs. 3 mg/kg/3 weeks/4 doses + placebo
847 (300 vs. 279 vs. 268)000
Jedd D Wolchok et al., 2010 [29]Prospective studyII217 (73 vs. 72 vs. 72)Ipilimumab10 mg/kg vs. 3 mg/kg vs. 0.3 mg/kg/3 weeks/4 doses115 (50 vs. 46 vs. 19)000
Ines Pires da Silva et al., 2021 [30]Retrospective studyNR (Not Reported)355 (193 vs. 162)Ipilimumab + Nivolumab/Pembrolizumab/Atezolizumab vs. Ipilimumab3 mg/kg/3 weeks/4 doses + standard dose vs. 3 mg/kg/3 weeks/4 doses287 (163 vs. 124)1 (0 vs. 1)Myocarditis 0 vs. 11
Patrick Schöffski et al., 2022 [31]Retrospective studyI/II255 (134 vs. 121)LAG-3 inhibitor
Ieramilimab vs.
Ieramilimab + Spartalizumab
Ieramilimab (escalating 1–15 mg/kg)/2 weeks or once/4 weeks vs. Ieramilimab + Spartalizumab q2w or q3w or q4w or Ieramilimab q2w + Spartalizumab q4w 159 (75 vs. 84)000
Alexander M.M. et al., 2020 [32]Prospective studyIII1011 (509 vs. 502)Pembrolizumab vs. placebo200 mg/3 weeks for 18 doses 235 (190 vs. 45)1 (1 vs. 0)Myocarditis 1 vs. 0NR
Omid Hamid et al., 2013 [33]Prospective studyI135 (57 vs. 56 vs. 22)Lambrolizumab10 mg/kg/2 weeks vs. 10 mg/kg/3 weeks vs. 2 mg/kg/3 weeks132 (55 vs. 55 vs. 22)7 (2 vs. 4 vs. 1)Hypertension (2 vs. 4 vs. 1)NR
Margaret K. et al., 2018 [34]Retrospective studyI94 (53 vs. 41)Ipilimumab + Nivolumab
Nivolumab (Niv)
Ipilimumab (Ipi)
Niv+Ipi(escalating doses)/3 weeks for four doses, followed by Niv 3 weeks for four doses, then Niv + Ipi/12 weeks for eight doses vs. Niv 1 mg/kg + Ipi
3 mg/kg/3 weeks for 4 doses, followed by Niv 3 mg/kg/2 weeks
87000
Ulrich Keilholz et al., 2019 [35]Prospective studyI51Avelumab10 mg/kg for one-hour intravenous infusion/2 weeks39000
Hussein A et al., 2022 [36]Retrospective studyII-III714 (355 vs. 359)Relatlimab + Nivolumab vs. NivolumabRelatlimab 160 mg + Nivolumab 480 mg vs. Nivolumab 480 mg 504 (288 vs. 216)000
The severity of adverse events was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. Grade 3: severe or medically significant but not immediately life-threatening; hospitalization or prolongation of hospitalization indicated; disabling; limiting self-care activities of daily living. Grade 4: life-threatening consequences; urgent intervention indicated. Grade 5: Death related to adverse events.
Table 2. Cardiotoxicity in lung cancer.
Table 2. Cardiotoxicity in lung cancer.
Author, YearStudy TypePhaseSample SizeDrugDose and FrequencyNon-CAECAEManifestation3–5 Grade CAE
Kalyan R et al., 2019 [37]Retrospective studyNR252 (117 vs. 135)Non-ICI vs. ICI (Nivolumab/Pembrolizumab)
Nivolumab (Niv)
Pembrolizumab (Pem)
Standard dose vs. increasing dose (Niv < 540 mg; 540~1440 mg; > 1440 mg Pem < 600 mg; 600~1707 mg; >1707 mg)NR93 (42 vs. 51)Arrhythmia 31 vs. 25; Cardiac-related chest pain 12 vs. 25; Valvular heart disease 4 vs. 2; Cardiomyopathy 13 vs. 20; Myopericardial disease 11; Pericardial disease 8; Myocarditis 1; Valvular-disease 2; Venous arterial thromboembolic events 840 (major CAE)
Scott N et al., 2015 [38]Prospective study (NSCLC)I129 (33 vs. 37 vs. 59)Nivolumab1 mg/kg vs. 3 mg/kg vs. 10 mg/kg intravenously/2 weeks in 8-week cycles for up to 96 weeks.91 (21 vs. 25 vs. 45)000
Tony S K Mok et al., 2019 [39]Prospective study (NSCLC)III1251 (636 vs. 615)Pembrolizumab vs. platinum-based chemotherapy200 mg/3 weeks for up to 35 cycles vs. platinum-based chemotherapy for four to six cycles.1112 (515 vs. 597)1 (1 vs. 0)Myocarditis 1 vs. 01
Achim Rittmeyer et al., 2017 [40]Prospective study (NSCLC)III1187 (609 vs. 578)Atezolizumab vs. Docetaxel1200 mg/3 weeks vs. 75 mg/m2/3 weeks886 (390 vs. 496)000
S.J. Antonia et al., 2017 [41]Prospective study (NSCLC)III718 (475 vs. 234)Durvalumab vs.
Placebo
10 mg/kg/2 weeks for up
to 12 months vs.
placebo
421 (301 vs. 120)26 (21 vs. 5)ACS 9 vs. 2; Arrhythmia 7 vs. 1; Heart failure 7 vs. 0; Cardiac arrest 2 vs. 1; Cardiogenic shock 1 vs. 0; Cardiomyopathy 1 vs. 0; Myocarditis 0 vs. 1; Pericardial effusion 2 vs. 0 NR
Yuequan Shi et al., 2021 [42]Observational study (NSCLC/SCLC)NR1905 (1162 vs. 743)
(598 vs. 455 vs. 273 vs. 176 vs. 125 vs. 81 vs. 62 vs. 34 vs. 23)
ICI (Pembrolizumab/Nivolumab/Camrelizumab/Treprizumab/Tisilizumab/Atezolizumab/Durvalumab/Ipilimumab) only vs. combination therapyat least one dose64722 (22 vs. 0)Elevated cTnI or myocarditis 22 9
Roy S Herbst et al., 2016 [43]Prospective study (NSCLC)II/III991 (339 vs. 343 vs. 309)Pembrolizumab vs. Docetaxel Pem 2 mg/kg, Pem 10 mg/kg vs. Docetaxel 75 mg/m2/3 weeks690 (215 vs. 225 vs. 250)1 (0 vs. 1 vs. 1)Myocardial infarction 0 vs. 1 vs. 0; Acute cardiac failure 0 vs. 0 vs. 11
Martin Reck et al., 2016 [44]Prospective study (NSCLC)III304 (154 vs. 150)Pembrolizumab vs. platinum-based
chemotherapy
200 mg/3 weeks vs. standard dose52 (45 vs. 7)000
H. Borghaei et al., 2015 [45]Prospective study (NSCLC)III555 (278 vs. 268)Nivolumab vs. Docetaxel 3 mg/kg/2 weeks vs. 75 mg/m2/3 weeks432 (196 vs. 236)3 (3 vs. 0)Cardiac tamponade 1 vs. 0; Pericardial effusion 1 vs. 0
Tachycardia 1 vs. 0
3
Julie Brahmer et al., 2015 [46]Prospective study (NSCLC)III272 (135:137)Nivolumab vs. Docetaxel3 mg/kg/2 weeks vs. 75 mg/m2/3 weeks.187 (76 vs. 111)000
D.P. Carbone et al., 2017 [47]Prospective study (NSCLC)III530 (267 vs. 263)Nivolumab vs. Chemotherapy(platinum-based) 3 mg/kg/2 weeks vs. standard dose for six cycles.431 (188 vs. 243)2 (2 vs. 0)Myocardial infarction 1 vs. 0; Pericardial effusion malignant 1 vs. 02
Table 3. Cardiotoxicity in renal cell carcinoma.
Table 3. Cardiotoxicity in renal cell carcinoma.
Author, YearStudy TypePhaseSample SizeDrugDose and FrequencyNon-CAECAEManifestation3–5 Grade CAE
Sarah Abou Alaiwi et al., 2019 [48]Retrospective studyIII499Anti-PD-1/PD-L1 (Nivolumab/Pembrolizumab/Atezolizumab/Avelumab/Durvalumab)NR791Myocarditis 11
Emre Yekedüz et al., 2021 [49]Retrospective studyII/III173NivolumabNivolumab 240 mg/2wks11 (treatment discontinuation)000
Robert J Motzer et al., 2018 [50]Retrospective studyIII1082 (547 vs. 535)Nivolumab + Ipilimumab vs. sunitinib3 mg/kg + 1 mg/kg/3 weeks for four doses, followed by Niv 3 mg/kg/2 weeks; or SUN 50 mg orally once daily for 4 weeks (6-week cycle).273 vs. 30512 (12 vs. 0)Hypertension 12 vs. 04
Robert J. Motzer et al., 2015 [51]Prospective studyII167 (59 vs. 54 vs. 54)Nivolumab0.3, 2 or 10 mg/kg intravenously once/3 weeks47 vs. 45 vs. 491 (1 vs. 0 vs. 0)Cardiac disorder 1 vs. 0 vs. 00
Joshua J et al., 2020 [52]Prospective studyIIIb/IV97Nivolumab240 mg/2 weeks for ≤24 months68000
Robert J. Motzer et al., 2015 [53]Prospective studyIII406 vs. 397Nivolumab vs. Everolimus3 mg/kg intravenously ≥ 60 min/2 weeks vs. 10 mg orally once daily.319 vs. 349000
Ulka Vaishampayan et al., 2019 [54]Prospective studyI82 (62 vs. 20) (1Line vs. 2 Line)Avelumab10 mg/kg by intravenous Infusion/2 weeks 51 vs. 14000
Table 4. Cardiotoxicity in urothelial carcinoma.
Table 4. Cardiotoxicity in urothelial carcinoma.
Author, YearStudy TypePhaseSample SizeDrugDose and FrequencyNon-CAECAEManifestation3–5 Grade CAE
Joaquim Bellmunt et al., 2021 [55]Prospective studyIII406 vs. 403Atezolizumab vs.
observation group
1200 mg intravenously vs. observation378 vs. 38951 (27 vs. 24)Hypertension 15 vs. 0; Arrythmia 10 vs. 0; Myocardial infarction 1 vs. 0; Cardiac discomfort 2 vs. 09
Dingwei Ye et al., 2021 [56]Retrospective studyII113Tislelizumab200 mg intravenously /3weeks106 (31 immune - related AEs )000
Thomas Powles et al., 2020 [57]Prospective studyIII345 vs. 340 vs. 313Durvalumab vs.
Durvalumab + Tremelimumab vs.
Chemotherapy
1500 mg intravenously/4 weeks vs. Dur + Tre 75 mg intravenously/4 weeks for 4 doses vs. standard dose193 vs. 254 vs. 282000
Padmanee Sharma et al., 2017 [58]Prospective studyII270Nivolumab3 mg/kg/2weeks 1731Cardiovascular failure 11
Michiel S. van der Heijden et al., 2021 [59]Prospective studyIII443 vs. 459Chemotherapy vs. Atezolizumabstandard dose vs. 1200 mg/3weeks 435 vs. 4362 (1 vs. 1)Cardiac arrest 0 vs. 11
Jonathan E Rosenberg et al., 2016 [60]Prospective studyII315Atezolizumab Intravenously given/3weeks20213Hypotension 7; Hypertension 65
Thomas Powles et al., 2021 [61]Prospective studyIII349 vs. 302 vs. 342Pembrolizumab (Pem)+ chemotherapy vs. Pembrolizumab vs. Chemotherapy Pem 200 mg/3 weeks for a max of 35 cycles + standard dose vs. Pem only vs. chemo onlyNR98 (40 vs. 29 vs. 29)Hypertension 8 vs. 3 vs. 2; Atrial fibrillation 4 vs. 2 vs. 2; ACS 4 vs. 2 vs. 3; Cardiac arrest 3 vs. 2 vs. 1 (specific number NR)42 (18 vs. 14 vs. 10)

3.5. Other Types of Cancer

The most commonly encountered ICIs-related type of cardiotoxicity in hematological malignancies was hypertension [62,63,64,65]. In other cancers, such as hepatocellular carcinomas and malignant pleural mesotheliomas, the relevant research did not present many cases [66,67,68,69,70,71]; these were almost all case reports of myocarditis [72,73,74].

4. Discussion

A total of 23,090 subjects from more than 40 studies were analyzed and the major findings were (1) ICIs-related CAEs commonly occur in melanomas, lung cancer, urothelial and renal cell carcinomas, and hematological malignancies. The incidence of ICIs-related CAEs ranged from 0.15 to 10%. The most commonly encountered type of cardiotoxicity in melanomas, renal cell carcinomas, and urothelial carcinomas was hypertension, whereas in lung cancer it was arrhythmia. ICIs-related cardiotoxicities for other cancer types appeared mostly in case reports and presented with myocarditis. (2) Among the abovementioned five cancers, the incidence of grade 3–5 ICIs-related CAEs ranged from 35.7 to 55.4%. Compared with RCCs, the other four types had a higher incidence of CAEs, including sudden cardiac arrest. (3) In different types of cancer, different ICIs had manifested different cardiotoxicities. In melanomas, PD-1/PD-L1 inhibitor use was closely related to a fluctuation in blood pressure. Treatment-related hypertension was linked to lambrolizumab. Nivolumab appeared to have a correlation with ICIs-related hypotension. Abnormal blood pressures might also be caused by the toxic effect of ICIs on other organs (e.g., vasculature). In addition, fatal myocarditis was reported after a single treatment with the combination of nivolumab and ipilimumab [75]. Recent evidence suggests that abatacept, a CTLA-4 agonist, may be used as additional immunosuppression for severe ICI–related myocarditis [76]. In lung cancer, the common cardiotoxic manifestations of durvalumab were acute coronary syndrome, arrhythmia, and heart failure. The common cardiotoxic manifestations of nivolumab and pembrolizumab were arrhythmia, cardiac-related chest pain, cardiomyopathy, myopericardial disease, and pericardial disease. In renal cell carcinomas, nivolumab combined with ipilimumab appeared to cause hypertension. In urothelial carcinoma, atezolizumab was related to hypertension and arrhythmia. (4) In melanomas, we observed that the growing incidence of CAEs correlated with increased dosage [24] and frequency [26] of an ICI application. Regarding the cardiotoxicity of an ICI monotherapy compared with a combination therapy, two studies had inconsistent conclusions [25,30]. In lung cancer, two studies showed contradictory conclusions on the relationship between the ICI dose and ICIs-related cardiotoxicity [37,43]. As different drugs are used for different cancer types, the dosage and therapeutic regimens can also influence toxicity. Therefore, our conclusions require further evidence to be confirmed.
The pathogenic mechanism underlying ICIs-related cardiotoxicity has not been comprehensively studied [77]. Tumor cells escaping immune surveillance by promoting checkpoint activation have been recognized as a major mechanism (Figure 2). Direct T cell-mediated cytotoxicity leads to the inflammation of the His-Purkinje system. Furthermore, macrophage infiltration, inflammation, fibrosis of myocardium hyperactivation [78,79,80], infiltration of cytotoxic T cells into myocardial tissue, inhibition of cardioprotective PD-1 and PD-L1 pathways in cardiomyocytes, and clonal expansion of T cells against homologous tumors and myocardium antigens have been observed (Figure 2) [75,81]. Other hypotheses that have attracted attention are ICIs-associated inflammation-triggering destabilization [82,83,84], cytotoxic T cell activation leading to the pseudo-progression of pericardial micro-metastases [85,86,87,88], and direct action on the coronary vascular bed [89,90,91].
Tumor-intrinsic factors (such as a tumor-associated stroma) [92], patient-intrinsic factors, and environmental factors may be implicated in different cardiotoxicities of ICIs of different cancer types [93]. Tumor-intrinsic factors relating to the genetic, transcriptional, or functional profile of the tumor cells themselves [92,94] appear to be the decisive factors for ICIs-related cardiotoxicity. Patients with tumors having parallel histological and genetic features had a similar incidence of ICIs-related CAEs [92,95]. Tumor-intrinsic factors partook of the tumor-extrinsic mechanisms of ICIs-related cardiotoxicity through their effect on the interaction between the host immune system and the tumor [92,96]. The interval of time required for cardiotoxicity to occur has not yet been precisely indicated [97,98], so further work is required to elucidate this. There are still many unanswered questions about the effect of patient-intrinsic factors on ICIs-related cardiotoxicity because the mechanisms differ, even in patients treated with the same agent.
With a wide range of ICI applications in anticancer therapy, there is growing recognition of a broad spectrum of ICIs-related CAEs. More attention must be paid to cancer-type-specific ICIs-related cardiotoxicity to target high-risk patients so that effective prevention and treatment measures can be applied. For patients treated with ICIs, clinical management—including the observation of clinical symptoms, the detection of cardiac biomarkers, and the performance of electrocardiograms and echocardiograms—are strongly suggested. More importantly, cancer-type-specific clinical management is urgently required. In patients with NSCLC, we suggest that the dynamic monitoring of electrocardiograms be performed after ICI application to evaluate the occurrence of arrhythmias such as atrial fibrillation, conduction blocks, and even malignant arrhythmias. Regarding patients with cancers such as melanomas, renal cell carcinomas, and uroepithelial carcinomas, we suggest that blood pressure be monitored dynamically during ICI therapy.
For ICIs-related cardiac complications, a high dose of steroids a common treatment; however, there are some circumstances in which aggressive therapy may be ineffective [99,100,101]. According to ASCO guidelines, permanent discontinuation of ICIs is recommended for grade 4 toxicities, except for endocrinopathies that have been controlled by hormone replacement [102]. It is prudent for cardiologists and oncologists to spread awareness about the manifestations of ICIs-related cardiotoxicity for each cancer type and cooperate closely for its successful diagnosis and management. Rigorous follow-ups of patients receiving ICI therapy with cardiac biomarkers, EKGs, and echocardiograms are recommended. It should be borne in mind that different drugs are used for different cancer types, and if a drug causes a different toxicity in a particular cancer type, the composition of each drug should be compared. The dosage and therapeutic regimen should also be compared because they influence toxicity. Further studies focusing on exploring cancer-type-specific ICIs-related cardiotoxic manifestations and potential mechanisms are required and helpful for maintaining the cardiac health of cancer patients treated by chemotherapy.

Author Contributions

Conceptualization, M.D.; formal analysis, M.D. and J.Z.; investigation, Z.Z.; data curation, R.W.; writing—original draft preparation, T.Y.; writing—review and editing, G.T. and T.L.; supervision, T.L. and L.Z.; project administration, L.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Informed Consent Statement

Not applicable.

Data Availability Statement

All data can be found in the references.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Narayan, V.; Thompson, E.W.; Demissei, B.; Ho, J.E.; Januzzi, J.L., Jr.; Ky, B. Mechanistic Biomarkers Informative of Both Cancer and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2726–2737. [Google Scholar] [CrossRef] [PubMed]
  2. Vincent, L.; Leedy, D.; Masri, S.C.; Cheng, R.K. Cardiovascular Disease and Cancer: Is There Increasing Overlap? Curr. Oncol. Rep. 2019, 21, 47. [Google Scholar] [CrossRef] [PubMed]
  3. Giza, D.E.; Iliescu, G.; Hassan, S.; Marmagkiolis, K.; Iliescu, C. Cancer as a Risk Factor for Cardiovascular Disease. Curr. Oncol. Rep. 2017, 19, 39. [Google Scholar] [CrossRef]
  4. Blaes, A.; Prizment, A.; Koene, R.J.; Konety, S. Cardio-oncology Related to Heart Failure: Common Risk Factors Between Cancer and Cardiovascular Disease. Heart Fail. Clin. 2017, 13, 367–380. [Google Scholar] [CrossRef] [Green Version]
  5. Navi, B.B.; Reiner, A.S.; Kamel, H.; Iadecola, C.; Okin, P.M.; Elkind, M.S.; Panageas, K.S.; DeAngelis, L.M. Risk of arterial thromboembolism in patients with cancer. J. Am. Coll. Cardiol. 2017, 70, 926–938. [Google Scholar] [CrossRef]
  6. Kaushik, I.; Ramachandran, S.; Zabel, C.; Gaikwad, S.; Srivastava, S.K. The evolutionary legacy of immune checkpoint inhibitors. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
  7. Lee, J.B.; Kim, H.R.; Ha, S.J. Immune Checkpoint Inhibitors in 10 Years: Contribution of Basic Research and Clinical Application in Cancer Immunotherapy. Immune Netw. 2022, 22, e2. [Google Scholar] [CrossRef]
  8. Park, J.; Kwon, M.; Shin, E.C. Immune checkpoint inhibitors for cancer treatment. Arch. Pharmacal Res. 2016, 39, 1577–1587. [Google Scholar] [CrossRef]
  9. Zaha, V.G.; Meijers, W.C.; Moslehi, J. Cardio-Immuno-Oncology. Circulation 2020, 141, 87–89. [Google Scholar] [CrossRef]
  10. Wang, F.; Qin, S. Progress in Diagnosis and Treatment of Immune Checkpoint Inhibitor-Associated Cardiotoxicity. J. Cancer Immunol. 2020, 2, 96–102. [Google Scholar]
  11. Ronen, D.; Bsoul, A.; Lotem, M.; Abedat, S.; Yarkoni, M.; Amir, O.; Asleh, R. Exploring the Mechanisms Underlying the Cardiotoxic Effects of Immune Checkpoint Inhibitor Therapies. Vaccines 2022, 10, 540. [Google Scholar] [CrossRef]
  12. Chen, C.H.; Yu, H.S.; Yu, S. Cutaneous Adverse Events Associated with Immune Checkpoint Inhibitors: A Review Article. Curr. Oncol. 2022, 29, 2871–2886. [Google Scholar] [CrossRef] [PubMed]
  13. Zhou, J.; Chau, Y.A.; Yoo, J.W.; Lee, S.; Ng, K.; Dee, E.C.; Liu, T.; Wai, A.K.C.; Zhang, Q.; Tse, G. Liver Immune-related Adverse Effects of Programmed Cell Death 1 (PD-1) and Programmed Cell Death Ligand 1 (PD-L1) Inhibitors: A Propensity Score Matched Study with Competing Risk Analyses. Clin. Oncol. (R Coll. Radiol.) 2022, 34, e316–e317. [Google Scholar] [CrossRef] [PubMed]
  14. Zhou, J.; Lee, S.; Lakhani, I.; Yang, L.; Liu, T.; Zhang, Y.; Xia, Y.; Wong, W.T.; Bao, K.K.H.; Wong, I.C.K.; et al. Adverse Cardiovascular Complications following prescription of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors: A propensity-score matched Cohort Study with competing risk analysis. Cardiooncology 2022, 8, 5. [Google Scholar] [CrossRef] [PubMed]
  15. Dolladille, C.; Akroun, J.; Morice, P.M.; Dompmartin, A.; Ezine, E.; Sassier, M.; Da-Silva, A.; Plane, A.F.; Legallois, D.; L’Orphelin, J.M.; et al. Cardiovascular immunotoxicities associated with immune checkpoint inhibitors: A safety meta-analysis. Eur. Heart J. 2021, 42, 4964–4977. [Google Scholar] [CrossRef]
  16. Gumusay, O.; Callan, J.; Rugo, H.S. Immunotherapy toxicity: Identification and management. Breast Cancer Res. Treat. 2022, 192, 1–17. [Google Scholar] [CrossRef]
  17. Master, S.R.; Robinson, A.; Mills, G.M.; Mansour, R.P. Cardiovascular complications of immune checkpoint inhibitor therapy. J. Clin. Oncol. 2019, 37, 2568. [Google Scholar] [CrossRef]
  18. Li, C.; Bhatti, S.A.; Ying, J. Immune Checkpoint Inhibitors—Associated Cardiotoxicity. Cancers 2022, 14, 1145. [Google Scholar] [CrossRef]
  19. Salem, J.-E.; Manouchehri, A.; Moey, M.; Lebrun-Vignes, B.; Bastarache, L.; Pariente, A.; Gobert, A.; Spano, J.-P.; Balko, J.M.; Bonaca, M.P. Cardiovascular toxicities associated with immune checkpoint inhibitors: An observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018, 19, 1579–1589. [Google Scholar] [CrossRef]
  20. Upadhrasta, S.; Elias, H.; Patel, K.; Zheng, L. Managing cardiotoxicity associated with immune checkpoint inhibitors. Chronic Dis. Transl. Med. 2019, 5, 6–14. [Google Scholar] [CrossRef]
  21. Hamid, O.; Puzanov, I.; Dummer, R.; Schachter, J.; Daud, A.; Schadendorf, D.; Blank, C.; Cranmer, L.D.; Robert, C.; Pavlick, A.C.; et al. Final analysis of a randomised trial comparing pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory advanced melanoma. Eur. J. Cancer 2017, 86, 37–45. [Google Scholar] [CrossRef]
  22. Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Weber, J.S.; D’Angelo, S.P.; Minor, D.; Hodi, F.S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N.I.; Miller, W.H., Jr.; Lao, C.D.; et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015, 16, 375–384. [Google Scholar] [CrossRef]
  24. Ascierto, P.A.; Del Vecchio, M.; Robert, C.; Mackiewicz, A.; Chiarion-Sileni, V.; Arance, A.; Lebbé, C.; Bastholt, L.; Hamid, O.; Rutkowski, P.; et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2017, 18, 611–622. [Google Scholar] [CrossRef]
  25. Hodi, F.S.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.F.; McDermott, D.F.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016, 17, 1558–1568. [Google Scholar] [CrossRef] [Green Version]
  26. Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532. [Google Scholar] [CrossRef] [PubMed]
  27. Weber, J.; Mandala, M.; Del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 2017, 377, 1824–1835. [Google Scholar] [CrossRef]
  28. Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
  29. Wolchok, J.D.; Neyns, B.; Linette, G.; Negrier, S.; Lutzky, J.; Thomas, L.; Waterfield, W.; Schadendorf, D.; Smylie, M.; Guthrie, T., Jr.; et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: A randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010, 11, 155–164. [Google Scholar] [CrossRef]
  30. Pires da Silva, I.; Ahmed, T.; Reijers, I.L.M.; Weppler, A.M.; Betof Warner, A.; Patrinely, J.R.; Serra-Bellver, P.; Allayous, C.; Mangana, J.; Nguyen, K.; et al. Ipilimumab alone or ipilimumab plus anti-PD-1 therapy in patients with metastatic melanoma resistant to anti-PD-(L)1 monotherapy: A multicentre, retrospective, cohort study. Lancet Oncol. 2021, 22, 836–847. [Google Scholar] [CrossRef]
  31. Schöffski, P.; Tan, D.S.W.; Martín, M.; Ochoa-de-Olza, M.; Sarantopoulos, J.; Carvajal, R.D.; Kyi, C.; Esaki, T.; Prawira, A.; Akerley, W.; et al. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J. Immunother. Cancer 2022, 10, e003776. [Google Scholar] [CrossRef]
  32. Eggermont, A.M.M.; Kicinski, M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Khattak, A.; Carlino, M.S.; et al. Association Between Immune-Related Adverse Events and Recurrence-Free Survival Among Patients With Stage III Melanoma Randomized to Receive Pembrolizumab or Placebo: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2020, 6, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.W.; Weber, J.S.; et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 2013, 369, 134–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Callahan, M.K.; Kluger, H.; Postow, M.A.; Segal, N.H.; Lesokhin, A.; Atkins, M.B.; Kirkwood, J.M.; Krishnan, S.; Bhore, R.; Horak, C.; et al. Nivolumab Plus Ipilimumab in Patients With Advanced Melanoma: Updated Survival, Response, and Safety Data in a Phase I Dose-Escalation Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 391–398. [Google Scholar] [CrossRef] [PubMed]
  35. Keilholz, U.; Mehnert, J.M.; Bauer, S.; Bourgeois, H.; Patel, M.R.; Gravenor, D.; Nemunaitis, J.J.; Taylor, M.H.; Wyrwicz, L.; Lee, K.W.; et al. Avelumab in patients with previously treated metastatic melanoma: Phase 1b results from the JAVELIN Solid Tumor trial. J. Immunother. Cancer 2019, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutiérrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef]
  37. Chitturi, K.R.; Xu, J.; Araujo-Gutierrez, R.; Bhimaraj, A.; Guha, A.; Hussain, I.; Kassi, M.; Bernicker, E.H.; Trachtenberg, B.H. Immune Checkpoint Inhibitor-Related Adverse Cardiovascular Events in Patients With Lung Cancer. JACC CardioOncol. 2019, 1, 182–192. [Google Scholar] [CrossRef]
  38. Gettinger, S.N.; Horn, L.; Gandhi, L.; Spigel, D.R.; Antonia, S.J.; Rizvi, N.A.; Powderly, J.D.; Heist, R.S.; Carvajal, R.D.; Jackman, D.M.; et al. Overall Survival and Long-Term Safety of Nivolumab (Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in Patients With Previously Treated Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 2004–2012. [Google Scholar] [CrossRef]
  39. Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
  40. Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
  41. Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [Green Version]
  42. Shi, Y.; Fang, J.; Zhou, C.; Liu, A.; Wang, Y.; Meng, Q.; Ding, C.; Ai, B.; Gu, Y.; Yao, Y.; et al. Immune checkpoint inhibitor-related adverse events in lung cancer: Real-world incidence and management practices of 1905 patients in China. Thorac. Cancer 2022, 13, 412–422. [Google Scholar] [CrossRef] [PubMed]
  43. Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
  44. Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
  46. Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 123–135. [Google Scholar] [CrossRef] [Green Version]
  47. Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.E.; Badin, F.; et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef]
  48. Abou Alaiwi, S.; Xie, W.; Nassar, A.H.; Dudani, S.; Martini, D.; Bakouny, Z.; Steinharter, J.A.; Nuzzo, P.V.; Flippot, R.; Martinez-Chanza, N.; et al. Safety and efficacy of restarting immune checkpoint inhibitors after clinically significant immune-related adverse events in metastatic renal cell carcinoma. J. Immunother. Cancer 2020, 8, e000144. [Google Scholar] [CrossRef] [Green Version]
  49. Yekedüz, E.; Ertürk, İ.; Tural, D.; Karadurmuş, N.; Karakaya, S.; Hızal, M.; Arıkan, R.; Arslan, Ç.; Taban, H.; Küçükarda, A.; et al. Nivolumab in metastatic renal cell carcinoma: Results from the Turkish Oncology Group Kidney Cancer Consortium database. Future Oncol. 2021, 17, 4861–4869. [Google Scholar] [CrossRef]
  50. Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
  51. Motzer, R.J.; Rini, B.I.; McDermott, D.F.; Redman, B.G.; Kuzel, T.M.; Harrison, M.R.; Vaishampayan, U.N.; Drabkin, H.A.; George, S.; Logan, T.F.; et al. Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 1430–1437. [Google Scholar] [CrossRef]
  52. McFarlane, J.J.; Kochenderfer, M.D.; Olsen, M.R.; Bauer, T.M.; Molina, A.; Hauke, R.J.; Reeves, J.A.; Babu, S.; Van Veldhuizen, P.; Somer, B.; et al. Safety and Efficacy of Nivolumab in Patients With Advanced Clear Cell Renal Cell Carcinoma: Results From the Phase IIIb/IV CheckMate 374 Study. Clin. Genitourin. Cancer 2020, 18, 469–476.e464. [Google Scholar] [CrossRef]
  53. Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Vaishampayan, U.; Schöffski, P.; Ravaud, A.; Borel, C.; Peguero, J.; Chaves, J.; Morris, J.C.; Kotecki, N.; Smakal, M.; Zhou, D.; et al. Avelumab monotherapy as first-line or second-line treatment in patients with metastatic renal cell carcinoma: Phase Ib results from the JAVELIN Solid Tumor trial. J. Immunother. Cancer 2019, 7, 275. [Google Scholar] [CrossRef] [PubMed]
  55. Bellmunt, J.; Hussain, M.; Gschwend, J.E.; Albers, P.; Oudard, S.; Castellano, D.; Daneshmand, S.; Nishiyama, H.; Majchrowicz, M.; Degaonkar, V.; et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 525–537. [Google Scholar] [CrossRef]
  56. Ye, D.; Liu, J.; Zhou, A.; Zou, Q.; Li, H.; Fu, C.; Hu, H.; Huang, J.; Zhu, S.; Jin, J.; et al. Tislelizumab in Asian patients with previously treated locally advanced or metastatic urothelial carcinoma. Cancer Sci. 2021, 112, 305–313. [Google Scholar] [CrossRef] [PubMed]
  57. Powles, T.; van der Heijden, M.S.; Castellano, D.; Galsky, M.D.; Loriot, Y.; Petrylak, D.P.; Ogawa, O.; Park, S.H.; Lee, J.L.; De Giorgi, U.; et al. Durvalumab alone and durvalumab plus tremelimumab versus chemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): A randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2020, 21, 1574–1588. [Google Scholar] [CrossRef]
  58. Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
  59. Van der Heijden, M.S.; Loriot, Y.; Durán, I.; Ravaud, A.; Retz, M.; Vogelzang, N.J.; Nelson, B.; Wang, J.; Shen, X.; Powles, T. Atezolizumab Versus Chemotherapy in Patients with Platinum-treated Locally Advanced or Metastatic Urothelial Carcinoma: A Long-term Overall Survival and Safety Update from the Phase 3 IMvigor211 Clinical Trial. Eur. Urol. 2021, 80, 7–11. [Google Scholar] [CrossRef]
  60. Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
  61. Powles, T.; Csőszi, T.; Özgüroğlu, M.; Matsubara, N.; Géczi, L.; Cheng, S.Y.; Fradet, Y.; Oudard, S.; Vulsteke, C.; Morales Barrera, R.; et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 931–945. [Google Scholar] [CrossRef]
  62. André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
  63. Shi, Y.; Su, H.; Song, Y.; Jiang, W.; Sun, X.; Qian, W.; Zhang, W.; Gao, Y.; Jin, Z.; Zhou, J.; et al. Safety and activity of sintilimab in patients with relapsed or refractory classical Hodgkin lymphoma (ORIENT-1): A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2019, 6, e12–e19. [Google Scholar] [CrossRef]
  64. Shi, Y.; Wu, J.; Wang, Z.; Zhang, L.; Wang, Z.; Zhang, M.; Cen, H.; Peng, Z.; Li, Y.; Fan, L.; et al. Efficacy and safety of geptanolimab (GB226) for relapsed or refractory peripheral T cell lymphoma: An open-label phase 2 study (Gxplore-002). J. Hematol. Oncol. 2021, 14, 12. [Google Scholar] [CrossRef]
  65. Heinzerling, L.; Ott, P.A.; Hodi, F.S.; Husain, A.N.; Tajmir-Riahi, A.; Tawbi, H.; Pauschinger, M.; Gajewski, T.F.; Lipson, E.J.; Luke, J.J. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J. Immunother. Cancer 2016, 4, 50. [Google Scholar] [CrossRef] [Green Version]
  66. Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
  67. Wadhwa, D.; Fallah-Rad, N.; Grenier, D.; Krahn, M.; Fang, T.; Ahmadie, R.; Walker, J.R.; Lister, D.; Arora, R.C.; Barac, I.; et al. Trastuzumab mediated cardiotoxicity in the setting of adjuvant chemotherapy for breast cancer: A retrospective study. Breast Cancer Res. Treat 2009, 117, 357–364. [Google Scholar] [CrossRef] [PubMed]
  68. Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
  69. Quispel-Janssen, J.; van der Noort, V.; de Vries, J.F.; Zimmerman, M.; Lalezari, F.; Thunnissen, E.; Monkhorst, K.; Schouten, R.; Schunselaar, L.; Disselhorst, M.; et al. Programmed Death 1 Blockade With Nivolumab in Patients With Recurrent Malignant Pleural Mesothelioma. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2018, 13, 1569–1576. [Google Scholar] [CrossRef] [Green Version]
  70. Vos, J.L.; Elbers, J.B.W.; Krijgsman, O.; Traets, J.J.H.; Qiao, X.; van der Leun, A.M.; Lubeck, Y.; Seignette, I.M.; Smit, L.A.; Willems, S.M.; et al. Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat. Commun. 2021, 12, 7348. [Google Scholar] [CrossRef]
  71. Nghiem, P.T.; Bhatia, S.; Lipson, E.J.; Kudchadkar, R.R.; Miller, N.J.; Annamalai, L.; Berry, S.; Chartash, E.K.; Daud, A.; Fling, S.P.; et al. PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 2542–2552. [Google Scholar] [CrossRef]
  72. Monge, C.; Maeng, H.; Brofferio, A.; Apolo, A.B.; Sathya, B.; Arai, A.E.; Gulley, J.L.; Bilusic, M. Myocarditis in a patient treated with Nivolumab and PROSTVAC: A case report. J. Immunother. Cancer 2018, 6, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. Mahmood, S.S.; Chen, C.L.; Shapnik, N.; Krishnan, U.; Singh, H.S.; Makker, V. Myocarditis with tremelimumab plus durvalumab combination therapy for endometrial cancer: A case report. Gynecol. Oncol. Rep. 2018, 25, 74–77. [Google Scholar] [CrossRef] [PubMed]
  74. Chen, Q.; Huang, D.-S.; Zhang, L.-W.; Li, Y.-Q.; Wang, H.-W.; Liu, H.-B. Fatal myocarditis and rhabdomyolysis induced by nivolumab during the treatment of type B3 thymoma. Clin. Toxicol. 2018, 56, 667–671. [Google Scholar] [CrossRef] [PubMed]
  75. Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
  76. Salem, J.E.; Allenbach, Y.; Vozy, A.; Brechot, N.; Johnson, D.B.; Moslehi, J.J.; Kerneis, M. Abatacept for Severe Immune Checkpoint Inhibitor-Associated Myocarditis. N. Engl. J. Med. 2019, 380, 2377–2379. [Google Scholar] [CrossRef]
  77. Khunger, A.; Battel, L.; Wadhawan, A.; More, A.; Kapoor, A.; Agrawal, N. New Insights into Mechanisms of Immune Checkpoint Inhibitor-Induced Cardiovascular Toxicity. Curr. Oncol. Rep. 2020, 22, 65. [Google Scholar] [CrossRef]
  78. Tocchetti, C.G.; Galdiero, M.R.; Varricchi, G. Cardiac toxicity in patients treated with immune checkpoint inhibitors: It is now time for cardio-immuno-oncology. J. Am. Coll. Cardiol. 2018, 71, 1765–1767. [Google Scholar] [CrossRef]
  79. Ji, C.; Roy, M.D.; Golas, J.; Vitsky, A.; Ram, S.; Kumpf, S.W.; Martin, M.; Barletta, F.; Meier, W.A.; Hooper, A.T. Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clin. Cancer Res. 2019, 25, 4735–4748. [Google Scholar] [CrossRef] [Green Version]
  80. Varricchi, G.; Galdiero, M.R.; Marone, G.; Criscuolo, G.; Triassi, M.; Bonaduce, D.; Marone, G.; Tocchetti, C.G. Cardiotoxicity of immune checkpoint inhibitors. ESMO Open 2017, 2, e000247. [Google Scholar] [CrossRef] [Green Version]
  81. Ganatra, S.; Neilan, T.G. Immune checkpoint inhibitor-associated myocarditis. Oncologist 2018, 23, 879–886. [Google Scholar] [CrossRef] [Green Version]
  82. Lyon, A.R.; Yousaf, N.; Battisti, N.M.L.; Moslehi, J.; Larkin, J. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 2018, 19, e447–e458. [Google Scholar] [CrossRef]
  83. Newman, J.L.; Stone, J.R. Immune checkpoint inhibition alters the inflammatory cell composition of human coronary artery atherosclerosis. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2019, 43, 107148. [Google Scholar] [CrossRef] [PubMed]
  84. Nykl, R.; Fischer, O.; Vykoupil, K.; Taborsky, M. A unique reason for coronary spasm causing temporary ST elevation myocardial infarction (inferior STEMI)—systemic inflammatory response syndrome after use of pembrolizumab. Arch. Med. Sci. Atheroscler. Dis. 2017, 2, e100–e102. [Google Scholar] [CrossRef] [PubMed]
  85. Love, V.A.; Grabie, N.; Duramad, P.; Stavrakis, G.; Sharpe, A.; Lichtman, A. CTLA-4 ablation and interleukin-12–driven differentiation synergistically augment cardiac pathogenicity of cytotoxic T lymphocytes. Circ. Res. 2007, 101, 248–257. [Google Scholar] [CrossRef] [Green Version]
  86. Di Giacomo, A.M.; Danielli, R.; Guidoboni, M.; Calabrò, L.; Carlucci, D.; Miracco, C.; Volterrani, L.; Mazzei, M.A.; Biagioli, M.; Altomonte, M.; et al. Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: Clinical and immunological evidence from three patient cases. Cancer Immunol. Immunother. CII 2009, 58, 1297–1306. [Google Scholar] [CrossRef]
  87. Chen, D.Y.; Huang, W.K.; Chien-Chia Wu, V.; Chang, W.C.; Chen, J.S.; Chuang, C.K.; Chu, P.H. Cardiovascular toxicity of immune checkpoint inhibitors in cancer patients: A review when cardiology meets immuno-oncology. J. Formos. Med. Assoc. Taiwan Yi Zhi 2020, 119, 1461–1475. [Google Scholar] [CrossRef]
  88. Altan, M.; Toki, M.I.; Gettinger, S.N.; Carvajal-Hausdorf, D.E.; Zugazagoitia, J.; Sinard, J.H.; Herbst, R.S.; Rimm, D.L. Immune Checkpoint Inhibitor-Associated Pericarditis. J. Thorac. Oncol. 2019, 14, 1102–1108. [Google Scholar] [CrossRef]
  89. Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [Green Version]
  90. Varricchi, G.; Galdiero, M.R.; Tocchetti, C.G. Cardiac toxicity of immune checkpoint inhibitors: Cardio-oncology meets immunology. Circulation 2017, 136, 1989–1992. [Google Scholar] [CrossRef]
  91. Coen, M.; Rigamonti, F.; Roth, A.; Koessler, T. Chemotherapy-induced Takotsubo cardiomyopathy, a case report and review of the literature. BMC Cancer 2017, 17, 394. [Google Scholar] [CrossRef]
  92. Giatromanolaki, A.; Koukourakis, M.I.; Koutsopoulos, A.; Mendrinos, S.; Sivridis, E. The metabolic interactions between tumor cells and tumor-associated stroma (TAS) in prostatic cancer. Cancer Biol. 2012, 13, 1284–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  93. Kalbasi, A.; Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020, 20, 25–39. [Google Scholar] [CrossRef] [PubMed]
  94. Van Rooij, N.; van Buuren, M.M.; Philips, D.; Velds, A.; Toebes, M.; Heemskerk, B.; van Dijk, L.J.; Behjati, S.; Hilkmann, H.; El Atmioui, D.; et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, e439–e442. [Google Scholar] [CrossRef] [PubMed]
  95. Liu, Z.; Ahn, M.; Kurokawa, T.; Ly, A.; Zhang, G.; Wang, F.; Yamada, T.; Sadagopan, A.; Cheng, J.; Ferrone, C.; et al. A fast, simple, and cost-effective method of expanding patient-derived xenograft mouse models of pancreatic ductal adenocarcinoma. J. Transl. Med. 2020, 18, 255. [Google Scholar] [CrossRef] [PubMed]
  96. Oudin, M.J.; Barbier, L.; Kosciuk, T.; Kreidl, E.; Gertler, F. Abstract 4031: Novel tumor intrinsic vs. extrinsic mechanisms of resistance to chemotherapy in metastatic disease. Cancer Res. 2018, 78, 4031. [Google Scholar] [CrossRef]
  97. Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef]
  98. Mocan-Hognogi, D.L.; Trancǎ, S.; Farcaş, A.D.; Mocan-Hognogi, R.F.; Pârvu, A.V.; Bojan, A.S. Immune Checkpoint Inhibitors and the Heart. Front. Cardiovasc. Med. 2021, 8, 726426. [Google Scholar] [CrossRef]
  99. Tajiri, K.; Ieda, M. Cardiac complications in immune checkpoint inhibition therapy. Front. Cardiovasc. Med. 2019, 6, 3. [Google Scholar] [CrossRef]
  100. Johnson, D.B.; Sullivan, R.J.; Menzies, A.M. Immune checkpoint inhibitors in challenging populations. Cancer 2017, 123, 1904–1911. [Google Scholar] [CrossRef] [Green Version]
  101. Jain, V.; Bahia, J.; Mohebtash, M.; Barac, A. Cardiovascular complications associated with novel cancer immunotherapies. Curr. Treat. Options Cardiovasc. Med. 2017, 19, 1–10. [Google Scholar] [CrossRef]
  102. Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef] [PubMed]
Figure 1. (a) Risk factors for CVD and cancer; (b) Common pathophysiologic processes of CVD and cancer.
Figure 1. (a) Risk factors for CVD and cancer; (b) Common pathophysiologic processes of CVD and cancer.
Jcdd 09 00203 g001
Figure 2. Tumor cells facilitate checkpoint activation to evade immune surveillance.
Figure 2. Tumor cells facilitate checkpoint activation to evade immune surveillance.
Jcdd 09 00203 g002
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Dong, M.; Yu, T.; Zhang, Z.; Zhang, J.; Wang, R.; Tse, G.; Liu, T.; Zhong, L. ICIs-Related Cardiotoxicity in Different Types of Cancer. J. Cardiovasc. Dev. Dis. 2022, 9, 203. https://0-doi-org.brum.beds.ac.uk/10.3390/jcdd9070203

AMA Style

Dong M, Yu T, Zhang Z, Zhang J, Wang R, Tse G, Liu T, Zhong L. ICIs-Related Cardiotoxicity in Different Types of Cancer. Journal of Cardiovascular Development and Disease. 2022; 9(7):203. https://0-doi-org.brum.beds.ac.uk/10.3390/jcdd9070203

Chicago/Turabian Style

Dong, Mei, Ting Yu, Zhenzhen Zhang, Jing Zhang, Rujian Wang, Gary Tse, Tong Liu, and Lin Zhong. 2022. "ICIs-Related Cardiotoxicity in Different Types of Cancer" Journal of Cardiovascular Development and Disease 9, no. 7: 203. https://0-doi-org.brum.beds.ac.uk/10.3390/jcdd9070203

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop