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Abstract: Plant diseases caused by pathogenic fungi or oomycetes seriously affect crop growth and
the quality and yield of products. A series of novel 1,2,4-triazole derivatives containing carboxamide
fragments based on amide fragments widely used in fungicides and the commercialized mefentriflu-
conazole were designed and synthesized. Their antifungal activities were evaluated against seven
kinds of phytopathogenic fungi/oomycete. Results showed that most compounds had similar or
better antifungal activities compared to mefentrifluconazole’s inhibitory activity against Physalospora
piricola, especially compound 6h (92%), which possessed outstanding activity. Compound 6h (EC50

= 13.095 µg/mL) showed a better effect than that of mefentrifluconazole (EC50 = 39.516 µg/mL).
Compound 5j (90%) displayed outstanding anti-oomycete activity against Phytophthora capsici, with
an EC50 value of 17.362 µg/mL, far superior to that of mefentrifluconazole (EC50 = 75.433 µg/mL).
The result of molecular docking showed that compounds 5j and 6h possessed a stronger affinity
for 14α-demethylase (CYP51). This study provides a new approach to expanding the fungicidal
spectrum of 1,2,4-triazole derivatives.

Keywords: 1,2,4-triazole derivatives; carboxamide fragments; fungicidal activity; Physalospora piricola;
Phytophthora capsici; molecular docking

1. Introduction

Phytopathogenic fungi are responsible for about two-thirds of infectious plant diseases
and pose a great threat to crop production [1–3]. They not only significantly affect the
production and quality of crops but also endangers the health of humans and animals
through the creation and enrichment of toxins [4,5]. In particular, Physalospora piricola
(P. piricola), which infects apple branches, fruit, and leaves, has a serious impact on the
growth and yield of fruit trees and is the main causal agent of apple ring rot [6]. It is widely
distributed in most apple-growing areas in the country but is most severe in eastern China
(Liaoning, Shandong, Henan, and Hebei provinces), where summer temperatures and
rainfall are high. The earliest record of a severe loss caused by this disease in China was in
Chengdu of Sichuan Province in 1942, when the disease caused approximately 20% fruit
loss of Yuxia (Mapi) apples before harvest and another 79% loss in storage [7]. Since the
1980s, the importance of apple ring rot in eastern China has increased with the widespread
planting of the cultivar Fuji. The emergence of pathogenic fungi like P. piricola, showing
resistance to current market fungicides, underscores the need for new compounds [8]. These
new antifungals are crucial not only because they can overcome the resistance developed
by pathogens but also to expand the arsenal of available treatments. Therefore, there is an
urgent and continuous need to seek novel and effective approaches to control pathogenic
fungi and mitigate losses caused by P. piricola. Diversified modification from novel leading
compounds is an important and widely applied strategy in the continuous innovation and
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development of chemical fungicides [9–11]. Thus, the design and synthesis of new active
molecules is one of the most important recent milestones in fungicide research.

Triazole fungicides mainly belong to sterol demethylation inhibitor (DMI) fungicides,
which occupy an important position in the field of fungicides, such as mefentrifluconazole,
tetraconazole, hexaconzole, cyproconaole, etc. (Figure 1) [12]. Mefentrifluconazole, [(2RS)-
2-(4-(4-chlorophenoxy)-α,α,α-trifluoro-o-tolyl)-1-(1H-1,2,4-triazol-1-yl)propan-2-ol], is the
first isopropanol triazole broad-spectrum fungicide developed by the company Badische
Anilin-und-Soda-Fabrik (BASF) and it has become widely used to control a range of fungal
crop diseases [13]. Similar to traditional triazole fungicides, the nitrogen atom on its
heterocyclic ring has a lone pair of electrons, which can be combined with the iron atom
in the heme-iron active center of 14α-demethylase (CYP51) in pathogenic fungi by ligand
bonding to form an iron porphyrin-centered ligand complex, resulting in the reduction in
the combination of oxygen atoms with CYP51 and the inhibition of the catalytic capacity
of CYP51 oxidation, which results in the blocking of the 14α-demethylation reaction, thus
interfering with the synthesis of fungal ergosterol [14,15]. On the one hand, ergosterol
deficiency can lead to abnormal cell membrane structure and function, resulting in changes
in membrane bonding and enzyme activity, making fungal cells vulnerable to damage and
even causing dysfunction in the activation of ergosterol hormones, which affects cell growth
and proliferation [16,17]; on the other hand, the blockage of the 14α-demethylation reaction
can lead to the accumulation of large quantities of 24-methylenedihydrolanosterol, which
inhibits the flow of fungal cell membranes [18]. In brief, mefentrifluconazole impedes
the biosynthesis of ergosterol in the cell membrane of pathogens, causing changes in
its biological structure, inhibiting cell growth, and finally achieving the effects of being
bacteriostatic and bactericidal [19–21]. Unlike the existing triazole fungicides, the unique
isopropanol moiety of mefentrifluconazole can be easily transformed into a “hook” that
binds tightly with the target protein, resulting in potent fungicidal activity with little cross-
resistance [19,22–24]. Mefentrifluconazole can be used to control many fungal diseases
in more than 60 species of crop plants, such as potatoes, pome fruits, and soybeans, and
has been registered in many countries [20]. Among them, mefentrifluconazole has been
registered for the control of apple brown spot (Marssonina mali) in China, yet no studies
have been conducted to determine its inhibitory activity against P. piricola and it is less
effective in inhibiting oomycetes.
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Studies have shown that mefentrifluconazole can also be used in combination with
succinate dehydrogenase inhibitor (SDHI) fungicides such as florylpicoxamid, fluxapy-
roxad, boscalid, and bixafen, thereby delaying the development of fungicide resistance.
SDHI fungicides disrupt the mitochondrial respiratory chain by inhibiting SDH, which
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leads to fungal death [25,26]. Their mechanisms of action suggest that these structurally
dissimilar substances possess the common pharmacophore carboxamide, which consists
of three parts, namely a polar moiety, amide bond, and hydrophobic tail [27–29]. Among
them, amide bonds are the core feature of SDHIs and the introduction of structurally
diverse benzene rings flanking the amide bond enables the compounds to exhibit good
broad-spectrum activity [30]. It is desired to enhance the bactericidal activity of triazole
derivatives by introducing active groups to give a broader spectrum of bioactivity.

In this study, the commercial fungicide mefentrifluconazole was used as the lead
compound, retained its isopropanol triazole part, and then introduced amide fragments by
using active substructure splicing. A total of 34 novel 1,2,4-triazole derivatives containing
carboxamide fragments were designed and synthesized (Figure 2). Their fungicidal activi-
ties against seven kinds of phytopathogenic fungi/oomycete at 50 µg/mL were evaluated
and the mechanism of action of highly effective compounds 5j and 6h were preliminarily
evaluated.
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2. Materials and Methods
2.1. Chemicals and Instruments

All reagents used were analytical reagent (AR) grade or chemically pure (CR), which
were purchased from commercial sources (Tianjin Guangda Chemical Reagents Ltd., Tianjin,
China). The melting point of the target compounds were measured on an X-4 binocular
microscope (Beijing Zhongke Instrument Co., Ltd., Beijing, China). Nuclear magnetic
resonance (NMR) spectra were acquired with a 400 MHz (100 MHz for 13C) instrument
(Bruker, Billerica, MA, USA) at room temperature. Chemical shifts were measured relative
to residual solvent peaks of CDCl3 (1H: δ = 7.26 ppm; 13C: δ = 77.0 ppm) and DMSO-d6 (1H:
δ = 2.5 and 3.3 ppm; 13C: δ = 39.9 ppm) as internal standards. The following abbreviations
are used to designate chemical shift multiplicities: s = singlet, d = doublet, dd = doublet
of doublets, t = triplet, m = multiplet, and brs = broad singlet. High-resolution mass
spectrometry (HRMS) data were recorded with a quadrupol Fourier transform-electrospray
ionization (QFT-ESI) instrument (Varian, Palo Alto, CA, USA).
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2.2. Synthetic Procedures
2.2.1. Synthesis of Compounds 5a–5n, 6a–6m, and 7a–7g

To a stirred solution of NaH (60% in mineral oil, 1.840 g, 46.0 mmol) in dry tetrahy-
drofuran (THF) (30 mL), trimethylsulfonium iodide (Me3S+I−) (8.163 g, 40.0 mmol) in dry
dimethyl sulfoxide (DMSO) (50 mL) was added at room temperature under nitrogen. The
reaction mixture was left stirring for 1 h at room temperature. A solution of compound 1
(3.564 g, 20.0 mmol) in dry DMSO (20 mL) was added dropwise and the reaction mixture
was left stirring for 14 h. The reaction mixture was quenched with a saturated solution
of ammonium chloride, followed by extractions with ethyl acetate (EtOAc) (3 × 20 mL).
The combined organic layers were dried and the solvent was evaporated. The crude
product was purified by column chromatography to obtain compound 2. Light yellow
solid, 75% yield, m.p. 46–48 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 7.93 (d, J = 8.1 Hz, 2H),
7.49 (d, J = 8.0 Hz, 2H), 3.84 (s, 3H), 3.04 (d, J = 6.0 Hz, 1H), 2.79 (d, J = 5.2 Hz, 1H), 1.67 (s,
3H); 13C NMR (100 MHz, DMSO-d6) δ 166.5, 147.0, 129.7, 129.2, 126.2, 57.0, 56.7, 52.6, 21.5.

Compound 2 (1.922 g, 10.0 mmol), 1,2,4-Triazole (2.763 g, 40.0 mmol), and NaOH
(0.800 g, 20.0 mmol.) were added to N,N-dimethylformamide (DMF) (50 mL) and stirred
at 110 ◦C for 4 h, cooled to room temperature, saturated NH4Cl solution was added, and
the aqueous phase was extracted with EtOAc (3 × 15 mL). The combined organic phases
were washed with saturated brine, dried over anhydrous magnesium sulfate, filtered with
suction, spin-dried, and recrystallized from dichloromethane ether to obtain compound
3. White solid, 80% yield, m.p. 98–100 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.23 (s, 1H),
7.89 (d, J = 8.2 Hz, 2H), 7.83 (s, 1H), 7.57 (d, J = 8.0 Hz, 2H), 5.73 (s, 1H), 4.41 (s, 2H), 3.84 (s,
3H), 1.46 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.6, 151.8, 150.9, 145.4, 129.3, 128.6,
126.2, 73.2, 59.7, 52.6, 27.5.

To a stirred solution of 3 (1.306 g, 5.0 mmol) in THF (30 mL), NaOH (0.600 g, 15.0 mmol.)
in H2O (30 mL) was added and the reaction mixture was stirred at room temperature for
6 h. After completion of the reaction, the solvent was removed in vacuo. Then, dilute
HCl (10 mL, 1 M) was added dropwise to the reaction mixture to adjust the pH to 3–5, the
solid was filtered and dried, and compound 4 was obtained. White solid, 74% yield, m.p.
199–202 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 12.86 (s, 1H), 8.23 (s, 1H), 7.90–7.82 (m, 3H),
7.55 (d, J = 8.2 Hz, 2H), 5.70 (s, 1H), 4.41 (s, 2H), 1.45 (s, 3H); 13C NMR (100 MHz, DMSO-d6)
δ 167.7, 151.3, 150.8, 145.4, 129.8, 129.5, 126.0, 73.2, 59.7, 27.6.

To a stirred solution of 4 (0.247 g, 1.0 mmol) in CH2Cl2 (3 mL), Et3N (0.202 g, 2.0 mmol),
1-hydroxybenzotriazole (HOBt) (0.203 g, 1.5 mmol), and 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide hydrochloride (EDCI) (0.288 g, 1.5 mmol) were added and the reaction
mixture was stirred at room temperature for 30 min. Subsequently, various substituted
aromatic amines (1.5 mmol) were added and the resulting solution was stirred at room
temperature for 12 h. The reaction mixture was diluted with H2O (10 mL), followed
by extractions with EtOAc (3 × 15 mL). The combined organic phase was dried with
anhydrous sodium sulfate and the solvent was evaporated. The crude product was purified
by column chromatography to obtain compounds 5a–5n, 6a–6m, and 7a–7g.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-phenylbenzamide (5a). White
solid, 85% yield, m.p. 181–183 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.21 (s, 1H), 8.27 (s,
1H), 7.93–7.84 (m, 3H), 7.77 (d, J = 7.9 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 8.1 Hz,
2H), 7.09 (t, J = 7.7 Hz, 1H), 5.71 (s, 1H), 4.45 (s, 2H), 1.47 (s, 3H); 13C NMR (100 MHz,
DMSO-d6) δ 165.8, 150.9, 150.0, 145.4, 139.7, 133.9, 129.1, 127.8, 125.8, 124.1, 120.8, 73.2, 59.8,
27.8; HR-MS (ESI): calcd for C18H18N4O2 [M+H]+ 323.1503, found (ESI+) 323.1509.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(o-tolyl)benzamide (5b). White
solid, 84% yield, m.p. 145–147 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 9.83 (s, 1H), 8.27 (s, 1H),
7.94–7.84 (m, 3H), 7.58 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 7.5 Hz, 1H),
7.19 (m, 2H), 5.70 (s, 1H), 4.44 (s, 2H), 2.23 (s, 3H), 1.47 (s, 3H); 13C NMR (100 MHz, DMSO-
d6) δ 165.6, 151.0, 149.9, 145.4, 137.0, 134.3, 133.4, 130.8, 127.8, 127.1, 126.5, 125.8, 73.2, 59.8,
27.8, 18.4; HR-MS (ESI): calcd for C19H20N4O2 [M+H]+ 337.1660, found (ESI+) 337.1651.
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4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(p-tolyl)benzamide (5c). White
solid, 79% yield, m.p. 167–169 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.12 (s, 1H), 8.26 (s,
1H), 7.91–7.84 (m, 3H), 7.65 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.0 Hz,
2H), 5.70 (s, 1H), 4.44 (s, 2H), 2.28 (s, 3H), 1.46 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ
165.6, 151.0, 149.9, 145.4, 137.2, 134.0, 133.1, 129.5, 127.8, 125.7, 120.9, 73.2, 59.8, 27.7, 21.0;
HR-MS (ESI): calcd for C19H20N4O2 [M+H]+ 337.1660, found (ESI+) 337.1653.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(2-methoxyphenyl)benzamide (5d).
Brown solid, 80% yield, m.p. 156–158 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 9.38 (s, 1H),
8.26 (s, 1H), 7.91–7.86 (t, 3H), 7.77 (d, J = 7.8 Hz, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.18
(t, J = 7.8 Hz, 1H), 7.09 (d, J = 8.2 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 5.71 (s, 1H), 4.44 (s,
2H), 3.83 (s, 3H), 1.47 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 167.7, 165.3, 152.0, 151.0,
150.0, 145.4, 133.4, 129.5, 127.6, 125.9, 124.8, 120.7, 111.9, 73.2, 59.8, 56.2, 27.7; HR-MS (ESI):
calcd for C19H20N4O3 [M+H]+ 353.1609, found (ESI+) 353.1617.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(3-methoxyphenyl)benzamide (5e).
Yellow crystals, 67% yield, m.p. 116–118 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.18 (s, 1H),
8.27 (s, 1H), 7.91–7.83 (m, 3H), 7.59 (d, J = 8.0 Hz, 2H), 7.48 (s, 1H), 7.37 (d, J = 8.1 Hz, 1H),
7.24 (t, J = 8.1 Hz, 1H), 6.68 (d, J = 8.2 Hz, 1H), 5.71 (s, 1H), 4.44 (s, 2H), 3.75 (s, 3H), 1.47 (s,
3H); 13C NMR (100 MHz, DMSO-d6) δ 165.9, 159.9, 150.9, 150.0, 145.4, 140.9, 133.9, 129.9,
127.8, 125.8, 113.0, 109.6, 106.5, 73.2, 59.8, 55.5, 27.7; HR-MS (ESI): calcd for C19H20N4O3
[M+H]+ 353.1609, found (ESI+) 353.1619.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(4-methoxyphenyl)benzamide (5f).
White solid, 77% yield, m.p. 175–178 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.09 (s, 1H), 8.26
(s, 1H), 7.90–7.84 (m, 3H), 7.67 (d, J = 8.6 Hz, 2H), 7.57 (d, J = 8.1 Hz, 2H), 6.92 (d, J = 8.6 Hz,
2H), 5.70 (s, 1H), 4.44 (s, 2H), 3.74 (s, 3H), 1.47 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ
165.4, 156.0, 151.0, 149.8, 145.4, 133.9, 132.7, 127.7, 125.7, 122.5, 114.2, 73.2, 59.8, 55.7, 27.7;
HR-MS (ESI): calcd for C19H20N4O3 [M+H]+ 353.1609, found (ESI+) 353.1615.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(3-(trifluoromethyl)phenyl)
benzamide (5g). White solid, 51% yield, m.p. 65–67 ◦C; 1H NMR (400 MHz, DMSO-d6) δ
10.52 (s, 1H), 8.26 (d, J = 6.0 Hz, 2H), 8.06 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.85
(s, 1H), 7.61 (d, J = 8.4 Hz, 3H), 7.45 (d, J = 8.1 Hz, 1H), 5.73 (s, 1H), 4.45 (s, 2H), 1.48 (s,
3H); 13C NMR (100 MHz, DMSO-d6) δ 166.2, 150.9, 150.4, 145.4, 140.5, 133.3, 130.4, 129.9
(d, J = 31.7 Hz), 127.9, 125.9, 124.3, 123.3, 120.4, 116.8 (d, J = 4.3 Hz), 73.2, 59.8, 27.7; HR-MS
(ESI): calcd for C19H17F3N4O2 [M+H]+ 391.1377, found (ESI+) 391.1370.

N-(3-Fluorophenyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (5h).
White solid, 44% yield, m.p. 132–135 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.39 (s, 1H), 8.27
(s, 1H), 7.92–7.83 (m, 3H), 7.76 (d, J = 12.0 Hz, 1H), 7.63–7.53 (m, 3H), 7.38 (q, J = 7.8 Hz,
1H), 6.92 (t, J = 8.8 Hz, 1H), 5.72 (s, 1H), 4.45 (s, 2H), 1.47 (s, 3H); 13C NMR (100 MHz,
DMSO-d6) δ 166.1, 162.6 (d, J = 240.9 Hz), 150.9, 150.2, 145.4, 141.5 (d, J = 10.9 Hz), 133.5,
130.7 (d, J = 9.5 Hz), 127.9, 125.8, 116.5, 110.6 (d, J = 21.1 Hz), 107.4 (d, J = 26.2 Hz), 73.2,
59.8, 27.8; HR-MS (ESI): calcd for C18H17FN4O2 [M+H]+ 341.1409, found (ESI+) 341.1407.

N-(4-Fluorophenyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (5i).
White solid, 74% yield, m.p. 154–157 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.26 (s, 1H),
8.26 (s, 1H), 7.91–7.84 (m, 3H), 7.82–7.75 (m, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.19 (t, J = 8.9 Hz,
2H), 5.71 (s, 1H), 4.44 (s, 2H), 1.47 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 165.8, 158.8 (d,
J = 240.4 Hz), 150.9, 150.0, 145.4, 136.0, 133.7, 127.8, 125.8, 122. 7 (d, J = 7.8 Hz), 115.7 (d,
J = 22.2 Hz), 73.2, 59.8, 27.7; HR-MS (ESI): calcd for C18H17FN4O2 [M+H]+ 341.1409, found
(ESI+) 341.1405.

N-(3-Chlorophenyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (5j).
Yellow solid, 77% yield, m.p. 115–118 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.36 (s, 1H),
8.26 (s, 1H), 7.96 (s, 1H), 7.90–7.83 (m, 3H), 7.71 (d, J = 8.3 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H),
7.37 (t, J = 8.1 Hz, 1H), 7.15 (d, J = 8.1 Hz, 1H), 5.72 (s, 1H), 4.44 (s, 2H), 1.47 (s, 3H); 13C
NMR (100 MHz, DMSO-d6) δ 171.0, 166.1, 151.0, 150.3, 145.4, 141.2, 133.4, 130.8, 127.9, 125.9,
123.8, 120.2, 119.1, 73.2, 59.8, 27.8; HR-MS (ESI): calcd for C18H17ClN4O2 [M+H]+ 357.1113,
found (ESI+) 357.1105.
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N-(4-Chlorophenyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (5k).
Light yellow solid, 54% yield, m.p. 215–217 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.34
(s, 1H), 8.27 (s, 1H), 7.92–7.77 (m, 5H), 7.59 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H),
5.72 (s, 1H), 4.44 (s, 2H), 1.47 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.0, 150.9, 150.1,
145.4, 138.7, 133.6, 129.0, 127.9, 127.7, 125.8, 122.4, 73.2, 59.8, 27.8; HR-MS (ESI): calcd for
C18H17ClN4O2 [M+H]+ 357.1113, found (ESI+) 357.1104.

N-(3-Bromophenyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (5l).
White solid, 50% yield, m.p. 76–79 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.35 (s, 1H), 8.27
(s, 1H), 8.11 (s, 1H), 7.91–7.84 (m, 3H), 7.76 (d, J = 7.6 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.31
(q, J = 8.8, 8.4 Hz, 2H), 5.72 (s, 1H), 4.45 (s, 2H), 1.47 (s, 3H); 13C NMR (100 MHz, DMSO-d6)
δ 166.1, 150.9, 150.3, 145.4, 141.3, 133.4, 131.1, 127.9, 126.7, 125.8, 123.0, 121.9, 119.5, 73.2,
59.8, 27.8; HR-MS (ESI): calcd for C18H17BrN4O2 [M+H]+ 401.0608, found (ESI+) 401.0616.

N-(4-Bromophenyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (5m).
White solid, 75% yield, m.p. 219–222 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 10.33 (s, 1H), 8.27
(s, 1H), 7.91–7.83 (m, 3H), 7.77 (d, J = 8.6 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 7.53 (d, J = 8.6 Hz,
2H), 5.71 (s, 1H), 4.44 (s, 2H), 1.47 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.0, 150.9,
150.2, 145.4, 139.1, 133.6, 131.9, 127.9, 125.8, 122.7, 115.8, 73.2, 59.8, 27.8; HR-MS (ESI): calcd
for C18H17BrN4O2 [M+H]+ 401.0608, found (ESI+) 401.0614.

N-(3-Chloro-4-methoxyphenyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)
benzamide (5n). White solid, 71% yield, m.p. 175–177 ◦C; 1H NMR (400 MHz, DMSO-d6)
δ 10.20 (s, 1H), 8.26 (s, 1H), 7.93 (s, 1H), 7.90–7.84 (m, 3H), 7.67 (d, J = 8.9 Hz, 1H), 7.58
(d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.9 Hz, 1H), 5.71 (s, 1H), 4.44 (s, 2H), 3.84 (s, 3H), 1.47 (s,
3H); 13C NMR (100 MHz, DMSO-d6) δ 165.6, 151.3, 150.9, 150.0, 145.4, 133.6, 133.4, 127.8,
125.8, 122.4, 120.9, 120.7, 113.3, 73.2, 59.8, 56.7, 27.7; HR-MS (ESI): calcd for C19H19ClN4O3
[M+H]+ 387.1219, found (ESI+) 387.1213.

N-Benzyl-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (6a). White
solid, 81% yield, m.p. 131–134 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 9.05–8.98 (m, 1H), 8.24
(s, 1H), 7.84 (d, J = 7.4 Hz, 3H), 7.53 (d, J = 8.0 Hz, 2H), 7.32 (s, 5H), 5.67 (s, 1H), 4.48 (d,
J = 5.9 Hz, 2H), 4.41 (s, 2H), 1.45 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.5, 150.9,
149.6, 145.4, 140.2, 133.2, 128.8, 127.7, 127.4, 127.2, 125.7, 73.2, 59.8, 43.1, 27.7; HR-MS (ESI):
calcd for C19H20N4O2 [M+H]+ 337.1660, found (ESI+) 337.1652.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(2-methylbenzyl)benzamide (6b).
White solid, 83% yield, m.p. 118–121 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.87 (m, 1H),
8.25 (s, 1H), 7.84 (d, J = 5.7 Hz, 3H), 7.53 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 5.8 Hz, 1H), 7.16 (s,
3H), 5.67 (s, 1H), 4.45 (d, J = 5.5 Hz, 2H), 4.42 (s, 2H), 2.32 (s, 3H), 1.44 (s, 3H); 13C NMR
(100 MHz, DMSO-d6) δ 166.5, 150.9, 149.6, 145.4, 137.7, 136.0, 133.3, 130.4, 127.8, 127.4,
127.2, 126.2, 125.7, 73.2, 59.8, 41.1, 27.7, 19.3; HR-MS (ESI): calcd for C20H22N4O2 [M+H]+

351.1816, found (ESI+) 351.1808.
4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(3-methylbenzyl)benzamide (6c).

White solid, 85% yield, m.p. 55–57 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.97 (t, J = 6.3 Hz,
1H), 8.24 (s, 1H), 7.83 (d, J = 8.0 Hz, 3H), 7.52 (d, J = 8.0 Hz, 2H), 7.20 (t, J = 7.6 Hz, 1H),
7.14–7.08 (m, 2H), 7.05 (d, J = 7.5 Hz, 1H), 5.66 (s, 1H), 4.42 (dd, J = 10.8, 5.2 Hz, 1H), 2.28 (s,
3H), 1.44 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.4, 150.9, 149.6, 145.4, 140.1, 137.8,
133.3, 128.7, 128.3, 127.9, 127.4, 125.7, 124.8, 73.2, 59.8, 43.0, 27.7, 21.6; HR-MS (ESI): calcd
for C20H22N4O2 [M+H]+ 351.1816, found (ESI+) 351.1821.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(4-methylbenzyl)benzamide (6d).
White solid, 75% yield, m.p. 141–144 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.96 (t, J = 5.1 Hz,
1H), 8.24 (s, 1H), 7.82 (d, J = 9.4 Hz, 3H), 7.52 (d, J = 7.8 Hz, 2H), 7.20 (d, J = 7.8 Hz, 2H),
7.12 (d, J = 7.4 Hz, 2H), 5.66 (s, 1H), 4.42 (m, 4H), 2.27 (s, 3H), 1.44 (s, 3H); 13C NMR
(100 MHz, DMSO-d6) δ 166.4, 150.9, 149.6, 145.4, 137.2, 136.2, 133.3, 129.3, 127.7, 127.4, 125.7,
73.2, 59.8, 42.8, 27.7, 21.2; HR-MS (ESI): calcd for C20H22N4O2 [M+H]+ 351.1816, found
(ESI+) 351.1809.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(4-methoxybenzyl)benzamide (6e).
White solid, 85% yield, m.p. 115–118 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.96–8.89 (m,
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1H), 8.24 (s, 1H), 7.84–7.79 (m, 3H), 7.51 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 6.88
(d, J = 8.0 Hz, 2H), 5.66 (s, 1H), 4.40 (d, J = 6.3 Hz, 4H), 3.72 (s, 3H), 1.44 (s, 3H); 13C NMR
(100 MHz, DMSO-d6) δ 166.4, 158.7, 150.9, 149.5, 145.3, 133.3, 132.2, 129.1, 127.4, 125.7, 114.2,
73.1, 59.8, 55.6, 42.5, 27.7; HR-MS (ESI): calcd for C20H22N4O3 [M+H]+ 367.1765, found
(ESI+) 367.1761.

N-(2,3-Dimethoxybenzyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide
(6f). White solid, 58% yield, m.p. 50–52 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.90–8.83 (m,
1H), 8.24 (s, 1H), 7.83 (d, J = 7.6 Hz, 3H), 7.52 (d, J = 8.0 Hz, 2H), 7.01 (t, J = 8.1 Hz, 1H), 6.94
(d, J = 8.1 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 5.66 (s, 1H), 4.48 (d, J = 5.9 Hz, 2H), 4.41 (s, 2H),
3.80 (s, 3H), 3.77 (s, 3H), 1.44 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.5, 152.8, 150.9,
149.7, 146.6, 145.4, 133.4, 133.3, 127.4, 125.7, 124.3, 120.3, 112.0, 73.2, 60.5, 59.8, 56.2, 37.8,
27.7; HR-MS (ESI): calcd for C21H24N4O4 [M+H]+ 397.1871, found (ESI+) 397.1867.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(4-(trifluoromethyl)benzyl)
benzamide (6g). White solid, 80% yield, m.p. 63–65 ◦C; 1H NMR (400 MHz, DMSO-d6)
δ 9.17–9.07 (m, 1H), 8.25 (s, 1H), 7.84 (d, J = 6.0 Hz, 3H), 7.69 (d, J = 8.0 Hz, 2H), 7.54 (d,
J = 8.0 Hz, 4H), 5.68 (s, 1H), 4.55 (d, J = 5.8 Hz, 2H), 4.42 (s, 2H), 1.45 (s, 3H); 13C NMR
(100 MHz, DMSO-d6) δ 166.7, 150.9, 149.8, 145.4, 145.1, 133.0, 128.4, 128.0 (d, J = 31.8 Hz),
127.4, 126.2, 125.8, 125.7 (d, J = 4.0 Hz), 123.5, 73.2, 59.8, 42.8, 27.7; HR-MS (ESI): calcd for
C20H19F3N4O2 [M+H]+ 405.1533, found (ESI+) 405.1528.

N-(2-Fluorobenzyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (6h).
White solid, 57% yield, m.p. 165–167 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 9.03–8.97 (m,
1H), 8.25 (s, 1H), 7.84 (d, J = 7.4 Hz, 3H), 7.53 (d, J = 8.1 Hz, 2H), 7.33 (dt, J = 24.6, 7.2 Hz,
2H), 7.20–7.15 (m, 2H), 5.67 (s, 1H), 4.51 (d, J = 5.7 Hz, 2H), 4.41 (s, 2H), 1.44 (s, 3H); 13C
NMR (100 MHz, DMSO-d6) δ 166.6, 160.5 (d, J = 244.0 Hz), 150.9, 149.7, 145.4, 133.0, 129.9
(d, J = 4.4 Hz), 129.3 (d, J = 8.2 Hz), 127.4, 125.7, 124.8 (d, J = 3.4 Hz), 115.6 (d, J = 21.3 Hz),
73.2, 59.8, 36.9 (d, J = 4.7 Hz), 27.7; HR-MS (ESI): calcd for C19H19FN4O2 [M+H]+ 355.1565,
found (ESI+) 355.1572.

N-(4-Fluorobenzyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (6i).
White solid, 65% yield, m.p. 149–151 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 9.05–8.99 (m,
1H), 8.24 (s, 1H), 7.83 (d, J = 9.3 Hz, 3H), 7.52 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 7.0 Hz, 2H), 7.14
(t, J = 8.8 Hz, 2H), 5.67 (s, 1H), 4.45 (d, J = 5.7 Hz, 2H), 4.41 (s, 2H), 1.44 (s, 3H); 13C NMR
(100 MHz, DMSO-d6) δ 166.5, 161.7 (d, J = 242.0 Hz), 150.9, 149.6, 145.4, 136.4 (d, J = 3.1 Hz),
133.2, 129.7 (d, J = 8.0 Hz), 127.4, 125.7, 115.5 (d, J = 21.3 Hz), 73.2, 59.8, 42.4, 27.7; HR-MS
(ESI): calcd for C19H19FN4O2 [M+H]+ 355.1565, found (ESI+) 355.1569.

N-(2-Chlorobenzyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (6j).
White solid, 66% yield, m.p. 150–153 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 9.06–8.98 (m,
1H), 8.26 (s, 1H), 7.86 (d, J = 8.2 Hz, 3H), 7.55 (d, J = 8.1 Hz, 2H), 7.46 (d, J = 7.3 Hz, 1H), 7.32
(dd, J = 13.5, 7.0 Hz, 3H), 5.68 (s, 1H), 4.54 (d, J = 5.7 Hz, 2H), 4.42 (s, 2H), 1.45 (s, 3H); 13C
NMR (100 MHz, DMSO-d6) δ 166.8, 150.9, 149.8, 145.4, 136.9, 133.0, 132.4, 129.6, 129.1, 127.7,
127.5, 125.8, 73.2, 59.8, 41.0, 27.7; HR-MS (ESI): calcd for C19H19ClN4O2 [M+H]+ 371.1270,
found (ESI+) 371.1267.

N-(3-Chlorobenzyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (6k).
White solid, 82% yield, m.p. 132–135 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 9.09–9.02 (m, 1H),
8.25 (s, 1H), 7.83 (d, J = 8.3 Hz, 3H), 7.53 (d, J = 8.2 Hz, 2H), 7.35 (t, J = 7.7 Hz, 2H), 7.29 (t, J
= 8.5 Hz, 2H), 5.67 (s, 1H), 4.47 (d, J = 5.9 Hz, 2H), 4.41 (d, J = 3.7 Hz, 2H), 1.44 (s, 3H); 13C
NMR (100 MHz, DMSO-d6) δ 166.6, 150.9, 149.7, 145.4, 142.8, 133.5, 133.0, 130.7, 127.4, 127.2,
126.4, 125.8, 73.2, 59.8, 42.6, 27.7; HR-MS (ESI): calcd for C19H19ClN4O2 [M+H]+ 371.1270,
found (ESI+) 371.1265.

N-(4-Chlorobenzyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (6l).
White solid, 60% yield, m.p. 148–151 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 9.02 (m, 1H),
8.24 (s, 1H), 7.82 (d, J = 9.4 Hz, 3H), 7.52 (d, J = 8.0 Hz, 2H), 7.36 (q, J = 9.6, 8.9 Hz, 4H), 5.66
(s, 1H), 4.45 (d, J = 5.7 Hz, 2H), 4.41 (s, 2H), 1.44 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ
166.5, 150.9, 149.7, 145.4, 139.3, 133.1, 131.8, 129.6, 128.7, 127.4, 125.7, 73.2, 59.8, 42.5, 27.7;
HR-MS (ESI): calcd for C19H19ClN4O2 [M+H]+ 371.1270, found (ESI+) 371.1273.
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N-(4-Bromobenzyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (6m).
White solid, 82% yield, m.p. 74–77 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 9.05 (m, 1H), 8.23
(s, 1H), 7.85–7.78 (m, 3H), 7.51 (d, J = 8.1 Hz, 4H), 7.27 (d, J = 8.1 Hz, 2H), 5.72 (s, 1H), 4.42
(d, J = 8.3 Hz, 4H), 1.44 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.7, 150.9, 149.6, 145.3,
139.6, 133.0, 131.6, 130.0, 127.4, 125.7, 120.2, 73.2, 59.8, 42.5, 27.7; HR-MS (ESI): calcd for
C19H19BrN4O2 [M+H]+ 415.0765, found (ESI+) 415.0763.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-phenethylbenzamide (7a). White
solid, 74% yield, m.p. 155–158 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.52 (m, 1H), 8.24 (s,
1H), 7.85 (s, 1H), 7.76 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.25 (m, 5H), 5.65 (s, 1H),
4.40 (s, 2H), 3.48 (q, J = 8.0, 7.4 Hz, 2H), 2.84 (t, J = 7.5 Hz, 2H), 1.44 (s, 3H); 13C NMR
(100 MHz, DMSO-d6) δ 166.5, 150.9, 149.4, 145.4, 140.1, 133.5, 129.2, 128.9, 127.3, 126.6, 125.6,
73.1, 59.8, 41.4, 35.6, 27.6; HR-MS (ESI): calcd for C20H22N4O2 [M+H]+ 351.1816, found
(ESI+) 351.1821.

4-(2-Hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)-N-(4-methoxyphenethyl)benzamide
(7b). White solid, 62% yield, m.p. 138–141 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.53–8.46
(m, 1H), 8.24 (s, 1H), 7.85 (s, 1H), 7.76 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.15
(d, J = 8.1 Hz, 2H), 6.86 (d, J = 8.2 Hz, 2H), 5.66 (s, 1H), 4.41 (s, 2H), 3.71 (s, 3H), 3.43 (q,
J = 6.8 Hz, 2H), 2.77 (t, J = 7.6 Hz, 2H), 1.44 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.5,
158.2, 150.9, 149.4, 145.4, 133.5, 131.9, 130.1, 127.3, 125.6, 114.3, 73.1, 59.8, 55.5, 41.6, 34.7,
27.6; HR-MS (ESI): calcd for C21H24N4O3 [M+H]+ 381.1922, found (ESI+) 381.1929.

N-(2-Fluorophenethyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (7c).
Light pink solid, 73% yield, m.p. 149–151 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.55 (m,
1H), 8.24 (s, 1H), 7.85 (s, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.28 (m, 2H),
7.14 (q, J = 8.8, 7.4 Hz, 2H), 5.65 (s, 1H), 4.40 (s, 2H), 3.48 (q, J = 6.7 Hz, 2H), 2.88 (t, J = 7.5
Hz, 2H), 1.43 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.5, 161.3 (d, J = 243.3 Hz), 150.9,
149.4, 145.3, 133.5, 131.7 (d, J = 4.9 Hz), 128.8 (d, J = 8.0 Hz), 127.2, 126.6 (d, J = 16.0 Hz),
125.6, 124.9 (d, J = 3.2 Hz), 115.6 (d, J = 21.9 Hz), 73.1, 59.8, 41.2, 29.1, 27.6; HR-MS (ESI):
calcd for C20H21FN4O2 [M+H]+ 369.1722, found (ESI+) 369.1731.

N-(4-Fluorophenethyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (7d).
White solid, 74% yield, m.p. 160–162 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.50 (m, 1H), 8.24
(s, 1H), 7.84 (s, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.27 (t, J = 7.0 Hz, 2H),
7.11 (t, J = 8.7 Hz, 2H), 5.65 (s, 1H), 4.40 (s, 2H), 3.46 (q, J = 6.8 Hz, 2H), 2.83 (t, J = 7.5 Hz,
2H), 1.44 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.5, 161.3 (d, J = 241.3 Hz), 150.9, 149.4,
145.3, 136.2 (d, J = 3.0 Hz), 133.5, 130.9 (d, J = 7.9 Hz), 127.3, 125.6, 115.5 (d, J = 21.0 Hz),
73.1, 59.8, 41.3, 34.7, 27.6; HR-MS (ESI): calcd for C20H21FN4O2 [M+H]+ 369.1722, found
(ESI+) 369.1719.

N-(4-Chlorophenethyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide
(7e). White solid, 66% yield, m.p. 185–188 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.50 (m, 1H),
8.24 (s, 1H), 7.84 (s, 1H), 7.74 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.1 Hz,
2H), 7.26 (d, J = 8.1 Hz, 2H), 5.65 (s, 1H), 4.40 (s, 2H), 3.47 (q, J = 6.8 Hz, 2H), 2.83 (t, J = 7.3
Hz, 2H), 1.43 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.5, 150.9, 149.4, 145.3, 139.1, 133.5,
131.1, 128.7, 127.2, 125.6, 73.1, 59.8, 41.1, 34.8, 27.6; HR-MS (ESI): calcd for C20H21ClN4O2
[M+H]+ 385.1426, found (ESI+) 385.1422.

N-(2-Bromophenethyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (7f).
White solid, 77% yield, m.p. 57–59 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.55 (m, 1H), 8.24
(s, 1H), 7.84 (s, 1H), 7.75 (d, J = 8.1 Hz, 2H), 7.60 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.1 Hz, 2H),
7.32 (d, J = 6.8 Hz, 2H), 7.16 (t, J = 8.0 Hz, 1H), 5.65 (s, 1H), 4.40 (s, 2H), 3.50 (q, J = 6.8
Hz, 2H), 2.98 (t, J = 7.3 Hz, 2H), 1.44 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 166.6, 150.9,
149.4, 145.4, 139.1, 133.5, 133.0, 131.6, 129.0, 128.3, 127.3, 125.6, 124.5, 73.1, 59.8, 41.1, 35.8,
27.6; HR-MS (ESI): calcd for C20H21BrN4O2 [M+H]+ 429.0921, found (ESI+) 429.0927.

N-(4-Bromophenethyl)-4-(2-hydroxy-1-(1H-1,2,4-triazol-1-yl)propan-2-yl)benzamide (7g).
White solid, 75% yield, m.p. 188–190 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.53–8.47 (m,
1H), 8.24 (s, 1H), 7.84 (s, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.53–7.45 (m, 4H), 7.20 (d, J = 8.1 Hz,
2H), 5.65 (s, 1H), 4.40 (s, 2H), 3.47 (q, J = 6.9 Hz, 2H), 2.82 (t, J = 7.2 Hz, 2H), 1.43 (s, 3H); 13C
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NMR (100 MHz, DMSO-d6) δ 166.5, 150.9, 149.4, 145.4, 139.5, 133.5, 131.7, 131.5, 127.3, 125.7,
119.7, 73.1, 59.8, 41.0, 34.9, 27.6; HR-MS (ESI): calcd for C20H21BrN4O2 [M+H]+ 429.0921,
found (ESI+) 429.0917.

2.2.2. Synthesis of Mefentrifluconazole

Mefentrifluconazole was synthesized according to the reported methods [31–33]. It
was smoothly prepared from 1-(4-fluoro-2-(trifluoromethyl)phenyl)ethenone as a raw
material via etherification, epoxidation, and ring-opening reactions.

2.3. In Vitro Target Compounds against Seven Phytopathogenic Fungi

We selected seven common and representative phytopathogenic fungi/oomycete that
are harmful to crops (cereals, fruits, and vegetables) and have a range of impacts to test the
newly synthesized compounds, including Pyricularia oryzae (P. oryzae), Sclerotinia sclerotio-
rum (S. sclerotiorum), Fusarium oxysporium f. sp. Cucumeris (F. oxysporium f. sp. Cucumeris),
Cercospora arachidicola Hori (C. arachidicola Hori), P. piricola, Rhizoctonia cerealis (R. cerealis),
and Phytophthora capsici (P. capsici), with the agricultural fungicide mefentrifluconazole
as the control [34–38]. The in vitro antifungal/anti-oomycete activity test was performed
using the mycelial growth rate method to evaluate the activity of the compounds. The
literature was provided in the Supporting Information.

2.4. Calculation Procedures for Molecular Docking Research

The 3D crystal structure of C-14α demethylase (PDB code: 3L4D) was downloaded
from the protein data bank (PDB). Detailed procedures are provided in the support
information.

3. Results
3.1. Chemicals

The synthesis of intermediates and target compounds was performed as shown in
Scheme 1. The intermediate 2, 3, and 4 were prepared with a similar method described
by Theodorou and Gebhardt [32,39]. Intermediate 4 was reacted with various substituted
amines in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
(EDCI) and 1-hydroxybenzotriazole (HOBt) to obtain the target compounds 5–7 [40]. The
chemical structures of all target compounds were confirmed by 1H and 13C NMR and
HRMS and characterization data are provided in the Supplementary Materials.

3.2. In Vitro Antifungal/Anti-Oomycete Activities of Target Compounds 5a–5n, 6a–6m, and
7a–7g

A series of novel 1,2,4-triazole derivatives were tested for in vitro antifungal/anti-
oomycete activity against seven phytopathogenic fungi at 50 µg/mL. The results were
compared to the commercialized fungicide mefentrifluconazole, as indicated in Table 1.
According to the results in Table 1, compounds 5k, 6h, and 7d showed higher antifungal
activities compared to mefentrifluconazole against P. piricola (80% versus 54%, 92% versus
54%, and 66% versus 54% inhibition, respectively). For P. capsici, most of the compounds
especially compounds 5j, 6k, and 6m, showed much better anti-oomycete activity (90%,
73%, and 73%, respectively) than that of mefentrifluconazole (32%).
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Table 1. In vitro antifungal/anti-oomycete activities of the compounds 5a–5n, 6a–6m, 7a–7m, and
mefentrifluconazole at 50 µg/mL 1.

Compound
Inhibition Rate (%)

P.o. 2 S.s. 2 F.c. 2 C.h. 2 P.p. 2 R.c. 2 P.c. 2

5a 25 ± 3 57 ± 3 28 ± 3 5 ± 1 48 ± 2 17 ± 3 37 ± 2
5b 25 ± 3 59 ± 2 14 ± 3 12 ± 2 54 ± 1 14 ± 2 59 ± 3
5c 25 ± 3 52 ± 2 24 ± 3 0 ± 0 48 ± 2 21 ± 2 44 ± 1
5d 25 ± 3 61 ± 1 8 ± 3 12 ± 2 48 ± 2 14 ± 2 59 ± 3
5e 50 ± 3 63 ± 3 14 ± 3 10 ± 1 54 ± 1 18 ± 2 54 ± 2
5f 13 ± 3 52 ± 2 14 ± 3 12 ± 2 48 ± 2 20 ± 3 24 ± 1
5g 38 ± 3 50 ± 3 14 ± 3 7 ± 1 48 ± 2 17 ± 3 71 ± 2
5h 50 ± 3 61 ± 1 18 ± 3 27 ± 1 35 ± 1 44 ± 3 54 ± 2
5i 25 ± 3 37 ± 3 22 ± 3 2 ± 1 35 ± 1 20 ± 3 17 ± 2
5j 44 ± 1 52 ± 2 24 ± 3 10 ± 1 37 ± 2 17 ± 3 90 ± 2
5k 25 ± 3 50 ± 3 26 ± 3 24 ± 1 80 ± 2 40 ± 3 22 ± 3
5l 50 ± 3 65 ± 2 28 ± 3 49 ± 1 44 ± 1 20 ± 3 68 ± 1

5m 25 ± 3 44 ± 3 18 ± 3 10 ± 1 39 ± 2 28 ± 2 12 ± 2
5n 13 ± 3 50 ± 3 18 ± 3 17 ± 2 51 ± 2 34 ± 2 22 ± 3
6a 13 ± 3 46 ± 2 14 ± 3 12 ± 2 48 ± 2 34 ± 2 37 ± 2
6b 25 ± 3 72 ± 2 16 ± 3 7 ± 1 48 ± 2 58 ± 2 17 ± 2
6c 13 ± 3 65 ± 2 16 ± 3 7 ± 1 48 ± 2 25 ± 2 71 ± 2
6d 63 ± 3 54 ± 1 12 ± 3 5 ± 1 48 ± 2 17 ± 3 32 ± 2
6e 25 ± 3 37 ± 3 18 ± 3 17 ± 2 48 ± 2 26 ± 1 42 ± 3
6f 25 ± 3 48 ± 1 24 ± 3 10 ± 1 46 ± 2 17 ± 3 22 ± 3
6g 50 ± 3 37 ± 3 18 ± 3 0 ± 0 52 ± 1 26 ± 1 71 ± 2
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Table 1. Cont.

Compound
Inhibition Rate (%)

P.o. 2 S.s. 2 F.c. 2 C.h. 2 P.p. 2 R.c. 2 P.c. 2

6h 25 ± 3 67 ± 1 30 ± 3 24 ± 1 92 ± 1 20 ± 3 24 ± 1
6i 25 ± 3 48 ± 1 18 ± 3 7 ± 1 42 ± 1 31 ± 2 37 ± 2
6j 13 ± 3 76 ± 2 12 ± 3 12 ± 2 39 ± 2 20 ± 3 44 ± 1
6k 44 ± 1 63 ± 3 8 ± 3 7 ± 1 53 ± 2 17 ± 3 73 ± 2
6l 38 ± 3 30 ± 1 12 ± 3 7 ± 1 44 ± 1 19 ± 1 61 ± 3

6m 13 ± 3 22 ± 2 0 ± 0 5 ± 1 42 ± 1 17 ± 3 73 ± 2
7a 38 ± 3 44 ± 3 14 ± 3 7 ± 1 54 ± 1 28 ± 2 24 ± 1
7b 13 ± 3 44 ± 3 16 ± 3 2 ± 1 42 ± 1 20 ± 3 17 ± 2
7c 6 ± 1 33 ± 2 14 ± 3 7 ± 1 48 ± 2 19 ± 1 32 ± 2
7d 6 ± 1 44 ± 3 8 ± 3 5 ± 1 66 ± 1 17 ± 3 37 ± 2
7e 50 ± 3 54 ± 1 12 ± 3 5 ± 1 54 ± 1 22 ± 1 46 ± 1
7f 6 ± 1 37 ± 3 18 ± 3 24 ± 1 44 ± 1 46 ± 1 24 ± 1
7g 6 ± 1 44 ± 3 8 ± 3 2 ± 1 48 ± 2 18 ± 2 24 ± 1

mefentrifluconazole 100 96 ± 2 70 ± 3 78 ± 3 54 ± 1 100 32 ± 2
1 The experiments were repeated three times. All results are expressed as mean ± SD. 2 P.o. = Pyricularia oryzae;
S.s. = Sclerotinia sclerotiorum; F.c. = Fusarium oxysporium f. sp. cucumeris; C.h. = Cercospora arachidicola Hori; P.p. =
Physalospora piricola; R.c. = Rhizoctonia cerealis; P.c. = Phytophthora capsici.

To understand the antifungal/anti-oomycete activities of compounds 5j, 6h, 6k, and
6m more clearly and intuitively, the half maximal effective concentration (EC50) value of
compounds 5j, 6h, 6k, and 6m were determined and the results are shown in Table 2. Com-
pound 6h (EC50 = 13.095 µg/mL) showed about three times higher potency than mefentri-
fluconazole (EC50 = 39.516 µg/mL). Compounds 5j, 6k, and 6m exhibited excellent in vitro
activity effects against P. capsici, with EC50 values of 17.362, 29.970, and 33.152 µg/mL,
superior to the intrinsic activity of mefentrifluconazole (EC50 = 75.433 µg/mL).

Table 2. In vitro EC50 value (µg/mL) of selected compounds against P. piricola and P. capsici 1.

Strain Compound EC50 (µg/mL) 95% Confidence
Interval

Regression
Equation R2

P. piricola 6h 13.095 11.423–15.026 y = 3.762x − 4.203 0.988
mefentrifluconazole 39.516 33.822–46.867 y = 3.147x − 5.024 0.942

P. capsici 5j 17.362 11.664–27.413 y = 4.008x − 4.968 0.962
6k 29.970 20.794–44.597 y = 3.256x − 4.808 0.955
6m 33.152 28.925–38.217 y = 3.745x − 5.694 0.984

mefentrifluconazole 75.433 62.167–96.948 y = 3.000x − 5.632 0.980
1 The experiments were repeated three times.

3.3. Molecular Docking Research

To further elucidate the possible mechanism of the interaction between designed 1,2,4-
triazole derivatives and CPY51, AutoDock Vina 1.1.2 was used for molecular docking [41].
It can be proven that there are some H-bond interactions and strong binding affinity
between 1,2,4-triazole derivatives 5j and 6h containing amide fragments and CPY51.

4. Discussion
4.1. Synthesis

According to a similar approach reported, the 4-position acetyl of methyl 4-acetylbenzoate
was epoxidized with trimethylsulfonium iodide in the presence of NaH to obtain com-
pound 2 and then through a substitution reaction with 1,2,4-triazole in DMF to obtain
compound 3. The key intermediate 4 was obtained from 3 through hydrolysis in the pres-
ence of sodium hydroxide, which was amidated with aniline, benzylamine, and phenethy-
lamine derivatives in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
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hydrochloride (EDCI) and 1-hydroxybenzotriazole (HOBt) to obtain the target compounds
5–7 (Scheme 1) [40]. The agricultural fungicide mefentrifluconazole was synthesized accord-
ing to the procedure reported [32]. With 1-(4-Fluoro-2-(trifluoromethyl)phenyl)ethanone
as the starting material, a series of reactions by substitution, epoxidation, and triazole
substitution were performed and mefentrifluconazole was finally synthesized. Aniline,
benzylamine, and phenethylamine derivative fragments were mainly introduced into the
isopropanol triazole skeleton by the active structure splicing strategy to achieve structural
diversity in the derivation of isopropanol triazole compounds.

The structures of all compounds were characterized and confirmed by 1H NMR, 13C
NMR, and HRMS. Mefentrifluconazole is consistent with the literature report. In the 1H
NMR spectra of target compounds, the following can be said: (i) for compounds 5a–5n, the
characteristic amide group proton signal can be found around 10.0 ppm as a single peak; (ii)
for compounds 6a–6m, the characteristic amide group proton signal can be found around
9.0 ppm as multiple peaks and the double peak at around 4.0 ppm was assigned as the CH2
on the benzyl; and (iii) for compounds 7a–7g, the characteristic amide group proton signal
can be found around 8.5 ppm as a multiple peak and the triple peak at around 2.8 ppm
and the quadruple peak at around 3.5 ppm were assigned as the CH2 on the phenylethyl.
In the 13C NMR spectra, the single peak around 42 ppm was assigned as the CH2 on the
benzyl and the single peak around 34 ppm and 41 ppm were assigned as the CH2 on
the phenylethyl. These spectroscopic features confirmed that aniline, benzylamine, and
phenethylamine derivative fragments were successfully introduced into the isopropanol
triazole skeleton.

4.2. Structure–Activity Relationship (SAR) Analysis for the Antifungal/Anti-Oomycete Activity

The agricultural fungicide mefentrifluconazole was chosen as one positive control.
The preliminary in vitro antifungal activities of target compounds 5a–5n, 6a–6m, and 7a–7g
are shown in Table 1 and the EC50 values of the selected compounds are shown in Table 2.

As shown in Table 1, most target compounds showed poor antifungal activities against
P. oryzae, F. oxysporium f. sp. Cucumeris, C. arachidicola Hori, and R. cerealis at the con-
centration of 50 µg/mL. For S. sclerotiorum, only two compounds 6b and 6j displayed
good fungicidal activities (more than 70% inhibition rate), which was much lower than
mefentrifluconazole (96%). To our excitement, most of the compounds had similar or better
antifungal activities compared to mefentrifluconazole against P. piricola inhibitory activity,
especially compounds 5k, 6h, and 7d, which showed higher antifungal activities compared
to mefentrifluconazole (80% versus 54%, 92% versus 54%, and 66% versus 54% inhibition,
respectively). Most compounds displayed good anti oomycete activities against P. capsici,
with compounds 5g, 5j, 6c, 6g, 6k, and 6m showing greatly superior inhibition rates (71%,
90%, 71%, 71%, 73%, and 73%, respectively) with mefentrifluconazole (32%).

For the antifungal effect of different substituted aniline derivatives against P. oryzae, S.
sclerotiorum, and P. capsici, the meta substitution on the benzene ring was better than that of
the para substitution. For example, compound 5e, bearing a methoxy at the meta position
of the phenyl ring, showed much higher antifungal activity than compound 5f containing
a para substitution. This effect could also be verified by the results that compounds 5h, 5j,
and 5l were more active than compounds 5i, 5k, and 5m, respectively.

In terms of anti-oomycete activities against P. capsici, substituents on the benzene
ring of benzylamine derivatives, whether electron-withdrawing groups [compounds 6b
(2-CH3C6H4), 6c (3-CH3C6H4), and 6d (4-CH3C6H4)] or electron-rich groups [compounds
6j (2-ClC6H4), 6k (3-ClC6H4), and 6l (4-ClC6H4)], the meta substitution was better than that
of the para substitution, which was superior to that of the ortho substitution. For aniline
derivatives, position 3 of the benzene ring was substituted with –Cl and the corresponding
compound 5j exhibited optimal anti-oomycete activity. In terms of antifungal activities
against S. sclerotiorum, substituents on the benzene ring of benzylamine derivatives, whether
electron-withdrawing groups [compounds 6b (2-CH3C6H4), 6c (3-CH3C6H4), and 6d (4-
CH3C6H4)] or electron-rich groups [compounds 6j (2-ClC6H4), 6k (3-ClC6H4), and 6l
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(4-ClC6H4)], the ortho substitution was better than that of the meta substitution, which
was superior to that of the para substitution. For P. piricola, position 2 of the benzyl ring
was substituted with –F and the corresponding compound 6h exhibited optimal antifungal
activity. Therefore, it is further shown that the ortho substitution on the benzyl ring is
beneficial for antifungal activity.

As shown in Table 2, compound 6h (EC50 = 13.095 µg/mL) showed about three times
higher potency than mefentrifluconazole (EC50 = 39.516 µg/mL). It is further shown that
compound 6h has an excellent antifungal effect against P. piricola. For P. capsici, even
though compounds 5j, 6k, and 6m only exhibited moderate anti oomycete activity, with
EC50 values of 17.362, 29.970, and 33.152 µg/mL, respectively, they were still much better
than those of mefentrifluconazole (EC50 = 75.433 µg/mL). Remarkably, the substitution of
–Cl in the meta position of the benzene ring may be an important moiety to enhance the
anti-oomycete activity of the compounds.

4.3. Molecular Docking

Since the newly synthesized 1,2,4-triazole derivatives were derived from mefentri-
fluconazole, which can be combined with the iron atom in the heme-iron active center of
14α-demethylase (CYP51), the interaction between the selected compounds and CYP51
was further studied. To elucidate the possible mechanism of designed compounds, com-
pounds 5i, 5j, 6h, and mefentrifluconazole were selected for the docking simulation and
the model was generated based on the reported crystal complex (PDB code: 3L4D) [42].
Major hydrogen bonds between the compounds and the amino acid residues are shown in
Figure 3. In the binding modes of 5j, the oxygen of the hydroxyl group formed a hydrogen
bond (2.6 Å) with the NH of amino acid residue ARG-227, the H of the hydroxyl group
formed a hydrogen bond (2.0 Å) with the oxygen of amino acid residue ALA-201, and the
H of the amide formed a hydrogen bond (2.1 Å) with the oxygen of amino acid residue
GLU-204 (Figure 3B). In the docking models with 6h, the oxygen of the hydroxyl group
formed a hydrogen bond with the NH of amino acid residue LYS-361 and the oxygen
of the amide and the NH of amino acid residue TRP-216 formed a hydrogen bond with
corresponding binding distances of 2.4 and 2.2, respectively (Figure 3C). In the binding
modes of mefentrifluconazole, the H of the hydroxyl group formed a hydrogen bond
(2.8 Å) with the oxygen of amino acid residue GLU-204 and the oxygen on the ether group
formed a hydrogen bond (2.6 Å) with the OH of amino acid residue THR-458 (Figure 3D).
Compounds 5j, 6h, and mefentrifluconazole are similar in that both have active sites on the
hydroxyl group. However, compound 5i only formed a hydrogen bond (2.8 Å) between
the oxygen of the amide and the NH of amino acid residue HIS-293 (Figure 3A). These
results may partly explain the differences in the aforementioned antifungal phenotypic
profiles, with the introduction of carboxamide group increasing its antifungal activity but
the hydroxyl group remaining the main active group interacting with CPY51.

In summary, a series of novel 1,2,4-triazole derivatives containing carboxamide frag-
ments were designed and synthesized. Their fungicidal activities against seven kinds of
phytopathogenic fungi at 50 µg/mL were evaluated. The bioassay results showed that most
compounds had better inhibitory effects against P. piricola, especially compounds 5k, 6h,
and 7d, which showed higher antifungal activities compared to commercial DMI fungicide
mefentrifluconazole (80 versus 54%, 92 versus 54%, and 66 versus 54% inhibition, respec-
tively). Compound 6h (EC50 = 13.095 µg/mL) showed about three times higher potency
than mefentrifluconazole (EC50 = 39.516 µg/mL). For P. capsici, most of the compounds
showed good anti-oomycete activity, especially compounds 5j, 6k, and 6m (90, 73, and
73%, respectively), which showed much better inhibition than mefentrifluconazole (32%).
Of these, compound 5j (EC50 = 17.362 µg/mL) showed about four times higher potency
than mefentrifluconazole (EC50 = 75.433 µg/mL). Molecular docking analysis revealed
that compounds 5j and 6h possessed a stronger affinity to CYP51. All of these results
showed that compound 6h was a novel and promising candidate as a fungicide for the
control of apple ring rot and compound 5j was a candidate for the control of oomycetes.
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Remarkably, the chemical structure of mefentrifluconazole contains a chiral center with a
pair of enantiomers and further study of its stereoselective differences from the chiral level
will be a key direction for future research.
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