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Abstract: Candida infections (candidiasis) are the most prevalent opportunistic fungal infection
on humans and, as such, a major public health problem. In recent decades, candidiasis has been
associated to Candida species other than Candida albicans. Moreover, biofilms have been considered
the most prevalent growth form of Candida cells and a strong causative agent of the intensification of
antifungal resistance. As yet, no specific resistance factor has been identified as the sole responsible
for the increased recalcitrance to antifungal agents exhibited by biofilms. Instead, biofilm antifungal
resistance is a complex multifactorial phenomenon, which still remains to be fully elucidated and
understood. The different mechanisms, which may be responsible for the intrinsic resistance of
Candida species biofilms, include the high density of cells within the biofilm, the growth and nutrient
limitation, the effects of the biofilm matrix, the presence of persister cells, the antifungal resistance
gene expression and the increase of sterols on the membrane of biofilm cells. Thus, this review intends
to provide information on the recent advances about Candida species biofilm antifungal resistance
and its implication on intensification of the candidiasis.
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1. Introduction

During the last two decades, the occurrence of Candida species infections has been increasing and
becoming more difficult to treat due to the growth of immunogenic diseases, the disproportionate use
of immunosuppressive drugs, malnutrition, endocrine disorders, the widespread use of indwelling
medical devices, broad spectrum antibiotics, aging and an increase in patient’s population [1,2]. A fairly
small number of Candida species are pathogenic for humans, causing superficial and deep-seated
mycoses, disseminated worldwide [3]. Nonetheless, Candida is becoming a significant clinical problem
that has taken the opportunity to create infections, called candidiasis [1–3].

Candida albicans continues to be the most prevalent and problematic of all Candida species.
However, with the development of molecular identification methods, the number of other Candida
species, non-Candida albicans Candida (NCAC) species, identified as implicated in candidiasis, is now
superior. This group includes, among others, Candida glabrata, Candida tropicalis, Candida parapsilosis
and Candida krusei species [4–6]. The pathogenicity of Candida species is attributed to certain virulence
factors, such as the ability to evade host defences, adhesion and biofilm formation (on host tissues and
or on medical devices), and the production of tissue-damaging hydrolytic enzymes, such as proteases,
phospholipases and hemolysins [7]. Biofilms are biological communities with an extraordinary degree
of organization, in which Candida cells form structured, coordinated, and functional communities,
embedded in a self-secreted extracellular matrix. Biofilm production is also related to a high level of
antifungal resistance of the associated microorganisms. Moreover, the ability of Candida species to
form drug-resistant biofilms is an important factor in their contribution to human disease [8]. In the
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widely held view of Candida microbial biofilms [9] sessile cells within biofilms are less susceptible to
antifungal agents than planktonic cells [10], since the development of drug resistance has been linked
with, for example, an increase in the biofilm maturation process.

Thus, the morbidity and mortality associated with candidiasis is still very high, even using
the actual antifungal drugs [8,11]. Annually, 50% of adults and up to 30% of children [11,12] die of
candidiasis, most of them related with biofilms. Furthermore, in fact, an estimated 100,000 deaths are
caused by biofilm infections and about $6.5 billion are spent per year in the United States (US) in order
to treat them. In fact, biofilm infections have been assumed as a serious public health problem with a
high economic impact [13,14]. Thus, this review intends to provide information on the recent advances
about Candida species biofilm antifungal resistance mechanisms and its implication on intensification
of the candidiasis.

2. Candida Biofilms: A Real Problem

2.1. Biofilm Characteristics

The first documented scientific report about a biofilm was written in 1683 by Antoni van
Leeuwenhoek in the Royal Society of London [15,16]. Since then, the definition of biofilm has evolved
to what is now described as a community of adherent cells enclosed in an exopolysaccharide matrix,
with properties distinct from those of free-floating (planktonic) cells [14,17–19]. Biofilms are often
found attached to solid surfaces, but they can also be formed in liquid–air interfaces. The most
common environments colonized by biofilms include aquatic environments, artificial structures,
biomaterials, and plant and mammalian tissues. Within these environments, biofilms may be composed
of a single-species population or a community derived from multiple species [6,17]. In both cases,
biofilms are thought to provide ecologic advantages such as protection from the environment, nutrient
availability, metabolic cooperation, and acquisition of new traits [19,20]. Perhaps because of these,
biofilms are notoriously difficult to eliminate and are a source of many recalcitrant infections [6].
As such, biofilms are highly relevant to public health. Indeed, the National Institutes of Health
signposts that pathogenic biofilms are responsible, directly or indirectly, for over 80% of all microbial
infections [13,19,21], which can range from superficial mucosal (75% of women experience a vaginal
yeast infection at least once in their lifetime) or dermal infections, to more serious spread infections
with high mortality rates (47% in various cases) [13,21].

Candida species biofilms are among the most common in clinical settings, and their main
characteristics, which are dependent of the Candida species, can be found in Table 1. Candida commonly
adheres to biomedical devices, growing as a resilient biofilm capable of withstanding extraordinarily
high antifungal concentrations [20,22]. The medical device most commonly infected by Candida biofilms
is the central venous catheter (CVC), which is used to administer fluids and nutrients and/or cytotoxic
drugs. The infusion fluid itself, or the catheter core, can be contaminated but, more frequently, Candida
can have origin on the patient’s skin or on the hands of nursing staff (the distal tip of the catheter
can be contaminated at the time of insertion or, instead, organisms can migrate down the catheter
wound) [11,22–24]. Each year, in the US, more than five million CVCs are placed and, even with new
improved clinical security procedures, biofilm infection still occurs in over 50% of these catheters [21].
Recurrently encountered and sometimes difficult to eradicate, superficial Candida infections related
with medical devices are much less serious. The most common cases are those related with oral mucosa,
e.g., denture stomatitis and silicone rubber voice prostheses [4,25,26]. Non-medical-device-related
infections such as Candida endocarditis can result from the formation of biofilms on damaged vascular
endothelium of native heart valves in patients with pre-existing cardiac disease [21]. Several authors
reported formation of Candida biofilms on different surfaces, which are summarized in Table 2.
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Table 1. Characteristics of the most common Candida species biofilms.

Candida
Species

Biofilm Forming
Capacity Biofilm Characteristics Refs.

Candida
albicans +++++ Basal blastospore layer with a dense overlying

matrix composed of exopolysaccharides and hyphae. [27,28]

Candida
dubliniensis

++/+++
Chains of cells with thin extracellular
matrix material. [29,30]

Hhigh variability among clinical isolates.

Candida
glabrata ++/+++

Forms considerably less biofilm than C. albicans. [6,28]

High in both protein and carbohydrate content.

Candida
krusei ++++ Thick multilayered biofilm of pseudohyphal forms

embedded within the polymer matrix. [31]

Candida
parapsilosis +++

Clumped blastospores and less volume.

[23,27,28,30,32]Large amounts of carbohydrate with less protein.

High variability among clinical isolates.

Candida
tropicalis +++

Chains of cells with thin, but large, amounts of
extracellular matrix material. [24,28]

Low amounts of carbohydrate and protein.

+++ Normal to high; ++++ High; +++++ Very high biofilm formers.

Table 2. Localization, condition/disease and most common species found on several Candida biofilms.

Biofilm Condition/Disease Most Common
Candida Species Refs.

Medical Devices

Endocarditis Candida albicans

[14,16–33]

Total parenteral nutrition Candida glabrata

Prosthetic joints Candida tropicalis

Peritoneal dialysis Candida parapsilosis

Cannulation

Ventriculoperitoneal shunts

Prosthetic knees

Hip joints

Breast implants

Bioprosthetic heart valves

Catheter-related disease: urinary catheter, central
venous catheter, intravenous catheter

Oral

Caries Candida albicans

[10,24,33–46]

Periodontal disease Candida glabrata

Endodontic infection Candida dubliniensis
Candida tropicalis

Several mucosal infections Candida krusei

Candida parapsilosis

Gastrointestinal
(GI) and
Urinary Tract

Feeding tubes for enteral nutrition Candida albicans

[47–59]

Ulcerative colitis Candida tropicalis

GI candidiasis

Pyelonephritis

Cystitis

Prostatitis

Intrauterine contraceptives
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Table 2. Cont.

Biofilm Condition/Disease Most Common
Candida Species Refs.

Upper Airways

Rhinosinusitis Candida albicans

[60–85]Ventilator-associated Candida glabrata

Pneumonia Candida krusei

Lower Airways
Cystic Fibrosis

Candida albicans [86–99]
Allergic bronchopulmonary diseases

Wounds

Diabetic foot ulcer Candida albicans

[100–103]

Non-healing surgical wounds Candida glabrata

Chronic wound infections

Pressure ulcers

Venous leg ulcers

2.2. Candida Biofilms and Resistance Mechanisms

The major classes of antifungal drugs used for treatment of Candida species infections are
azoles, polyenes, and echinocandins [86,104–108]. Azoles (e.g., fluconazole, voriconazole and
posaconazole) possess a fungistatic effect, blocking ergosterol synthesis, targeting the enzyme
lanosterol 14α-demethylase (related to the ERG11 gene) and leading to an accumulation of toxic
sterol pathway intermediates. Polyenes (e.g., amphotericin B and nystatin) are fungicidal, intercalating
into membranes containing ergosterol, creating pores that destroy the proton gradient, which result in
the outflow of the cytoplasm and other cell contents. Echinocandins (e.g., caspofungin, micafungin
and anidulafungin) are also a fungicidal, targeting the synthesis of 1,3-β-glucan, a component of
the Candida species cell wall. It is also important to address that preferably to azoles, the use of
echinocandins and polyenes is recommended if the patient had prior azoles exposure and if the
infection is markedly severe for patients infected with C. glabrata, which is consider as generally very
azole-resistant. Echinocandins are, most frequently and according to the latest guidelines, the first
antifungal drug choice in these severe cases of candidemia [109,110]. There is some evidence that
suggests that prophylactic use of fluconazole may be advantageous for preterm neonates, transplant
recipients, intensive care unit patients, and other high-risk patient populations [111–116]. Though,
due to some controversies, this is not a standard for all hospitals [21].

Initial studies examined the impact of known mechanisms to play a role in drug resistance during
planktonic Candida cells growth [7,117–119]. As described, acquired planktonic cell resistance has
been linked to increased efflux pump activity, mutations in genes encoding drug target enzymes
and alterations in the composition of both the cell membrane and the cell wall [117]. The Candida
biofilm resistance phenomenon was for the first time demonstrated in 1995 for C. albicans by
Hawser and Douglas (1995) [6]. After that, the ability of Candida species biofilms to survive
extraordinarily to high antifungal concentrations has been the subject of numerous investigations for
many researchers [7,117,118,120,121]. So, in the last decade, additional investigations began to focus
on the role of biofilm-specific traits. These studies have examined the influence of high cell density,
growth rate reduction, nutrient limitation, matrix extracellular production, presence of persister cells,
gene expression alterations and sterols content increase on Candida membrane cells. The role of these
mandatory factors is reviewed below and is schematized on Figure 1.
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2.2.1. Impact of Candida Cells Density, Nutrient and Growth Limitation

An important biofilm-specific trait suspected to influence antifungal resistance is the high
relative concentration of Candida cells into biofilm communities comparatively to the great majority
of planktonic conditions [122,123]. Perumal and Chaffin, (2007) [122] after studying the cells density
effect on antifungal treatment, observed that the azole antifungals’ tolerance to planktonic cell cultures
was effectively lower when compared to intact and/or disrupt biofilm communities. Candida albicans
biofilm formation is associated with the dimorphic switch between yeast and hyphal growth, and
biofilms of this species generically have two distinct layers: a thin, basal yeast layer and a thickener
compact hyphal layer [4]. In contrast, C. parapsilosis biofilms tend to be thinner, less structured, and
consist almost exclusively of aggregates [29,124]. Candida tropicalis biofilms consist of a dense network
of yeast cells with evident different filamentous morphologies and C. glabrata biofilms are structured
on multilayers of blastospores with high cohesion among them [124]. In general, C. glabrata biofilms
possessed higher density of cells comparatively to C. tropicalis and C. parapsilosis biofilms [125], which
may be implicated on the usual highest resistance of C. glabrata biofilms to antifungal azoles and/or
amphotericin B [7,117,120].

The well-structured biofilms layers open another hypothesis for Candida species antifungal
resistance, that is, that cells placed in deeper layers of the biofilm grow slower owing to a lack of
nutrients, and are subsequently more resistant to antifungal drugs. There is in fact a lack of work
concerning this subject. However, by controlling nutrients in a perused biofilm fermentor, Baillie and
Douglas [126,127] were able to compare the antifungal susceptibility of C. albicans biofilms growing
at various rates. These authors, in opposition to what was expectable over a wide range of growth
rates, verified that biofilm-associated cells exhibited similar levels of resistance to amphotericin
B, suggesting that growth rate does not play a significant role in biofilm antifungal resistance.
Similarly, C. albicans grown under glucose and iron limitation conditions were shown to both be
highly resistant to amphotericin B [127]. Nevertheless, factors including pH, temperature, and oxygen
availability are described as possible inductors of biofilm architecture alteration and thus the antifungal
sensibility [128–130].

The general physiological state of sessile cells has also been reported as implicated in the
susceptibility profiles of Candida biofilms. Metabolic activity confirms that cells within biofilms
are undergoing mitochondrial respiration during development [5,29,86,123,130].

2.2.2. Contribution of the Extracellular Matrix Production

Extracellular matrix (ECM) is a defining characteristic of all Candida species biofilms, providing the
cells protection from hostile factors such as host immunity and antifungal agents [7,131]. In some of the
pioneer works, Candida species biofilm’s matrices were shown to increase when biofilms were grown
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under dynamic flow conditions and their quantity is strongly species- and strains-dependent [6,124,132].
Subsequent work has shown that while ECM hampers diffusion, penetration of antifungal drugs is
not thought to play an important role in biofilm resistance [132]. However, more recent studies have
provided new insights about the chemical composition of ECM and that it may play a central role in
resistance by antifungal agents’ neutralization.

It is important to address that the composition of the Candida biofilm matrices is species-variable.
Little is known about matrix composition of NCAC species biofilms, but according to Baillie and
Douglas 1998 [126], C. albicans biofilm matrix is mainly composed of carbohydrates, proteins,
phosphorus and hexosamines. Silva and colleagues 2009 [124] reported that the ECM of C. parapsilosis
contained large amounts of carbohydrates and low levels of proteins. In the same study, C. glabrata
biofilm matrices were found to have high levels of both proteins and carbohydrates, while C. tropicalis
biofilm matrices had low levels of carbohydrates and proteins compared to the other NCAC species.
Recently, Rodrigues et al. (2016) [120] revealed for the first time the presence of β-glucans in the
C. glabrata matrices even when treated with amphotericin B. Furthermore, other authors [7] showed
that matrix material extracted from biofilms of C. tropicalis and C. albicans contained carbohydrates,
proteins, hexosamine, phosphorus and uronic acid. However, the major component quantified in
C. tropicalis biofilm matrices was hexosamine (27%). The same authors also reported that these
biofilms partially detached after treatment with lipase type VII and chitinase, which is in contrast
to biofilms of C. albicans that detached only after treatment with proteinase K, chitinase, DNase I or
β-N-aceytyglucosamidase. In Candida species, there is scarce knowledge concerning the contribution
of extracellular DNA to biofilm matrix and overall structure [74].

In this sense, studies have been carried out to clarify the involvement of some of the matrix
components in Candida biofilm resistance. Martins et al. (2013) [133] highlighted the importance of
DNA in C. albicans biofilm formation, integrity and structure and that the addition of DNase improves
the efficacy of polyenes and echinocandins, but not to azoles [133].

The major carbohydrate component is β-1,3 glucans, as treatment of C. albicans biofilms with
β-1,3 glucanase helps detach biofilms from a substrate [132]. Its contribution is confirmed, where it
was shown to increase in C. albicans biofilm cell walls compared to planktonic organisms and was
also detected in the surrounding biofilm milieu and as part of the ECM [134]. The involvement in the
resistance was realized when it was also shown that biofilm cell walls bound four- to five-fold more
azole than equivalent planktonic cells, and culture supernatant bound a quantifiable amount of this
antifungal agent. Moreover, β-1,3 glucanase markedly improved the activity of both fluconazole and
amphotericin B. The addition of exogenous biofilm ECM and commercial β-1,3 glucan also reduced
the activity of fluconazole against planktonic C. albicans in vitro [134]. The group has recently shown
that the ECM β-1,3 glucan is synthesized from Fks1 using a defined knockout and over-expressing
strain [135]. This study demonstrated that β-1,3 glucan is responsible for sequestering azoles, acting
as a sponge and conferring resistance on C. albicans biofilms [135]. Further studies have shown that
they are also responsible for sequestering echinocandins, pyrimidines, and polyenes [136]. Subsequent
studies have identified a role for the SMI1 in C. albicans, a gene involved in cell-wall glucans, in biofilm
ECM production and development of a drug-resistant phenotype, which appears to act through
transcription factor Rlmp and glucan synthase Fks1. In addition to Fks1, a zinc-response transcription
factor ZAP1 has been shown to be a negative regulator of ECM soluble β-1,3 glucan in both in vitro
and in vivo C. albicans biofilm models [137]. Conversely, two glucoamylases, Gca1 and Gca2, are
thought to have positive roles in matrix production. A group of alcohol dehydrogenases ADH5, CSH1,
and LFD6 also have roles in matrix production, with ADH5 acting positively, and CSH1 and LFD6
acting negatively [138]. It is also present on a number of other Candida species, including C. glabrata,
C. parapsilosis and C. tropicalis [7].

Recent studies revealed the involvement of the matrix on C. tropicalis strains on amphotericin B
resistance [118]. These studies highlight the incapacity of this traditional antifungal to totally prevent
biofilm formation and to eradicate C. tropicalis biofilms. Interestingly, it was observed that amphotericin
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B led to a significant increase of the biofilm production due to an augment of the total protein and
carbohydrate contents of the matrix. Fernandes et al. (2016) [121] revealed recently that voriconazole
had no effect on pre-formed C. tropicalis biofilms. Remarkably, an increase in total biomass was
observed when pre-formed biofilms were treated with this antifungal agent. This phenomenon is
probably due to a response of C. tropicalis biofilm cells to the stress caused by the presence of the agent,
which led to an expansion of the biofilm matrices’ production. Fonseca et al. (2014) [117] revealed a
phenomenon similar for C. glabrata with an increase of proteins and carbohydrates in the matrices
extracted from biofilms treated with fluconazole.

2.2.3. Emergence of Persister Cells

An intriguing development in understanding Candida species biofilm resistance is the presence
of persister cells [139]. Persister cells are a subset of cells, dormant variants, which lie deep in a
biofilm and exhibit tolerance to multiple antifungal drug classes [140,141]. LaFleur (2006) [140]
published the first study in fungi that demonstrated the presence of persister cells in C. albicans
biofilms, but not in planktonic populations. In fact, a re-inoculation of cells, which survived from
a biofilm treated with amphotericin B, was able to develop a new biofilm also with persister cells.
This work suggested that these cells are not mutants but cells phenotype variants of the wild type.
The presence of persisters in C. krusei, and C. parapsilosis biofilms treated with amphotericin B, were
also described [142]. It was shown that the persister levels of the isolates varied from 0.2% to 9%,
and strains isolated from patients with long-term carriage had high levels of persisters, whereas
those from transient carriage did not [140]. While the mechanisms of Candida persister cells transition
remains unclear, transcriptional analysis of these cells shows differential regulation of genes involved
in ergosterol (ERG1 and ERG25) and β-1,6 glucan (SKN1 and KRE1) pathways [143]. Moreover,
superoxide dismutases (SOD) were found to be differentially expressed by miconazole-treated sessile
C. albicans cells compared to untreated cells. Inhibition of SOD resulted in an 18-fold reduction of the
miconazole-tolerant persister cells and increased endogenous reactive oxygen species (ROS) levels
in these cells [144]. Bink et al. (2011) [144] also demonstrated that in biofilms from strains lacking
sod4/sod5 at least three-fold less miconazole-tolerant persisters were observed, and ROS levels were
also increased.

2.2.4. Impact of Sterols Contents and Its Correlation with ERG Genes Expression

Ergosterol is the most prevalent sterol in Candida cells plasma membrane. Moreover, antifungal
agents (e.g., azoles and amphotericin B) act as ergosterol synthesis inhibitors by binding to lanosterol
demthylase, a specific enzymatic in ergosterol biosynthesis. The observation that Candida mutants
with altered ergosterol synthesis show enhanced resistance to azoles and amphotericin B led the
investigators to question if Candida biofilm cells may employ similar mechanisms of resistance [145].
Mukerjee and colleagues (2003) [145] showed that, when comparing planktonic cells’ membranes with
the membranes of biofilm cells, the latter had a lower concentration of ergosterol, especially during
the last steps of biofilm formation. This finding suggests that cells from mature biofilms rely less on
ergosterol for maintaining its membrane fluidity and potentially limiting the efficacy of the ergosterol
targeting drugs. In fact, several studies have demonstrated alterations in the transcriptional profile
of sterol pathway genes in diverse Candida species [139,146]. Candida albicans microarray analysis
demonstrated an increase of ERG25 and ERG11 in vitro biofilm growth when compared with its
planktonic counterparts [147]. Interestingly, transcriptional analysis of a rat venous catheter biofilm
also found increased transcription of ERG25, but not ERG11 [134]. Moreover, the principal drug target,
ERG11, can easily develop point mutations or even be over-expressed [148,149].

These results confirm the involvement of the alterations on sterol content in membrane of
C. tropicalis cells as in other Candida cells. Candida glabrata is assumed to be the most azole-resistant
species of all Candida species [7]. Besides, all the genes involved in the biosynthesis of ergosterol have
been described as up-regulated in C. glabrata treated with azoles molecules in planktonic cells [7].
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It is believed that the increase of C. glabrata infections is due to its intrinsically low susceptibility to
azoles, including the imidazoles and the oral-parenteral triazoles (e.g., fluconazole, voriconazole) [150].
Additionally, it is known that the acquired resistance is resulted of rare mutations that are selected
by drug pressure [151]. All the genes involved in the biosynthesis of ergosterol are expected to be
up-regulated in the presence of azole molecules. Nevertheless, ERG genes are the ones more focused
on in studies. Between them are ERG1, ERG3, ERG6, ERG7, ERG9, and especially ERG11. ERG11 is
noticeably more referred as the central point on the increase of ergosterol production, in response to the
azole attack to the C. glabrata cell membrane, which has great ease to acquire azole resistance [151,152].

Induction of ergosterol genes has also been described in C. dubliniensis, where incubation with
fluconazole and formation of biofilm was coupled with up-regulation of the ERG3 and ERG25 [153].
Moreover, up-regulation of genes involved with ergosterol biosynthesis has been described in
C. parapsilosis biofilms [154], which are also resistant to azole antifungal therapy [155]. Regarding
C. tropicalis, recently Fernandes and colleagues (2016) [121] demonstrated that, similar to C. albicans,
voriconazole-resistant cells presented an increased on expression of ERG genes.

2.2.5. Over-Expression of Other Antifungal Targets

Many cases of drug resistance are linked to the increase of efflux pumps in Candida cells membrane
and the consequent reduction of the drug accumulation within the cells [156]. In C. albicans, efflux
pumps have been described as playing an important role in azole resistance, but not in resistance to
amphotericin B and echinocandins [157–161].

The ATP binding cassette transporters (CDR1 and CDR2) and major facilitator transporter (MDR1)
are typically expressed at low levels in the absence of antifungal exposure [160]. The finding that
azole-resistant clinical isolates often show constitutive over-expression of these pumps prompted
investigators to postulate that the biofilm drug resistance phenotype may be related to increased efflux
pump activity [159,162–165]. Ramage and colleagues (2009) [166] demonstrated that transcription
of both MDR1 and CDR1 was more abundant in C. albicans biofilms than planktonic cultures of the
same age. In opposition, some authors investigated the role of these efflux pumps by deletion of their
genes and observed that, during the planktonic growth, these mutants displayed hypersensitivity to
fluconazole. However, this phenotype was not observed when these same mutants were grown as
biofilms, suggesting that the efflux pumps do not contribute significantly to drug resistance during
the mature biofilm stage [131]. Mukherjee et al. (2011) [145] examined the role of efflux pumps in
antifungal resistance throughout the biofilm process. The researchers included early, intermediate and
mature C. albicans biofilms with planktonic growth comparisons. Similar to the prior investigation,
single, double and triple mutants of the three main efflux genes were no more susceptible to fluconazole
treatment during mature biofilm growth than the parent strains; however, in the early phase, double
and triple efflux pump mutants had significantly increased azole susceptibility when compared with
the parent strains. This suggests that the efflux pumps contribute to resistance during the early biofilm
developmental phase, and that the pumps may function in a cooperative manner. This theory of
time-specific efflux pump functionality was further supported by transcriptional analysis, showing
higher expression of efflux pump genes after 12 h biofilm formation when compared with mature,
48 h biofilm formation [145]. This is collective evidence that Candida efflux pumps likely contribute
to drug resistance during the early phase of biofilm growth, while their role in resistance in mature
biofilms appears to be minimal at most. Investigations of C. glabrata and C. tropicalis biofilms have also
shown up-regulation of efflux pumps [166,167]. Fonseca et al. (2016) [117] evaluated the expression of
C. glabrata ABC (ATP-binding cassette) transporters (CDR1, SNQ2 and PDR1) in presence of fluconazole,
and observed that, in addition to high amounts, the matrix produced an over-expression of these
efflux pumps.

This data supports the hypothesis that efflux pumps are an important—but not
exclusive—determinant of fungal biofilm resistance to antifungal drugs. Their primary role may
be for homeostasis within complex environments to protect themselves from acute toxicity, but within
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clinical environments, exposure to azoles drugs may enhance the levels of efflux pump expression,
therefore either contributing towards or inducing clinical resistance.

3. Conclusions

Reducing the incidence of biofilm-related candidiasis in hospitals is a requirement in the search
for optimized patient care. However, the high degree of resistance of biofilm-associated Candida cells
hinders rapid development toward highly efficacious therapies. Recent efforts of various excellent
research groups tremendously broadened our knowledge on the complex mechanisms underlying
biofilm resistance. According to the authors, the presence of matrix material is the most important
biofilm resistance mechanism. However, several other important mechanisms such as cell density,
differential regulation of drug targets, up-regulation of drug efflux pumps in developing biofilms,
the presence of persisters into biofilms, up-regulation of different pathways and possibly yet-undefined
mechanisms can further increase resistance to a maximum level. The elucidation of these resistance
mechanisms provides a promising step toward the development of optimal therapies.
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