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Abstract: FungiDB (fungidb.org) is a free online resource for data mining and functional genomics
analysis for fungal and oomycete species. FungiDB is part of the Eukaryotic Pathogen Genomics
Database Resource (EuPathDB, eupathdb.org) platform that integrates genomic, transcriptomic,
proteomic, and phenotypic datasets, and other types of data for pathogenic and nonpathogenic,
free-living and parasitic organisms. FungiDB is one of the largest EuPathDB databases containing
nearly 100 genomes obtained from GenBank, Aspergillus Genome Database (AspGD), The Broad
Institute, Joint Genome Institute (JGI), Ensembl, and other sources. FungiDB offers a user-friendly
web interface with embedded bioinformatics tools that support custom in silico experiments that
leverage FungiDB-integrated data. In addition, a Galaxy-based workspace enables users to generate
custom pipelines for large-scale data analysis (e.g., RNA-Seq, variant calling, etc.). This review
provides an introduction to the FungiDB resources and focuses on available features, tools, and
queries and how they can be used to mine data across a diverse range of integrated FungiDB datasets
and records.

Keywords: fungi; pathogen; bioinformatics; omics; genomics; transcriptomics; proteomics; sequence
analysis; RNA-Seq; Galaxy

1. Introduction

The Eukaryotic Pathogen Bioinformatics Resource Center (eupathdb.org) comprises a family
of bioinformatics resources that include an integrated functional genomics database for fungi
and oomycetes—FungiDB [1,2]. FungiDB (fungidb.org) is a free online resource for data mining
and functional genomics analysis. It provides an easy-to-use, interactive interface to explore
genomes, annotation, functional data (e.g., transcriptomics, proteomics, phenomic data for selected
species), metabolic pathways, and results from numerous genome-wide analyses (i.e., InterPro
scan, signal peptide and transmembrane domain predictions, orthology, etc.). FungiDB contains
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an expanding number of genomes from various taxa including, but not limited to, plant, animal, and
human pathogens. FungiDB contains nearly 100 genomes obtained from GenBank [3], Ensembl [4],
Joint Genome Institute (JGI) [5], Aspergillus Genome Database (AspGD) [6], Candida Genome Database
(CGD) [7], Saccharomyces Genome Database (SGD) [8], PomBase [9], and The Broad Institute [10].
FungiDB continues to acquire new genomes and datasets from data repositories, other fungal databases,
and individual providers. The loaded genomes and related datasets can be investigated via a number
of search strategies and FungiDB website-embedded tools. Presented here is an overview of FungiDB
resources and several tutorials on how to mine FungiDB bioinformatic resources by creating in
silico experiments.

2. Overview of the FungiDB Home Page and its Features

The home page of FungiDB can be divided into four sections: the header (Figure 1a), the grey
menu bar (Figure 1b), the side bar on the left (Figure 1c), and the main central section with three large
panels: Search for Genes (left), Search for Other Data Types (middle), and Tools (right) (Figure 1d).
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Figure 1. FungiDB Home page and its features. The home page comprises (a) the header section with
Gene ID search highlighted in purple; (b) the main menu in grey; (c) the side bar with links and various
information sections; and (d) the main component offering Search for Genes, Search for Other Data Types,
and Tools sections. Find a search box from Search for Genes component is highlighted in purple.

The header section offers quick access to the Gene ID and Gene Text search and a list of useful
links (Figure 1a). To quickly navigate to a specific gene record page, a user can enter a single Gene ID
(e.g., NCUO06306) into the Gene ID search box at the top of the main page (Figure 1a). Alternatively,
searching for chromatin in the Gene Text Search box adjacent to the Gene ID search box will return
a list of genes from fungal and oomycete organisms that have matches to the searched term in any of
the following gene fields: enzyme commission (EC) description, Gene ID, Gene notes, gene product,
gene name, gene ontology (GO) terms and definitions, metabolic pathway names and descriptions,
phenotype, protein domain names and descriptions, PubMed, and user comments. The links located
directly under the search boxes provide quick access to information about the FungiDB project,
login and registration, social media links, YouTube tutorial channel, and the Contact Us email form.
Support inquiries can also be sent to help@fungidb.org (Figure 1a).

The grey menu bar is preserved across almost all FungiDB pages and provides easy navigation to
all database sections when a user navigates away from the main page (Figure 1b). The side bar section
(Figure 1c) consists of the Data Summary, News and Tweets, Community Resources, Education and Tutorials,
and About FungiDB sections.



J. Fungi 2018, 4, 39 30f28

The central section is the largest section of the home page and consists of three panels: Search
for Genes, Search for Other Data Types, and Tools panels (Figure 1d). The Search for Genes panel
contains links to searches organized into seventeen intuitive categories allowing the user to quickly
navigate to a desired search. Each search initiated from this panel will return lists of genes as search
results. For example, a search for genes based on a specific organism is found under the Taxonomy
category. Secondly, the Search for Other Data Types panel offers searches that return non-gene entities
(e.g., Single Nucleotide Polymorphisms (SNPs), Metabolic Pathways, Compounds, Genomic Sequences based
on genomic location). Non-gene entities that have genomic locations can be co-located with each
other or with genes (see below). Both the Search for Genes and Search for Other Data Types panels
include a find option that allows users to quickly find a specific search by typing a key word in
the Find a search box (highlighted in purple). Lastly, the third panel on the right provides access to
useful bioinformatics tools that can be used independently of the searches (e.g., BLAST, Sequence
Retrieval Tool, or Genome Browser).

3. Exploring FungiDB Records: Gene ID Searches and Gene Record Pages

A Gene ID search can also be invoked from the Search for Genes panel via the Annotation, curation,
and identifiers category (Figure 2a). For example, searching for FGRAMPH1_01G14573, a Fusarium
graminearum (F. graminearum) transcription factor important for virulence [11], returns the gene record
page for this gene. Gene record pages contain aggregate information about a gene and its function that
is generated from integrated datasets and automated pipelines.
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Figure 2. Simple searches and gene record pages. (a) A Gene ID search can be initiated from the main
component section, Search for Genes option, Annotation, curation and identifiers submenu (highlighted in
purple); (b) Gene record page can be saved or bookmarked via Add to basket or Add to favorites links,
respectively (highlighted in purple). Thumbnail Shortcuts (highlighted) provides easy navigation to
key datasets; (c) Additional gene record sections can be quickly identified via the searchable Contents
menu on the left (highlighted in purple).
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Gene record pages can be saved (via the Add to basket link) or bookmarked (by clicking on the
Add to favorites link) (Figure 2b). The Add to basket function saves the gene record to a basket associated
with a user’s account. Basket items can be found in the My Strategies section when a user is logged
in. The basket serves as a shopping cart where genes in the basket can be downloaded or transferred
to a search strategy. Adding a gene to favorites creates a bookmark to that gene in the My Favorites
section available within the grey menu bar (Figure 1b). In the My Favorites section, users can also add
private notes and project descriptions about saved items.

FungiDB gene record pages can be navigated via the thumbnail Shortcuts menu at the top
(Figure 2b) and Contents menu on the left (Figure 2c). For example, when transcriptomics data
for a gene of interest is integrated into FungiDB, a corresponding thumbnail appears on the gene page.
Each thumbnail shows the number of datasets available within a given category. Clicking on
the magnifying glass symbol within the thumbnail will open a preview screen of the evidence,
while clicking anywhere within the thumbnail will navigate the user to the corresponding section on
the gene page. Sections can be quickly identified by using the Search section names search box at the top
of the Contents menu and clicking on the desired section. In addition, sections in a gene page can be
hidden by unchecking the box to the right of any section name in the Contents menu.

The Gene models section is the first section of the gene record page and it contains information about
the structure of the gene such as exon count, transcript number and a visual GBrowse representation
of gene location, annotated UTRs and introns, and RNA-Seq evidence (when available). This section
can be viewed in more detail, including the supporting data, by clicking on the View in genome
browser button.

The Annotation, curation, and identifiers section offers alternate product descriptions, previous
identifiers and aliases, notes from annotator, and user comments associated with a gene record.
These sections are populated using data from either other fungal specialized resources, internal
curation, or user-submitted data (user comments, see below).

The Link outs section offers redirection to other resources including EnsemblFungi [4], Entrez
Gene [12], FGSC [13], UniProt [14], JGI [5], PHI-Base [15], AspGD [6], PhylomeDB [16], PomBase [9],
CGD [7], SGD [8], and others.

The Genomic Location section contains gene or sequence coordinates within a chromosome or
contig/scaffold and a link out to GBrowse.

The Literature section provides access to associated publications gathered by FungiDB via user
comments or direct uploads from other resources (The Broad Institute, AspGD, fgmutantDB [17],
PHI-Base, The Neurospora crassa e-compendium [18]) and FungiDB in-house curation efforts.

The Taxonomy section provides detailed information about organism classification within the
Eukaryote kingdom following the National Center for Biotechnology Information (NCBI) convention.

The Orthology and synteny section provides a table of Orthologs and Paralogs within FungiDB
(Figure 3a). This table is searchable and each ortholog in the table is hyperlinked to its gene page in
FungiDB. An additional feature to interrogate sequence similarities between species of the same or
different genera is offered via the Retrieve multiple sequence alignment or multi-FASTA tool. A user can
select up to 15 organisms to perform multiple sequence alignment for a particular gene. This query uses
pairwise Mercator [19] analysis combined with a Clustal Omega output format. A sequence alignment
of FGRAMPH1_01G14573 with Magnaporthe and Sordaria species, selected from the Organisms to align
parameter option, generated an output of genomic sequence IDs as identifiers. NW_003546226 and
HG970333 identifiers belong to F. graminearum PH-1 and Sordaria macrospora genomes, respectively
(Figure 3a). The gene record page for FGRAMPH1_01G14573 also contains a GBrowse display of
synteny between related organisms with syntenic orthologs shaded in grey. An interactive display is
also accessible via the View in genome browser button and highlighted in Figure 3b.

The Genetic Variation section summarizes integrated FungiDB SNP data for a given region and
classifies SNPs into groups based on the resulting effect on gene function: noncoding, nonsynonymous
or synonymous, and nonsense nucleotide changes.
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Figure 3. Simple searches and gene record pages, continued. Orthology and Synteny section
(highlighted in purple) for the F. graminearum gene FGRAMPH1_01G14573. (http://fungidb.org/
gene/FGRAMPH1_01G14573) (a) A Multiple Sequence Alignment (MSA) run within the gene record
page against Magnaporthe and Sordaria sequences. Shown as CLUSTAL Omega output; (b) Syntenic
orthologs can be previewed from the GBrowse window within the gene page. A separate session in
GBrowse page can be deployed by clicking on the View in genome browser button. Syntenic regions for
the gene are highlighted in purple.

Genetic variation tracks can be explored in GBrowse and SNPs visualized by clicking on the
View in genome browser button and activating appropriate tracks from the Select Tracks tab in GBrowse.

The Transcriptomics section (RNA-Seq and microarray data) provides expandable rows with
tabular data, summaries, coverage, expression graphs, and more. For example, the Aspergillus nidulans
ANS8182 gene record page demonstrates expression profiles for AN8182 where mRNA samples were
collected from wild-type and clr-2/clrB mutants after a culture shift from sucrose/glucose to Avicel
(crystalline cellulose) or no carbon media [20] (Figure 4a). The Expression graph (fpkm—AN8182)
provides an overview of peaks detected in three treatments and Coverage Section shows uniquely
mapped reads. When reads map to several genome locations and therefore could have been derived
from multiple transcripts they are labeled as nonunique. Both unique and nonunique reads are now
displayed in fpkm graphs and are available in GBrowse.

Next, the Sequences, Sequence analysis, Structure, and Protein features and properties menus offer
DNA, RNA, and protein sequence information followed by records about known protein domains
(InterPro), signal and Transmembrane predictions, BLASTP hits, BLAT hits against the nonredundant
protein sequence database (GenBank), and other information.
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Figure 4. Simple searches and gene record pages, continued. (a) Transcriptomics menu (highlighted
in purple) contains Transcript Expression records that show fpkm graphs for A. nidulans gene AN8182
(gene record page: http://fungidb.org/fungidb/app/record /gene/AN8182). Coverage plots (an inset
to the Transcript Expression section) displays unique read alignments and a View in genome browser
link out; (b) Proteomics menu (highlighted in purple) displays Mass Spec. Evidence for A. fumigatus
gene Afu6g06770 (gene record page: http://fungidb.org/fungidb/app/record/gene/Afu6g06770).
Proteomics tracks can be also visualized by clicking on the View in protein browser button.

The Function Prediction section houses Gene Ontology assignments (downloaded from Gene
Ontology databases and manually curated by FungiDB for a selected group of organisms). FungiDB
gene pages also display GO Slim terms from the generic subset for each GO term associated with that
gene. The GO assignments are followed by other functional data and datasets, including the Pathways
and Interactions (Metabolic Pathways and Metabolic Pathway Reactions sections), Proteomics evidence (Mass
Spectrometry-based expression and post-translational modification data in table and graph formats).

Pathways and interactions provide descriptions of metabolic pathways that are loaded into FungiDB
from the KEGG [21] and MetaCyc [22] repositories. Genes are linked to individual pathways by
EC numbers and clicking on any of the metabolic pathway links will navigate to an interactive
metabolic pathway viewer where the user can explore individual reactions or export all known data
for a given pathway.

The Proteomics section contains Mass Spec. evidence data and phosphoproteomics datasets.
In Figure 4b, the gene records page for the Aspergillus fumigatus (A. fumigatus) gene Afu6g06770
demonstrates that the protein is found in germinating conidia. A summary table with sequence counts
and a link out to peptide alignments against the reference genome can be viewed in GBrowse.


http://fungidb.org/fungidb/app/record/gene/AN8182
http://fungidb.org/fungidb/app/record/gene/Afu6g06770

J. Fungi 2018, 4, 39 7 of 28

4. Creating in Silico Experiments via the FungiDB Query Interface

4.1. Mining Proteomic Datasets

FungiDB integrates proteomics data that are presented in several ways: peptides are mapped to
genes, gene expression levels are loaded based on quantitative Mass Spec. data, and post-translationally
modified amino acids are visualized as GBrowse tracks.

Genes may be identified based on proteomics evidence by selecting one of the searches under
the Proteomics category in the Search for Genes section on the home page. In the example described
here, quantitative proteomics data from Suh ef al. [23] are interrogated to identify A. fumigatus genes
up-regulated in the growing conidia and then cross referenced with Gene Models data for Exon Count to
identify genes with no more than 5 exons.

The Quantitative Mass Spec. Evidence search can be accessed from the Proteomics section under
the Search for Genes category (Figure 5a). Then, in the proteomics dataset selection window, click on
the Fold Change (FC) button next to the Suh ef al. study. To identify genes that are up-regulated by at
least twofold in the 4-8 h time frame compared to the 0 h time point, set the regulation direction to
up-regulated, modify the Fold Change parameter to 2, and select 0 h from the Reference Samples and
4,6, and 8 h from the Comparison Samples, and click Get Answer (Figure 5a).
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Figure 5. Quantitative Mass Spec. search examining up-regulated genes in A. fumigatus Af293 during
conidial growth. (a) Select the Quantitative Mass Spec. Evidence menu (highlighted in purple) to
access Suh ef al. dataset and select Reference and Comparison Samples as shown to identify genes that
are up-regulated throughout conidial development. The selection parameter areas are highlighted
in purple; (b) Overview of the search strategy. Explore results, Add Columns, or Download results
(highlighted in purple). Strategy in FungiDB: http:/ /fungidb.org/fungidb/im.do?s=96851d3ef002899a.
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The search strategy returned 102 genes that are up-regulated during conidial growth (Figure 5b).
Examine or revise results, explore additional data by adding more columns via the Add Columns button,
or export records via the Download link (Figure 5b and highlighted).

To further expand this search strategy and determine how many of these genes have multiple
exons, click on the Add Step button and choose to Run a New Search for, Genes, Gene models, Exon Count
(min >= 2, max <= 5) (Figure 6). Intersecting the second search with the first one returned 80 genes in
A. fumigatus.

« Add Step

Run a new Search for » Genes b Text » Exon Count
Transform by Orthology Genomic »  Gene models » Gene Type

© Organism ’
ares
@ Ectomyortes
@ hoow>
o .
emga A

© Count exons per
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s

Combine Genes in Step 1 with Genes in Step 2:

(Edit)
AfumCEA10 stag
102 Genes

Step 1 Step 2

Run Step

Figure 6. Quantitative Mass Spec. query examining up-regulated genes in A. fumigatus Af293 during
conidial growth with at least 2 and no more than 5 exons. Exon Count search is deployed from the
Search for Genes category, Gene models menu, Exon Count subcategory. Strategy in FungiDB: http:
/ /fungidb.org/fungidb/im.do?s=96851d3ef002899a.

4.2. Creating In Silico RNA-Seq Experiments

There are several ways to identify genes based on RNA-Seq Evidence. Depending on the
type of integrated dataset, users can choose to analyze a dataset using Differential Expression
(DE), Fold Change (FC), or Percentile (P). In this example, we will query a dataset published by
Chen et al. [24] and compare transcriptomes of two strains of Cryptococcus neoformans, a fungal organism
causing fungal meningitis and high mortality rates in immunocompromised patients [25,26]. The HC1
and GO strains were isolated from the cerebrospinal fluid (in vivo CSF) of patients in the U.S. and
Uganda, respectively, and then also incubated in pooled human CSF (ex vivo CSF) and in yeast
extract-peptone-dextrose (YPD).

The strategy described below compares transcriptomes of two strains and aims to identify genes
that are up-regulated in the HC1 strain compared with in the GO strain (in vivo CSF) (Step 1-2) and
then identifies those genes that are specific for in vivo expression in the HC1 strain (Step 3) (Figure 7).

To initiate an in silico experiment, click on the Transcriptomics category on the home page or in
the drop-down menu from the grey main menu and then navigate to the RNA Seq Evidence page.
From the list of available studies, click on the fold change (FC) button in blue for the Cryptococcus
neoformans transcriptome at the site of human meningitis (single-read data) dataset. Next, select to identify
genes that are up-regulated by twofold between each gene’s expression value in the GO YPD sample
(Reference Sample) and its expression in the G0 in vivo CSF sample (Comparison Sample) (Figure 7a).

Next, click on the Add Step button, Run a new Search for, Genes, Transcriptomics, RNA Seq Evidence
and repeat previous steps but this time identify genes that are twofold up-regulated in HCI in vivo
CSF (Comparison sample) versus in HC1 YPD (Reference sample). To set conditions for the next search,
select the 2 minus 1 intersect option from the four available set operations (Figure 7b). As a result,
Step 2 returned 281 genes that are up-regulated in HCI in vivo CSF but not in G0 in vivo CSF.
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Figure 7. RNA-Seq query using C. neoformans single-read and paired-end datasets by Chen et al. [24]
(a) RNA-Seq query on single-read data is initiated from the Search for Genes panel, Transcriptomics
menu. Step 1 selects for two-fold up-regulated genes in G0 in vivo CSF compared with in the GO YPD
reference sample; (b) Step 2 selects for HCI genes expressed in vivo CSF (using HC1 YPD sample
as reference). Choose the 2 minus 1 intersect parameter to set up conditions for the final search;
(c) Add Step and repeat steps as before but this time select the paired-end dataset. Step 3 identifies HC1
genes up-regulated in vivo CSF compared to ex vivo CSF. Choose the 1 minus 2 intersect parameter
for the third step; (d) Results table for Step 3. Clicking on the Analyze Results tab (highlighted in
purple) will redirect users to enrichment analysis using Gene Ontology, Metabolic Pathway, and Word
Enrichment tools. Strategy in FungiDB http:/ /fungidb.org/fungidb/im.do?s=892406814924ecdd.

To further delineate in-vivo-specific genes in HC1 strain, one can create an additional step to
eliminate genes that were expressed in ex vivo conditions in the HC1 strain. Click on the Add Step
button, navigate to the RNA-Seq datasets selection window and this time choose the paired-end
dataset from Chen et al. instead of the single-read data. Configure the search to return genes that are
twofold up-regulated in the HC1 ex vivo CSF (Comparison sample) versus in the GO ex vivo CSF sample
(Reference sample). Choose the 2 minus 3 option and click on the Run Step button (Figure 7c).
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The strategy described above used two different types of data (single-read and paired-end
RNA-Seq data) to examine differential gene expression. To further investigate results of gene-specific
queries, users can take advantage of a number of enrichment tools located under the Analyze Results
tab in blue (Figure 7d), which is reviewed further in the text.

5. Additional Tools for Enrichment and Data Analysis

When working with a list of genes such as RNA-Seq results (as described in Figure 6) or
user-uploaded gene lists, one can perform several enrichment analyses to further characterize results
into functional categories. Enrichment analysis can be accessed via the blue Analyze Results tab and it
includes Gene Ontology [27,28], Metabolic Pathway [21,22], and Word Enrichment tools. The three types of
analysis apply Fisher’s Exact test to evaluate ontology terms, over-represented pathways, and product
description terms. Enrichment is carried out using a Fisher’s Exact test with the background defined
as all genes from the organism being queried. The p-values corrected for multiple testing are provided
using both the Benjamini-Hochberg false discovery rate method [29] and the Bonferroni method [30].

5.1. GO Term Enrichment and Visualization

To determine if a gene list contains enriched functions, a GO enrichment analysis may be
performed. Continuing with the RNA-Seq example described in Figure 7, click on the Analyze Results
tab, and then select the Gene Ontology Enrichment button (Figure 8a).

(a) Gene Results Genome View New Analysis @
Analyze your Gene results with a tool below.

. +

. - P
GO =t >
.- .
3
+ .
. +
Gene Ontology Enrichment etabolic Pathway Enrichment
Gene Ontology Enrichment (2)
Find Gene Ontology terms that are enriched in your gene resut. Read Moro
~ Parameters
Organism @
Word Enrichment Ontology @

Evidonce®

imitto GO Slimterms®  ©

Yes

P-vatue Cutolf (o - 1.0)@ 005

Submit

(b) » Parameters ’

Analysis Results:
Got atotal of 17 results ~ Filter : I [l Open in Revigo I l [l Show Word Cloud ] [ & Download I
Genes in the Genes in your Percent of bkgd Fold Odde p.
GO ID GO Term bkgd with this = result with this & Genes in your . ; - Benjamini ¢ Bonferroni
term term result enrichment ratio value
GO0:0055085 transmembrane transport 307 15 49 1.66 175 3.99e-2 4.46e-2 6.79e-1
GO0:0044712 single-organism catabolic process 39 4 10.3 348 3.56 3.35e-2 4.46e-2 5.69e-1
GO:0006543 glutamine catabolic process 3 2 66.7 22.59 2297 7.70e-3 4.46e-2 1.31e1
GO0:0006541 glutamine metabolic process 4 2 50.0 16.94 17.23 1.13e-2 4.46e-2 1.93e-1

Figure 8. Gene enrichment analysis tools. (a) Clicking on the GO—Gene Ontology Enrichment button
deploys GO enrichment that can be limited based on the following parameters: ontology aspects,
GO evidence (Computed vs. Curated), and p-value (0.05 default), or GO Slim terms; (b) The enrichment
results can be further visualized via Reduce + Visualize Gene Ontology (REViGO), Word Cloud image,
or downloaded (highlighted in purple).
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GO enrichment parameters allow users to limit their analysis on either Curated or Computed
annotations, or both. Those with a GO evidence code inferred from electronic annotation (IEA) are
denoted Computed, while all others have some degree of curation. Users can also choose to show results
for the following functional aspects of the GO ontology: molecular function, cellular component, and
biological processes, as well as set a custom p-value cut-off. When the GO slim option is chosen,
both the genes of interest and the background are limited to GO terms that are part of the generic
GO Slim subset (Figure 8a). Users may download a GO enrichment table (with the Gene IDs for each
GO term added) as well as view and download a word cloud produced via the GO Summaries R
package [31] (Figure 8b, highlighted in purple).

The Analysis Results table from the GO enrichment focusing on biological function shows
enrichment for transmembrane transport genes. The table contains columns with GO IDs and GO
terms along with the number of genes in the background and those specific to the RNA-Seq analysis
results presented. Several additional statistical measurements are also included and are defined below:

e  Fold enrichment—The ratio of the proportion of genes in the list of interest with a specific GO term
over the proportion of genes in the background with that term;

e  Odds ratio—Determines if the odds of the GO term appearing in the list of interest are the same as
that for the background list;

e  p-value—Assumptions under a null hypothesis, the probability of getting a result that is equal or
greater than what was observed;

e  Benjamini—-Hochburg false discovery rate—A method for controlling false discovery rates for type
1 errors;

e  Bonferroni-adjusted p-values—A method for correcting significance based on multiple comparisons;

GO enrichment analysis returned genes enriched in transmembrane transport (GO:0055085),
single-organism catabolic process (GO:0044712), etc. (Figure 8b). These and other terms can be taken
to an external REViGO website [32] by clicking on the Open in Revigo button. REViGO visualizes
the GO enrichment results while removing redundant GO terms. The resulting similarity-based
scatterplots are color-coded and provide interactive graphs and tag clouds as alternative visualizations.
More information is available at the Revigo website: http:/ /revigo.irb.hr.

5.2. Metabolic Pathway Enrichment

The Metabolic Pathway Enrichment tool allows the user to determine whether particular metabolic
pathways are over-represented in a subset of genes from an organism compared to the background.
Described here is a search query using a list of genes from a publication studying pathogen adaptation
responses in Paracoccidioides brasiliensis (P. brasiliensis), one of the most frequent causative agents of
systemic mycoses in Latin America [33].

When fungal conidia of P. brasiliensis gain access to host tissues and organs they differentiate into
a parasitic form that undergoes morphological changes conferring resistance to immune responses of
the host. Alternative carbon metabolism is particularly important for the survival and virulence of this
fungal pathogen within the host, Lima and colleagues reported that thirty-one genes of P. brasiliensis
were up-regulated under carbon starvation conditions as determined by both RNA-Seq and proteomics
studies [33].

Here, thirty-one genes described above are identified using the Gene ID(s) search, deployed via the
Search for Genes menu and the Annotation, curation and identifiers submenu (Figure 9a). Next, deploy the
Metabolic Pathway Enrichment tool via the Analyze Results tab, use KEGG pathway enrichment only, and
then click Submit to start the analysis (Figure 9b). The analysis may take some time to run depending
on the size of the gene list. Results will be presented in a new tab (Figure 9c¢).

KEGG pathway enrichment on the gene list described above highlighted enrichment in
carbohydrate, amino acid, and lipid metabolism, corroborating the findings described in the
manuscript [33]. These pathways can be explored further by clicking on the link in the Pathway ID
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column. The pyruvate metabolism pathway (ec00620) is one of the pathways enriched amongst
P. brasiliensis genes that were up-regulated during starvation (Figure 10a).

(a) Search for Genes
expand all | collapse all r_\ (Genes)

Find a search. Q| @
Text
Gene models
Annotation, curation and identifiers Gene ID(s) Add Step
Gene ID(s) 31 Genes
User Comments Step 1
(b) GeneResults | Genome View | New Analysis OI I
Analyze your Gene results with a tool below.
. 4
GO~ v
Gene Ontology Enrichment Metabolic Pathway Enrichment
Word Enrichment
(0) This analysis result may be lost if you change your gene result.
To save this analysis result, please Download Analysis Results (including genelDs)
Word Cloud
Analysis Results:
Got a total of 160 results ~ Filter :
Genes in Genes in Percent of
A a ~ Pathway . the bkgd , Yyourresult . bkgd A Fold A Odds , P- a a
eaRatway,/D SaEatinvayName ¥ Source ¥ with this with this ¥ Genes in ¥ enrichment ~ ratio ¥ value Benjaminl, - %--Bonferroni
pathway pathway your result
ec00620 Pyruvate metabolism KEGG 45 5 2k 16.55 2.09e+1 1.44e-5 1.16e-3 0.00231001957801
ec00010 Glycolysis / Gluconeogenesis KEGG 40 5 125 18.62 235e+1 8.51e-6 1.16e-3 0.00136158842431
ec01057 Biosynthesis of type Il KEGG 206 4 19 289 3.29e+0 4.75e-2 4.83e-2 1.0
polyketide products
ec00981 Insect hormone biosynthesis KEGG 164 4 24 3.63 4.19e+0 2.33e-2 4.43e-2 1.0
ec00260 Glycine, serine and threonine KEGG 103 4 39 578 6.79e+0 4.92e-3 2.80e-2 0.786911271969
metabolism
ec00640 Propanoate metabolism KEGG 97 4 41 6.14 7.23e+0 4.00e-3 2.80e-2 0.63939145551
ec00633 Nitrotoluene degradation KEGG 87 4 46 6.85 8.08e+0 2.73e-3 2.80e-2 0.437543379249

Figure 9. Metabolic pathway enrichment analysis. (a) A list of 31 genes is analyzed via the Gene
IDs tool (from the Search for Genes panel) and the (b) the Metabolic Pathway Enrichment tool from the
Analyze Results tab (highlighted in purple) (c) Metabolic Pathway Enrichment analysis results page.
Individual Pathway ID (e.g., ec00620) is linked to the interactive CytoScape interface. Strategy in
FungiDB: http:/ /fungidb.org/fungidb/im.do?s=6825e606be957ead.

Cytoscape interactive map offers zoom-in, zoom-out, and reposition capabilities as well as
additional pathway node information. Enzyme nodes can be painted with corresponding available
transcriptomic or proteomic data using the Paint Enzymes menu. For instance, the pyruvate metabolism
pathway is also present in Aspergillus. The pathway record pages can be accessed from the gene record
page for A. nidulans pycA gene AN4462. Gene expression profiles can then be painted onto individual
nodes in A. nidulans via the Paint Enzyme menu option (Figure 10b). Any gene that does not have
expression data for the chosen organism/experiment will have the text “None” in the enzyme box.
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Figure 10. Interactive pathway map for KEGG ec00620 (Pyruvate metabolism). (a) Enzyme nodes
that are represented by a gene in the database are outlined in red. Clicking on enzyme or compound
nodes reveals more information about corresponding entities (b) Pyruvate metabolism pathway with
RNA-Seq fpkm values painted above individual pathway nodes (A. nidulans transcriptomics data) via

the Paint Enzyme menu (highlighted in purple).
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6. Data Mining via the Search for Other Data Types Panel

6.1. Identifying SNPs between Fungal Isolates Collected in Various Geographical Areas

The example described below identifies SNPs in Coccidioides posadasii (C. posadasii) str. Silveira
isolates collected from patients with Coccidioidomycosis in the U.S. and Latin America [34].
Coccidioidomycosis, also known as Valley fever, is a fungal disease caused by two closely related
species—C. immitis and C. posadasii [34,35]. The disease is associated with high morbidity and mortality
rates and affects tens of thousands of people each year. The two fungal species are endemic to several
regions in the Western Hemisphere, but recent epidemiological and population studies suggest that
the geographic range of these fungal species is becoming wider [36].

To identify SNPs between isolates collected in Guatemala and the U.S., navigate to the Identify
SNPs based on Differences Between Two Groups of Isolates from the Search for Other Data Types panel
(Figure 11). In the resulting window, scroll through the metadata options on the left and make
appropriate Geographic Location selections from the Host section of Characteristic separately for Set A
and Set B isolates. Set A isolates should be set to Guatemala and Set B to the United States of America.
All other parameters for both sets should be left as default.

o o

Popset Isolate Sequences
Ge Seat

Two Groups
Qo

Step 1

13982 snps (B R

SNP Results

First 12345 Next Last  Advanced Paging Download Add to Basket Add Columns

.. Set A SetB SetB
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GLBIBABE:

NGS_SNP.GLE36486.1144476 " 02 0

CPSG_00379 68 G 80 no D no A 8 no D no coding

Figure 11. Search for SNPs via the Differences Between Two Groups of Isolates option. SNP search is
initiated from the Search for Other Data Types panel on the home page (highlighted in purple). The SNPs
results table shown is sorted by Coding column.

The search strategy returns SNPs rather than genes, which are classified by genomic location
within the results table. When individual SNPs fall within a gene, the corresponding Gene ID is listed
next to the SNP record (Figure 11).

To examine an SNP record page, sort the results by the Coding polymorphisms and click on the
SNP.GL636486.1125536 SNP in the CPSG_00368 gene, located within the third page of the results.
SNP location, allele summary, associated Gene ID, and major and minor allele records can be found
at the top of the page, followed by DNA polymorphism summary and an SNP records table that is
searchable by isolates (Figure 12a). Genomic location, SNP type, and aligned reads can be displayed
in GBrowse by clicking on the View in genome browser button (Figure 12b). The SNP track can be
activated from the Select Tracks tab by selecting SNPs by coding potential under DNA polymorphism in
the Genetic variation section. Hover over SNPs labeled with red diamonds (nonsense SNPs) to get
more information. Note that individual reads comprising SNP data can be activated from the Genetic
variation section by selecting either all or specific isolates listed under the Aligned Genomic Sequence
Reads for C. posadasii str. Silveira.
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Figure 12. Search for SNPs via the Differences Between Two Groups of Isolates option, continued. (a) SNP
record for SNP.GL636486.1125536 corresponding to the CPSG_00368 gene. DNA polymorphism and
SNP categorization based on Strains/Samples are shown; (b) Explore SNPs in FungiDB GBrowse.
SNPs are color coded based on their effect on gene function (e.g., nonsense SNPs are shown as

red diamonds-highlighted in purple). Click on the View in genome browser button to be re-directed

to GBrowse. Individual reads can be activated from the Select Tracks tab (highlighted in purple).

Hover over a SNP to activate a pop-up box with additional information (highlighted in purple).
Strategy in FungiDB: http://fungidb.org/fungidb/im.do?s=564aa900d161cbbb.

6.2. Utilizing the Genomic Location Search and Genomic Colocation Tool in Custom Queries

The Genomic Location search tool empowers researchers to create custom queries for genomic
regions of interest (e.g., custom sets of coordinates). The strategy described below investigates the
effect of LTR/Gypsy Transposable Elements (TEs) (loci provided by Theo Kirkland; unpublished data)
on expression of neighboring genes in C. immitis RS. This search strategy takes advantage of two types
of queries reviewed above: Search Other Data Types and Search for Genes.

Twenty-nine LTR/Gypsy genomic coordinates were entered in the search window initiated
via the Search for Other Data Types, Genomic Segments, Genomic Location selection menus
(Figure 13a). All genomic locations were previously formatted to conform to the following format:
sequence_id:start-end:strand (e.g., GG704914:2926337-2926463:r).
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Figure 13. Using Genomic Location search to discover impact of Transposable Elements (TEs) on
gene expression. (a) Identify TEs based on coordinates formatted to the accepted convention (e.g.,
sequence_id:start-end:strand). Paste a list of genomic coordinates in the highlighted section—Step 1 (b) Add Step
and Run a new Search using a Taxonomy tool and identify C. immitis genes that are (c) 1000bp downstream
of the previously identified TE elements—Step 2. Strategy in FungiDB: http:/ /fungidb.org/fungidb/
im.do?s=67dcb3bb26a92111.

Initiate a new search and Run a new Search for Genes, Taxonomy, Organism, and choose C. immitis
and the 1 relative to 2 search option (Figure 13b). The next screen will bring up the Genomic Colocation
tool that requires selection of several search parameters. Choose to Return each Gene from Step 2 whose
exact region overlaps with downstream region of a Genomic Segments in Step 1 and is on either strand. Look for
genes that are located 1000 bp downstream of the segments identified in Step 1 (Figure 13c).
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The second search returned three genes. Next, examine transcriptomic records integrated in
FungiDB by adding a dataset from the RNA Seq Evidence menu for C. immitis (Saprobic vs Parasitic
Growth (Emily Whiston)) dataset (Figure 14a,b). Based on the search criteria entered, only one gene
was identified—CIMG_13457, a hypothetical protein. One can try to identify orthologs of this
gene in other species by adding another step and deploying the Transform by Orthology tool for
Eurotiomycetes, Saccharomycetes (Candida), Sordariomycetes (Trichoderma), Tremellomycetes (Cryptococcus),
and Ustilaginomycetes (Malassezia) (Figure 14c). The search identified eight orthologs in other pathogens
with the majority occurring in Histoplasma species and a single ortholog in P. brasiliensis Pb03
(Figure 14d).
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Figure 14. Using Genomic Location search to discover impact of Transposable Elements (TEs) on gene
expression, continued. (a,b) Add Step to mine transcriptomics data for C. immitis—Step 3 (c) Step 4:
Add step to deploy the Transform by Orthology tool. (d) Overview of the search strategy. The shape of the
search box highlighted in yellow is different to reflect changes in fungal species/genera. Strategy in
FungiDB: http:/ /fungidb.org/fungidb/im.do?s=67dcb3bb26a92111.
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6.3. Searching for Fungal-Specific Motifs

Proteins which perform similar functions often contain conserved sequences such as protein
domains or motifs that facilitate important functions such as enzyme binding, post-translational
modifications, or cellular trafficking. FungiDB offers tools for finding peptide and DNA motifs in
target sequences. The strategy described below takes advantage of the Protein Motif Pattern search tool
to identify effector proteins in the wheat stem rust fungi Puccinia gramminis f. sp. tritici.

Rust fungi are pathogens of crops that depend on developing haustoria in the living plant cells to
support nutrient absorption and sporulation. A new class of Y/F/WxC effector proteins was reported
in haustoria-producing plant pathogens by Godfrey et al. [37]. Before starting a search, the amino
acid pattern of interest must be converted into a Perl-style regular expression. Using Perl characters
(Table 1), the Y/F/WxC motif is expressed as {0,42}[YFW]['C]C, where [YFW] is a 3-amino acid peptide
that has an aromatic amino acid, followed by any amino acid except a cysteine, followed by a cysteine,
with any amino acid occurring between 0 and 42 times before the 3-amino acid motif.

Table 1. Examples of special characters used in Perl-style regular expressions.

Character Meaning
A,B,C... Amino acid single letter abbreviation for peptide motifs
["a] Any character except a
{n,m} Match the preceding character between n and m times
[ 1 Match any character contained in the bracket

Next, navigate to the Search for Genes panel, Sequence analysis menu, and then click on the
Protein Motif Pattern submenu (Figure 15). In the Identify Genes Based on Protein Motif Pattern page,
enter {0,42}[YFW]["C]C in the Pattern parameter and select P. gramminis from the list of fungal organisms.
Run a new Search for Genes based on Protein Targeting and Localization and identify if any of the genes
have a Predicted Signal Peptide (Figure 16a). Choosing to intersect your search with previous results
will identify several hundred proteins with predicted Y/F/WxC motif and signal peptide domains.
One hundred and thirty-two of these genes matched the BLAST analysis reported by Godfrey et al. [37]
(Figure 16b). Closer examination of additional gene hits would be needed to determine their biological
relevance for plant—fungal interactions.

Identify Genes based on Protein Motif Pattern

Search for Genes

expand all | collapse all

Find a searct o e

© Pattern

[~1042nvFwincic

Text
Gene models
Annotation, curation and

© Organism
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B Fung

identifiers
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Taxonomy © Pucciniomycetes
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Phenotype 7| Puccinia graminis

Genetic variation ¥ Puccinia graminis 1. sp. tritici CRL 75-36-700-3
Transcriptomics add these only these

Sequence analysis

I Protein Motif Pattern I

Get Answer

Figure 15. Identifying genes via the Motif Pattern tool. Shown is a search for the effector protein motif
in P. gramminis using a regular expression (Step 1). Strategy in FungiDB: http://fungidb.org/fungidb/
im.do?s=4e9454cd679286de.
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Figure 16. Identifying genes via the Motif Pattern tool, continued. (a) Predicted Signal Peptides search
deployed via the Add Step function (Step 2) (b) Overview of the search strategy. Search results
from Step 2 are intersected with 148 genes reported by Godfrey et al. (Step 3) Strategy in FungiDB:
http:/ /fungidb.org/fungidb /im.do?s=4e9454cd679286de.

7. EuPathDB/FungiDB Galaxy Workspace

EuPathDB Galaxy-based [38] workspace offers preloaded genomes, private data analysis and
display, and the ability to share and export analysis results [2]. Developed in partnership with
Globus Genomics [39] and accessed through the Analyze My Experiment tab on the home page of
FungiDB, the EuPathDB Galaxy instance houses a large variety of bioinformatics tools. Users can
create their own private Galaxy workspace by creating a Globus account through FungiDB or any
other EuPathDB database. After an account is created, sample workflows can be imported for editing,
and new custom workflows can be created which can be stored privately or shared with the wider
community or between EuPathDB Galaxy users. Results can be exported or shared with collaborators,
but the instance is not meant as a repository for long-term data storage. All genomes available in
FungiDB/EuPathDB sites are already preloaded into the EuPathDB Galaxy instance and, alongside
these, users can upload their own data for analysis.

Running a Preconfigured (Sample) Workflow

The EuPathDB Galaxy workspace has several workflows for RNA-Seq analysis and SNP calling
(available from the EuPathDB Galaxy Welcome page). Each pipeline can be initiated directly
from the welcome page; however, necessary input files must be uploaded prior to deploying
a preconfigured workflow.
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The analysis described here uses files obtained from the EBI BioProject PRJEB13569, which is
a RNA-Seq dataset deposited by the Wheat Open Blast initiative [40]. This dataset comprises RNA-Seq
samples collected from wheat leaf blades harvested from wheat-blast-infected fields in Bangladesh [41].
Wheat blast is a fungal disease caused by Magnaporthe oryzae (M. oryzae), a plant pathogen threatening
crops globally.

To load the following files into the Galaxy instance, click on the Get Data link in the Tools
section, select the Get Data via Globus from the EBI server option (Figure 17a), and enter Sample IDs.
As an example, we will use two Asymptomatic samples F12 (Run accession numbers: ERR1360178,
ERR1360179) and Symptomatic samples 12 (Run accession numbers: ERR1360192, ERR1360193).
Specify paired-end sequencing for each accession number and click Execute.
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Figure 17. Running a preconfigured workflow for paired-end RNA-Seq data with biological replicates.

(a) Upload files from EBI server (highlighted in purple); (b) Initiate a sample workflow by clicking on
the corresponding workflow link (highlighted); (c) Choose preloaded paired datasets from the Input
dataset drop down menu (highlighted). Some tools (e.g., Tophat2) require specification of the reference
genome (highlighted) which will be used to map reads. Use search box to find and select the reference
genome. Click on Run workflow to initiate the analysis.
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After all samples have been loaded successfully (highlighted in green), click on Analyze Data at the
top of the EuPathDB Galaxy screen to return to the main page and click on the third workflow within
the sample workflows list (Figure 17b); choose input datasets so that each pair forms a paired-end
sample. This workflow uses FastQC [42], Trimmomatic [43], TopHat2 [44], HTseq-count [45], and
DESeq2 [46]. Choose M. oryzae 70-15 genome for all workflow steps when prompted and then click on
the Run workflow button (Figure 17c). To send this run into a new history, check the box Send results to
a new history (Figure 17c). After the workflow has finished running, users can visualize the expression
graphs (as BigWig files) in FungiDB GBrowse (Figure 18). To import BigWig files into FungiDB
GBrowse, click on the Display in FungiDB GBrowse link, which will become visible once a user clicks
to expand the Bam to BigWig step in the workflow EuPathDb Galaxy history section on the right
(Figure 17b).
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Figure 18. Importing BigWig files into the FungiDB GBrowse from the EuPathDB Galaxy instance.
The data is scaled to local min/max. Shown are tracks from symptomatic and asymptomatic
samples (both replicates), followed by Annotated Transcripts and FungiDB pre-configured RNASeq
evidence tracks.

Previously, Mathioni et al. [47] reported that MAS3, a CASI-like domain-containing protein,
was implicated in virulence in the blast fungus M. oryzae infecting barley. To determine if this gene
is also up-regulated during infection in wheat in the RN A-Seq samples analyzed here, navigate to
MAS3 gene (MGG_09875) by entering the following coordinates in the Landmark or region search
window in GBrowse: CM001236:3,822,721.3,824,284. As a result, the GBrowse window along with all
corresponding BigWig tracks will be rescaled to the region specified. Next, zoom out to 50 kbp and
deploy the synteny option for Sordariomycetes from the Select Tracks tab. As demonstrated in Figure 19,
MGG_09875 is syntenic with an M. oryzae BR32 gene as one would expect; however, it is lacking
syntenic orthologs in other species. To access nonsyntenic orthologs of MAS3 in other species, navigate
to the Orthology and Synteny section within the gene record page.
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Figure 19. Viewing BigWig files in the FungiDB GBrowse. Shown are synteny tracks for selected
Sordariomycetes (highlighted in purple). Tracks can be activated from the Orthology and synteny section,
which is located under the Select Tracks tab.

8. Retrieve Sequences via Sequence Retrieval Tool

The Sequence Retrieval Tool (SRT) retrieves sequences in FASTA format using genome or proteome
coordinates (Figure 20). SRT is accessible from the Tools component on the home page or from the
Tools tab within the main grey main menu. This tool works independently from the data mining
infrastructure used when creating queries and results can be shown in the browser or downloaded
as a text file. The tool can be further customized by changing transcription/translation start and
stop site settings (Figure 20a,b). Fusarium oxysporum f.sp. lycopersici 4287 is an important tomato
pathogen. The FOXG_16418 gene encodes an effector protein that is required for virulence. To retrieve
the genomic sequence of this gene, enter the gene ID in the text box within the Retrieve Sequences By
Gene IDs window and select genomic sequence type.
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Figure 20. Sequence Retrieval Tool. (a) The tool can be initiated from the Tools component of the main
page (highlighted in purple). Retrieving Sequences by Gene IDs is shown for gene FOXG_16418.
Additional retrieval features are available: Retrieve Sequences By Genomic Sequence 1Ds, Retrieve Sequences
By EST IDs, Retrieve Sequences By Popset Isolate IDs, Retrieve Sequences By Open Reading Frame IDs;
(b) Help menu at the bottom of the page offers guidance in identification and selection of transcriptional
and translation start and stop sites; (c) Browser view of the results showing FASTA sequence for the
genomic sequence for gene FOXG_16418.

9. Empowering Users to Improve Genome Annotation

FungiDB has nearly 100 genomes and counting. Several Aspergillus species (A. fumigatus Af293
and A. nidulans FGSC A4), Cryptococcus (C. neoformans JEC21 and H99), and Neurospora crassa are
under active curation (via Chado relational database [48]). Other genomes, such as A. niger, A. oryzae,
C. immitis, C. posadasii, Ustilago maydis, and F. graminearum are either already loaded or being loaded
into the curation infrastructure, which is maintained in collaboration with the Wellcome Trust

Sanger Institute.

User comments offer the fastest way to improve gene records and to alert the curation team of
critical literature sources. We strongly encourage the community to offer their expertise to improve gene
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records. User comments about new findings or publications, or even negative results, help improve
genome annotations and provide evidence for alternative gene models. To add user comments, click
on the Add a comment link available on all gene record pages (Figure 21a). Figure 21b shows a user
comment form where a user can enter descriptive information about gene function, upload a reference
and files (e.g., images of protein tracking), and/or other gene identifiers. Several examples of user
comments are shown in Table 2. All user comments become immediately visible on the gene pages,
searchable via the text search, and can be modified at any time from a user account. To upload user
comments in bulk, email help@fungidb.org.

(a

~

AN5126 Microtubule binding protein HookA, putative
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Author:  Zhang et al.

Digital Object Identifier (DOI) ‘ rhelp
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Figure 21. Improving gene records via user comments. (a) Shown is a gene record page for a putative
microtubule-binding protein HookA AN5126 gene in A. nidulans. To add a comment, click on the
add a comment link, which is located at the top of the gene record page (highlighted in purple); (b)
User comment forms can be supplemented with scientific or experimental information (see comment
examples in Table 2); files can be uploaded as well.
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Table 2. Examples of user comments.

Comment type Example Comment
Gene name, gene synonym Cell division control protein Cdc48 is also known as dsc-6
Functional characterization This is a transcription factor involved in the regulation of copper import
Subcellular localization GFP tagging demonstrates that ham-5 co-localize with mak-2. Images attached
Phenotype Deletion of rim101 has resulted in capsule defects and increased virulence in mice models

10. Conclusions

FungiDB is a service-oriented resource created with the primary goal of providing fungal
researchers with access to data and with tools and functionality that enable them to ask their own
questions. While it is critical that all datasets are loaded carefully, and quality controlled before
public release, FungiDB strives to enable data mining to drive novel testable hypotheses rather
than only recapitulating published conclusions. FungiDB benefits tremendously from being part
of EuPathDB since resources can be more efficiently allocated and functionality can be broadly
applied across databases. Future developments in FungiDB will include improved data mining
tools, expanded workspaces for primary data analysis and integration, dedicated curatorial effort for
supported genomes, and integration of new datatypes and system-wide analysis tools. FungiDB will
continue to rely on the guidance of the fungal research community through advisory groups and by
direct communication with members of the community at scientific meetings or through emails to

help@fungidb.org.

Acknowledgments: The authors want to thank the members of the EuPathDB research communities and scientific
advisors for sharing knowledge and experience, and for making intellectual contributions to improve the services
offered via the FungiDB project. We also want to thank data contributors for providing datasets prepublication
and other fungal databases for collaborating with FungiDB to benefit the fungal community. Many thanks are also
extended to all past and present EuPathDB staff members who contributed and continue to diligently work on
numerous aspects of the quickly expanding project. FungiDB is supported in part by NIH HHSN272201400030C
and the Wellcome Trust grant WT108443MA to CHF. The project establishment has also benefited in the past
from the Burroughs Wellcome Fund (BWF) and the Alfred P. Sloan Foundation to Jason E. Stajich, University of
California, Riverside, CA USA.

Author Contributions: Evelina Y. Basenko conceived, designed, and led manuscript production; Evelina Y. Basenko,
Jane A. Pulman, Achchuthan Shanmugasundram, David Starns, Omar S. Harb, Kathryn Crouch,
Cristina Aurrecoechea, Susanne Warrenfeltz made individual contributions to the manuscript; Evelina Y. Basenko,
Jane A. Pulman, Achchuthan Shanmugasundram, Omar S. Harb and David Starns worked to produce the final
draft; Christian J. Stoeckert Jr., Jessica C. Kissinger, David S. Roos, Christiane Hertz-Fowler are PIs of the project at
corresponding locations.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

References

1. Stajich, J.E.; Harris, T.; Brunk, B.P; Brestelli, J.; Fischer, S.; Harb, O.S.; Kissinger, ]J.C.; Li, W.; Nayak, V.;
Pinney, D.E; et al. FungiDB: An integrated functional genomics database for fungi. Nucleic Acids Res.
2012, 40. [CrossRef] [PubMed]

2. Aurrecoechea, C.; Barreto, A.; Basenko, E.Y.; Brestelli, J.; Brunk, B.P,; Cade, S.; Crouch, K.; Doherty, R.;
Falke, D.; Fischer, S.; et al. EuPathDB: The eukaryotic pathogen genomics database resource. Nucleic Acids Res.
2017, 45, D581-D591. [CrossRef] [PubMed]

3.  Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, EZW. GenBank. Nucleic Acids Res. 2016, 44,
D67-D72. [CrossRef] [PubMed]

4. Yates, A.; Akanni, W.; Amode, M.R,; Barrell, D.; Billis, K.; Carvalho-Silva, D.; Cummins, C.; Clapham, P;
Fitzgerald, S.; Gil, L.; et al. Ensembl 2016. Nucleic Acids Res. 2016, 44, D710-D716. [CrossRef] [PubMed]


http://dx.doi.org/10.1093/nar/gkr918
http://www.ncbi.nlm.nih.gov/pubmed/22064857
http://dx.doi.org/10.1093/nar/gkw1105
http://www.ncbi.nlm.nih.gov/pubmed/27903906
http://dx.doi.org/10.1093/nar/gkv1276
http://www.ncbi.nlm.nih.gov/pubmed/26590407
http://dx.doi.org/10.1093/nar/gkv1157
http://www.ncbi.nlm.nih.gov/pubmed/26687719

J. Fungi 2018, 4, 39 26 of 28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Nordberg, H.; Cantor, M.; Dusheyko, S.; Hua, S.; Poliakov, A.; Shabalov, I.; Smirnova, T.; Grigoriev, I.V.;
Dubchak, I. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic
Acids Res. 2014, 42. [CrossRef] [PubMed]

Cerqueira, G.C.; Arnaud, M.B.; Inglis, D.O.; Skrzypek, M.S.; Binkley, G.; Simison, M.; Miyasato, S.R.;
Binkley, J.; Orvis, ].; Shah, P; et al. The Aspergillus Genome Database: Multispecies curation and incorporation
of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res. 2014, 42, D705-D710.
Skrzypek, M.S.; Binkley, J.; Binkley, G.; Miyasato, S.R.; Simison, M.; Sherlock, G. The Candida Genome
Database (CGD): Incorporation of Assembly 22, systematic identifiers and visualization of high throughput
sequencing data. Nucleic Acids Res. 2017, 45, D592-D596. [CrossRef] [PubMed]

Cherry, ] M.; Hong, E.L; Amundsen, C.; Balakrishnan, R.; Binkley, G.; Chan, E.T.; Christie, K.R,;
Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; et al. Saccharomyces Genome Database: The genomics resource of
budding yeast. Nucleic Acids Res. 2012, 40. [CrossRef] [PubMed]

McDowall, M.D.; Harris, M.A.; Lock, A.; Rutherford, K.; Staines, D.M.; Bihler, ].U.; Kersey, PJ.; Oliver, S.G;
Wood, V. PomBase 2015: Updates to the fission yeast database. Nucleic Acids Res. 2015, 43, D656-D661.
[CrossRef] [PubMed]

Cuomo, C.A; Birren, B.W. The fungal genome initiative and lessons learned from genome sequencing.
Methods Enzymol. 2010, 470, 833-855. [CrossRef] [PubMed]

Ruiz-Roldén, C.; Pareja-Jaime, Y.; Gonzéalez-Reyes, J.A.; G-Roncero, M.I. The transcription factor Con7-1 is
a master regulator of morphogenesis and virulence in Fusarium oxysporum. Mol. Plant Microbe Interact. 2015,
28, 55-68. [CrossRef] [PubMed]

Maglott, D.; Ostell, J.; Pruitt, K.D.; Tatusova, T. Entrez gene: Gene-centered information at NCBI. Nucleic
Acids Res. 2011, 39. [CrossRef] [PubMed]

McCluskey, K.; Wiest, A.; Plamann, M. The fungal genetics stock center: A repository for 50 years of fungal
genetics research. J. Biosci. 2010, 35, 119-126. [CrossRef] [PubMed]

Apweiler, R. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 2004, 32, D115-D119.
[CrossRef] [PubMed]

Winnenburg, R. PHI-base: a new database for pathogen host interactions. Nucleic Acids Res. 2006, 34,
D459-D464. [CrossRef] [PubMed]

Huerta-Cepas, J.; Capella-Gutiérrez, S.; Pryszcz, L.P.; Marcet-Houben, M.; Gabaldén, T. PhylomeDB v4:
Zooming into the plurality of evolutionary histories of a genome. Nucleic Acids Res. 2014, 42. [CrossRef]
[PubMed]

Baldwin, T.T.; Basenko, E.; Harb, O.; Brown, N.A.; Urban, M.; Hammond-Kosack, K.E.; Bregitzer, P.P.
Sharing mutants and experimental information prepublication using FgMutantDDb (https:/ /scabusa.org/
FgMutantDb). Fungal Genet. Biol. 2018.

Perkins, D.D.; Radford, A.; Sachs, M.S. The Neurospora Compendium; Academic Press: Cambridge, MA, USA,
2000; ISBN 0-12-550751-8.

Dewey, C.N. Aligning multiple whole genomes with mercator and MAVID. Methods Mol. Biol. 2007, 395,
221-235. [CrossRef] [PubMed]

Coradetti, S.T.; Xiong, Y.; Glass, N.L. Analysis of a conserved cellulase transcriptional regulator reveals
inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiologyopen 2013, 2,
595-609. [CrossRef] [PubMed]

Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene
and protein annotation. Nucleic Acids Res. 2016, 44, D457-D462. [CrossRef] [PubMed]

Caspi, R;; Billington, R.; Ferrer, L.; Foerster, H.; Fulcher, C.A.; Keseler, LM.; Kothari, A.; Krummenacker, M.;
Latendresse, M.; Mueller, L.A.; et al. The MetaCyc database of metabolic pathways and enzymes and
the BioCyec collection of pathway/genome databases. Nucleic Acids Res. 2016, 44, D471-D480. [CrossRef]
[PubMed]

Suh, M.].; Fedorova, N.D.; Cagas, S.E.; Hastings, S.; Fleischmann, R.D.; Peterson, S.N.; Perlin, D.S;
Nierman, W.C.; Pieper, R.; Momany, M. Development stage-specific proteomic profiling uncovers small,
lineage specific proteins most abundant in the Aspergillus fumigatus conidial proteome. Proteome Sci. 2012, 10.
[CrossRef] [PubMed]


http://dx.doi.org/10.1093/nar/gkt1069
http://www.ncbi.nlm.nih.gov/pubmed/24225321
http://dx.doi.org/10.1093/nar/gkw924
http://www.ncbi.nlm.nih.gov/pubmed/27738138
http://dx.doi.org/10.1093/nar/gkr1029
http://www.ncbi.nlm.nih.gov/pubmed/22110037
http://dx.doi.org/10.1093/nar/gku1040
http://www.ncbi.nlm.nih.gov/pubmed/25361970
http://dx.doi.org/10.1016/S0076-6879(10)70034-3
http://www.ncbi.nlm.nih.gov/pubmed/20946837
http://dx.doi.org/10.1094/MPMI-07-14-0205-R
http://www.ncbi.nlm.nih.gov/pubmed/25271883
http://dx.doi.org/10.1093/nar/gkq1237
http://www.ncbi.nlm.nih.gov/pubmed/21115458
http://dx.doi.org/10.1007/s12038-010-0014-6
http://www.ncbi.nlm.nih.gov/pubmed/20413916
http://dx.doi.org/10.1093/nar/gkh131
http://www.ncbi.nlm.nih.gov/pubmed/14681372
http://dx.doi.org/10.1093/nar/gkj047
http://www.ncbi.nlm.nih.gov/pubmed/16381911
http://dx.doi.org/10.1093/nar/gkt1177
http://www.ncbi.nlm.nih.gov/pubmed/24275491
https://scabusa.org/FgMutantDb
https://scabusa.org/FgMutantDb
http://dx.doi.org/10.1385/1-59745-514-8:221
http://www.ncbi.nlm.nih.gov/pubmed/17993677
http://dx.doi.org/10.1002/mbo3.94
http://www.ncbi.nlm.nih.gov/pubmed/23766336
http://dx.doi.org/10.1093/nar/gkv1070
http://www.ncbi.nlm.nih.gov/pubmed/26476454
http://dx.doi.org/10.1093/nar/gkv1164
http://www.ncbi.nlm.nih.gov/pubmed/26527732
http://dx.doi.org/10.1186/1477-5956-10-30
http://www.ncbi.nlm.nih.gov/pubmed/22545825

J. Fungi 2018, 4, 39 27 of 28

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Chen, Y.; Toffaletti, D.L.; Tenor, J.L.; Litvintseva, A.P; Fang, C.; Mitchell, T.G.; McDonald, T.R; Nielsen, K;
Boulware, D.R.; Bicanic, T.; et al. The Cryptococcus neoformans transcriptome at the site of human meningitis.
MBio 2014, 5. [CrossRef] [PubMed]

Brown, G.D.; Denning, D.W.; Gow, N.AR,; Levitz, SM.; Netea, M.G.; White, T.C. Hidden killers:
Human fungal infections. Sci. Transl. Med. 2012, 4. [CrossRef] [PubMed]

Molloy, S.F.; Chiller, T.; Greene, G.S.; Burry, J.; Govender, N.P.; Kanyama, C.; Mfinanga, S.; Lesikari, S.;
Mapoure, Y.N.; Kouanfack, C.; et al. Cryptococcal meningitis: A neglected NTD? PLoS Negl. Trop. Dis.
2017, 11. [CrossRef] [PubMed]

Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, ].M.; Davis, A.P.; Dolinski, K;
Dwight, S.S.; Eppig, ].T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25-29.
[CrossRef] [PubMed]

The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources: The gene
ontology consortium. Nucleic Acids Res. 2017, 45, D331-D338. [CrossRef]

Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J. R. Stat. Soc. B 1995, 57, 289-300.

Simes, R.J. An improved bonferroni procedure for multiple tests of significance. Biometrika 1986, 73, 751-754.
[CrossRef]

Kolde, R.; Vilo, J]. GOsummaries: an R Package for visual functional annotation of experimental data.
F1000Research 2015. [CrossRef] [PubMed]

Supek, F.; Bosnjak, M.; Skunca, N.; Smuc, T. Revigo summarizes and visualizes long lists of gene ontology
terms. PLoS One 2011, 6. [CrossRef] [PubMed]

De Sousa Lima, P.; Casaletti, L.; Baildao, A.M.; de Vasconcelos, A.T.R.; da Rocha Fernandes, G.; de Almeida
Soares, C.M. Transcriptional and proteomic responses to carbon starvation in Paracoccidioides. PLoS Negl.
Trop. Dis. 2014, 8. [CrossRef] [PubMed]

Sharpton, T.J.; Stajich, ].E.; Rounsley, S.D.; Gardner, M.].; Wortman, J.R.; Jordar, V.S.; Maiti, R.; Kodira, C.D.;
Neafsey, D.E.; Zeng, Q.; et al. Comparative genomic analyses of the human fungal pathogens Coccidioides
and their relatives. Genome Res. 2009, 19, 1722-1731. [CrossRef] [PubMed]

Noble, J.A.; Nelson, R.G.; Fufaa, G.D.; Kang, P; Shafir, S.C.; Galgiani, ].N. Effect of geography on the analysis
of coccidioidomycosis-associated deaths, United States. Emerg. Infect. Dis. 2016, 22, 1821-1823. [CrossRef]
[PubMed]

Engelthaler, D.M.; Roe, C.C.; Hepp, C.M.; Teixeira, M.; Driebe, E.M.; Schupp, ] M.; Gade, L.; Waddell, V.;
Komatsu, K.; Arathoon, E.; et al. Local population structure and patterns of Western Hemisphere dispersal
for Coccidioides spp., the fungal cause of Valley fever. MBio 2016, 7. [CrossRef] [PubMed]

Godfrey, D.; Bohlenius, H.; Pedersen, C.; Zhang, Z.; Emmersen, ].; Thordal-Christensen, H. Powdery mildew
fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genom. 2010, 11. [CrossRef] [PubMed]

Afgan, E.; Baker, D.; van den Beek, M.; Blankenberg, D.; Bouvier, D,; Cech, M.; Chilton, J.; Clements, D.;
Coraor, N.; Eberhard, C.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2016 update. Nucleic Acids Res. 2016, 44, W3-W10. [CrossRef] [PubMed]

Madduri, RK.; Sulakhe, D.; Lacinski, L.; Liu, B.; Rodriguez, A.; Chard, K.; Dave, U.].; Foster, I.T. Experiences
building Globus Genomics: A next-generation sequencing analysis service using Galaxy, Globus, and
Amazon Web Services. Concurr. Comput. Pract. Exp. 2014, 26, 2266-2279. [CrossRef] [PubMed]

Open Wheat Blast. Available online: http:/ /s620715531.websitehome.co.uk/owb/ (accessed on 7 March 2018).
Islam, M.T.; Croll, D.; Gladieux, P; Soanes, D.M.; Persoons, A.; Bhattacharjee, P.; Hossain, M.S.; Gupta, D.R,;
Rahman, M.M.; Mahboob, M.G.; et al. Emergence of wheat blast in Bangladesh was caused by a South
American lineage of Magnaporthe oryzae. BMC Biol. 2016, 14. [CrossRef] [PubMed]

Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Institute:
Cambridge, UK, 2017.

Bolger, AM.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data.
Bioinformatics 2014, 30, 2114-2120. [CrossRef] [PubMed]

Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics
2009, 25, 1105-1111. [CrossRef] [PubMed]

Anders, S.; Pyl, PT.; Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data.
Bioinformatics 2015, 31, 166-169. [CrossRef] [PubMed]


http://dx.doi.org/10.1128/mBio.01087-13
http://www.ncbi.nlm.nih.gov/pubmed/24496797
http://dx.doi.org/10.1126/scitranslmed.3004404
http://www.ncbi.nlm.nih.gov/pubmed/23253612
http://dx.doi.org/10.1371/journal.pntd.0005575
http://www.ncbi.nlm.nih.gov/pubmed/28662028
http://dx.doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://dx.doi.org/10.1093/nar/gkw1108
http://dx.doi.org/10.1093/biomet/73.3.751
http://dx.doi.org/10.12688/f1000research.6925.1
http://www.ncbi.nlm.nih.gov/pubmed/26913188
http://dx.doi.org/10.1371/journal.pone.0021800
http://www.ncbi.nlm.nih.gov/pubmed/21789182
http://dx.doi.org/10.1371/journal.pntd.0002855
http://www.ncbi.nlm.nih.gov/pubmed/24811072
http://dx.doi.org/10.1101/gr.087551.108
http://www.ncbi.nlm.nih.gov/pubmed/19717792
http://dx.doi.org/10.3201/eid2210.160696
http://www.ncbi.nlm.nih.gov/pubmed/27649029
http://dx.doi.org/10.1128/mBio.00550-16
http://www.ncbi.nlm.nih.gov/pubmed/27118594
http://dx.doi.org/10.1186/1471-2164-11-317
http://www.ncbi.nlm.nih.gov/pubmed/20487537
http://dx.doi.org/10.1093/nar/gkw343
http://www.ncbi.nlm.nih.gov/pubmed/27137889
http://dx.doi.org/10.1002/cpe.3274
http://www.ncbi.nlm.nih.gov/pubmed/25342933
http://s620715531.websitehome.co.uk/owb/
http://dx.doi.org/10.1186/s12915-016-0309-7
http://www.ncbi.nlm.nih.gov/pubmed/27716181
http://dx.doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
http://dx.doi.org/10.1093/bioinformatics/btp120
http://www.ncbi.nlm.nih.gov/pubmed/19289445
http://dx.doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pubmed/25260700

J. Fungi 2018, 4, 39 28 of 28

46. Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11.
[CrossRef] [PubMed]

47. Mathioni, S.M.; Bel6, A.; Rizzo, C.J.; Dean, R.A.; Donofrio, N.M. Transcriptome profiling of the rice blast
fungus during invasive plant infection and in vitro stresses. BMIC Genom. 2011, 12. [CrossRef] [PubMed]

48. Zhou, P.; Emmert, D.; Zhang, P. Using Chado to Store Genome Annotation Data. In Current Protocols in
Bioinformatics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; ISBN 9780471250951.

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://www.ncbi.nlm.nih.gov/pubmed/20979621
http://dx.doi.org/10.1186/1471-2164-12-49
http://www.ncbi.nlm.nih.gov/pubmed/21247492
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Overview of the FungiDB Home Page and its Features 
	Exploring FungiDB Records: Gene ID Searches and Gene Record Pages 
	Creating in Silico Experiments via the FungiDB Query Interface 
	Mining Proteomic Datasets 
	Creating In Silico RNA-Seq Experiments 

	Additional Tools for Enrichment and Data Analysis 
	GO Term Enrichment and Visualization 
	Metabolic Pathway Enrichment 

	Data Mining via the Search for Other Data Types Panel 
	Identifying SNPs between Fungal Isolates Collected in Various Geographical Areas 
	Utilizing the Genomic Location Search and Genomic Colocation Tool in Custom Queries 
	Searching for Fungal-Specific Motifs 

	EuPathDB/FungiDB Galaxy Workspace 
	Retrieve Sequences via Sequence Retrieval Tool 
	Empowering Users to Improve Genome Annotation 
	Conclusions 
	References

