
 

 
 

 

 
J. Fungi 2021, 7, 373. https://doi.org/10.3390/jof7050373 www.mdpi.com/journal/jof 

Article 

Transcriptome Analysis of the Japanese Pine Sawyer Beetle, 

Monochamus alternatus, Infected with the Entomopathogenic 

Fungus Metarhizium anisopliae JEF-197 

Jong-Cheol Kim 1, Mi-Rong Lee 1, Sihyeon Kim 1, So-Eun Park 1, Se-Jin Lee 2, Tae-Young Shin 1, Woo-Jin Kim 1,* 

and Jaesu Kim 1,3,* 

1 Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, 

Jeonju 54896, Korea; jc.kim124@gmail.com (J.-C.K.); mimilee248@naver.com (M.-R.L.);  

kdkim22@naver.com (S.K.); pse0330@naver.com (S.-E.P.); tyshin@jbnu.ac.kr (T.-Y.S.) 
2 Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea; 

sejinlee@scnu.ac.kr 
3 Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Korea 

* Correspondence: woojin.kim@gmail.com (W.-J.K.); jskim10@jbnu.ac.kr (J.K.); Tel.: +82-63-270-2525 (J.K.) 

Abstract: The Japanese pine sawyer (JPS) beetle, Monochamus alternatus Hope (Coleoptera: Ceram-

bycidae), damages pine trees and transmits the pine wilt nematode, Bursaphelenchus xylophilus 

Nickle. Chemical agents have been used to control JPS beetle, but due to various issues, efforts are 

being made to replace these chemical agents with entomopathogenic fungi. We investigated the 

expression of immune-related genes in JPS beetle in response to infection with JEF-197, a Metarhi-

zium anisopliae isolate, using RNA-seq. RNA samples were obtained from JEF-197, JPS adults treated 

with JEF-197, and non-treated JPS adults on the 8th day after fungal treatment, and RNA-seq was 

performed using Illumina sequencing. JPS beetle transcriptome was assembled de novo and differ-

entially expressed gene (DEG) analysis was performed. There were 719 and 1953 up- and downreg-

ulated unigenes upon JEF-197 infection, respectively. Upregulated contigs included genes involved 

in RNA transport, ribosome biogenesis in eukaryotes, spliceosome-related genes, and genes in-

volved in immune-related signaling pathways such as the Toll and Imd pathways. Forty-two fungal 

DEGs related to energy and protein metabolism were upregulated, and genes involved in the stress 

response were also upregulated in the infected JPS beetles. Together, our results indicate that infec-

tion of JPS beetles by JEF-197 induces the expression of immune-related genes. 

Keywords: bioinformatics; Metarhizium anisopliae; mode of action; Monochamus alternatus;  

RNA sequencing 

 

1. Introduction 

The Japanese pine sawyer (JPS) beetle, Monochamus alternatus Hope (Coleoptera: 

Cerambycidae), is a major pest that causes serious damage to pine trees by mediating 

transmission of the pine wilt nematode, Bursaphelenchus xylophilus Nickle (Aphelenchida: 

Aphelenchoididae) that causes pine wilt disease [1]. This beetle has spread to East Asian 

countries including Korea, Japan, and China, in addition to Portugal in Europe [2,3]. Dis-

ease-causing nematodes or insects that mediate the transmission of these nematodes need 

to be controlled to prevent the spread of pine wilt disease. The main means of controlling 

JPS beetles are chemical agents such as neonicotinoids, fenitrothions, thiacloprids, and 

thiamethoxams [4,5]. However, these chemical agents are toxic to the environment and 

can induce insect resistance. Therefore, natural microbial materials have been investi-

gated as alternatives to these chemical agents [6,7]. Among natural microbial agents, en-
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tomopathogenic fungi have attracted great interest as environmentally sound biopesti-

cides [8]. The entomopathogenic fungus Beauveria bassiana was developed as a biopesti-

cide in Japan to control JPS beetles [9–12], and in Portugal, it has been used to control M. 

galloprovincialis, another allied insect species that transmits the pine wilt nematode [13]. 

Several other countries are also conducting research into entomopathogenic fungi as con-

trol agents for nematode vectors. Previously, we confirmed that this fungus is highly vir-

ulent against JPS beetles [14,15]. 

Fungal-based biopesticides, however, are slower at controlling insects than chemical 

pesticides. Therefore, research into the responses of insects to fungal toxins is required to 

develop methods to accelerate insect host killing [16,17]. The immune reaction of insect 

hosts begins with immune system elements such as the complement system, immune 

cells, and antimicrobial proteins that recognize pathogen-associated molecular patterns 

(PAMPs). Insects, however, can become resistant to pathogen infection due to evolved 

immune system responses. Cellular reactions are mediated by hemocytes that initiate 

phagocytosis, encapsulation, and/or modulation of pathogens. Moreover, the humoral re-

sponse promotes the production of antimicrobial peptides, coagulation, and melanization 

[18–22]. The iridoid monoterpene, a major component of antifungal secretion, is used by 

the mustard leaf beetle, Phaedon cochleariae, to inhibit the growth of Beauveria bassiana in 

vitro [23]. 

The insect epicuticle comprises a wax layer containing fatty acids, lipids, and sterols, 

and is a structurally and chemically complex tissue. Infection can begin only when the 

conidia of the fungus attach firmly to the outermost insect integument by hydrophobic 

interactions or mucilage [24–26]. To avoid the host immune system, some pathogens ex-

press cell surface proteins that mimic the host surface or dissociation proteases that de-

grade host immune proteins [27]. Fungi that penetrate the cuticle of insects induce anti-

microbial activity in the cuticle matrix and fat body and defense mechanisms such as lo-

calized melanization around penetrating fungal hyphae [26,28,29]. Fungi secrete extracel-

lular hydrolytic enzymes such as catalase, chitinase, lipase, phospholipase C, and protease 

to invade the insect host [30,31]. 

RNA-seq is an ideal method for analyzing the expression levels of a large number of 

genes in insects infected with fungi, and when reference genomes are not available, as is 

the case for JPS beetles, the transcript sequences obtained can be used for de novo tran-

scriptome assembly [32]. RNA-seq not only provides information about RNA sequences 

and abundance, but it can also provide insights into RNA processing and regulation 

[33,34]. A previous study generated a gene database of JPS beetles using Illumina sequenc-

ing technology [35]. Furthermore, a unique recognition gene—namely, galectin-3—was 

found to be expressed at high levels in JPS adults in response to invading microorganisms 

but was not identified in other insects [36]. In addition, chemosensory genes, insecticide 

resistance-related genes, insecticide receptor genes, RNA interference genes, Bacillus thu-

ringiensis (Bt) receptors, intestinal digestive enzymes, and immune-related genes have 

been identified in JPS beetles through transcriptome analysis [37,38]. In particular, RNA-

seq analysis of the pupae of JPS beetles treated with symbiotic microorganisms and fungi 

was used to investigate the immune response of JPS beetles to infection. The Toll pathway 

was found to be involved in the immune response to the entomopathogenic fungi B. bas-

siana, and Toll and IMD signaling was involved in the immune response to the symbiotic 

fungi Sporothrix sp. These studies confirmed that insects can show immune responses to 

fungi [39]. 

In this study, we analyzed changes in gene expression in JPS beetles after treatment 

of Metarhizium anisopliae JEF-197, a fungus that was shown to have high virulence in JPS 

beetles in a previous study [14]. To demonstrate the potential of JEF-197 as a biopesticide, 

we performed semi-field experiments to target the reproducing JPS in late summer [14] 

and newly emerging JPS from infested trees in early summer [15], both of which target 

JPS adults to study the reaction of JPS adults against the entomopathogenic fungus. We 

studied changes in gene expression in JPS beetles during the process of JEF-197-induced 
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death and confirmed that the expression of specific genes in JPS beetles changed signifi-

cantly at specific time points after fungal treatment. Total RNA of JPS beetles was ex-

tracted at various time points, and Illumina short reads of RNA-seq libraries were ob-

tained. A protein coding in silico cDNA library of JPS adults was constructed by de novo 

assembly, and DEGs were analyzed by mapping short reads to the in silico cDNA library. 

Changes in metabolism were confirmed by analyzing pathways and performing gene on-

tology (GO) analysis. In addition, changes in the expression levels of JPS adult immune 

genes upon fungal infection were assessed. Secondly, we confirmed that the expression 

level of specific fungal genes changed significantly during fungal infection. Candidate 

genes of M. anisopliae that potentially played a role in killing JPS adults were identified 

through bioinformatic analyses. 

2. Materials and Methods 

2.1. Japanese Pine Sawyer Beetles and the Entomopathogenic Fungus JEF-197 

Adult Japanese pine sawyer (JPS) beetles, M. alternatus Hope, were obtained from the 

insect rearing company Osangkinsect Co. (http://www.osang.com, accessed on May 2021, 

Korea). Final stage larvae were stored at 10 °C to induce dormancy. Larvae were main-

tained at 20 °C for 7 days for dormancy awakening and then moved to 25 °C for pupation 

and emergence. Rearing conditions were 60% relative humidity (RH) and a photoperiod 

(light:dark) of 16:8. All experiments involved JPS adults within 10 days of emergence. 

The entomopathogenic fungus Metarhizium anisopliae isolate JEF-197 (Insect Microbi-

ology and Biotechnology Laboratory, Jeonbuk National University, Korea), which was 

originally isolated from soil collected on a mountain (35°43′42” N 127°06′03” E, Wanju, 

Korea), was used in this study [14]. In a previous study, this fungal isolate showed high 

virulence against JPS adults. JEF-197 was cultured on quarter-strength Sabouraud dex-

trose agar (1/4 SDA, BD Difco ™, NJ, USA) at 27 °C for 14 days in the dark. Conidia were 

harvested from cultures grown on 1/4 SDA and resuspended in 0.03% siloxane solution 

(Silwet, FarmHanong, Nonsan, Korea). Concentration of the conidia suspension was as-

sessed using a hemocytometer, and conidia were diluted to 1.0 × 107 conidia/mL in 0.03% 

siloxane solution to prepare conidial suspensions. 

2.2. Treatment of JPS Adults with M. anisopliae JEF-197 

One JPS adult was placed in a plastic cup (lid 100 mm diameter × bottom 60 mm 

diameter × height 150 mm), and then sprayed either with 1 mL of the conidial suspension 

(1.0 × 107 conidia/mL using 0.03% siloxane solution) or 1 mL 0.03% siloxane solution (non-

treated control). Plastic cups with JPS adults were maintained at 25 ± 2 °C at 95% RH, and 

an approximately 10 cm long pine stem was placed in the dish as a food source. Mortalities 

of JPS adults were assessed on a daily basis. Fifteen JPS adults were included in each treat-

ment group, and experiments were repeated in triplicate. Differences in mortality of JPS 

adults among groups were analyzed using t-tests in SPSS ver. 19.0 (SPSS Inc., Chicago, IL, 

USA) using a significance level of 0.05 (α), and LT50 was calculated by probit analysis. 

2.3. RNA Extraction and Construction of RNA-Seq Libraries 

JEF-197 fungal samples were cultured in 1/4 SDA medium and harvested on day 8 

after inoculation of the medium. JPS samples were treated with the fungus as described 

above, and then three live JPS adults from fungal-treated and non-treated control groups 

were obtained on the 8th day after treatment, respectively. To analyze changes in the ex-

pression of specific immune-related genes over time, additional JPS samples were col-

lected from fungus-treated and non-treated control groups at 6, 24, 48, 72, 96, 120, and 192 

h after treatment as described above.  

RNA was extracted from all samples on the 8th day after fungal treatment. Individual 

adult JPS beetles were placed in 15 mL conical tubes (SPL life sciences, Pocheon, Korea) 

with 5 mL Trizol TM reagent (Molecular Research Center Inc., Cincinnati, OH, USA). Adult 
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JPS beetles were then ground using an iron pestle, and 400 μL of ground insect sample in 

Trizol reagent was transferred to a 1.5 mL microtube and ground again using an Ultra 

grinder BTM (Taeshin Bio Science, Namyangju, Korea). Total RNA from fungus-treated 

and non-treated control JPS adults was extracted using Trizol reagent according to the 

manufacturer’s instructions. The integrity of the extracted RNA was examined using an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Sequencing li-

braries of the samples were made using the Truseq RNA kit (Illumina, San Diego, CA, 

USA) according to the manufacturer’s protocol. cDNA library construction and Illumina 

sequencing of the samples were performed at Macrogen Corporation (Seoul, Korea). First, 

poly-A containing mRNA molecules were purified using poly-T oligo-attached magnetic 

beads followed by fragmentation into small pieces under elevated temperature with di-

valent cations. Cleaved RNA fragments were reverse-transcribed into first strand cDNA 

with random primers. This was followed by second strand cDNA synthesis using DNA 

polymerase I and RNase H. These cDNA fragments were subjected to an end repair pro-

cess, addition of a single dATP, and ligation of sequencing adapters. Products were then 

purified and enriched by PCR to create the final cDNA library. All samples were se-

quenced on an Illumina HiSeq2000 sequencer (Illumina, San Diego, CA, USA) to generate 

high-throughput transcriptome sequence data with an average read length of 101 bp. 

2.4. De Novo Transcriptome Assembly and Differentially Expressed Gene (DEG) Analysis 

Three biological replicates from each group were sequenced, and the qualities of the 

Illumina short reads were checked using fastQC v.0.11.8 [40]. Short reads were filtered to 

remove low-quality sequences using the trimmomatic program [41], and JEF-197 and JPS 

beetle contigs were assembled using the Trinity de novo assembler v.2.8.5 [42] with default 

options. Assembled contigs with protein coding capacity were identified by 

TransDecoder v5.5.0 (https://github.com/TransDecoder, accessed on January 2021). The 

numbers of short reads that mapped to contigs were quantified by Kallisto v.0.45.0 [43] to 

calculate transcript per million (TPM) values. Among the isoforms of contigs, those with 

the highest TPM values were used, and those with TPM values of 0 were removed. Fil-

tered contigs were subjected to DEG analysis under the condition of FDR < 0.05 using 

edgeR [44]. 

2.5. Functional Annotation and Gene Set Enrichment Analysis 

JEF-197 and JPS beetle contigs were identified using an E-value threshold of 1 × 10−5 

using the blastx function of Blast2GO v.5.2.5 [45] and the NCBI insect nr database. Im-

mune-related genes in JPS beetle contigs were identified as described above using a data-

base of immune-related genes of arthropods (immunoDB; http://cegg.unige.ch/In-

secta/immunodb). Among the contigs identified in the immunoDB, contigs with e-values 

lower than 1 × 10−100 were used to analyze the expression level of immune-related genes. 

In addition, genes related to Toll, IMD, and JAK/STAT signaling, which are the major im-

mune signaling pathways in insects, were analyzed, including contigs with E-values 

higher than 1 × 10−100. Annotated contigs encoding immune-related genes were classified 

by immunological class and log2 FC value (fungal-treated/non-treated control JPS adults). 

Analysis of gene ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Ge-

nomes) pathways was performed by grouping upregulated and downregulated genes. 

GO analysis of DEGs was performed using the InterProScan function of Blast2GO, which 

interrogates the CDD, HAMAP, HMMPanther, HMMPfam, HMMPIR, FPrintScan, and 

BlastProDom databases (https://www.ebi.ac.uk/interpro/, accessed on January 2021). Af-

ter annotation, we assessed whether upregulated and downregulated contigs belonged to 

one or more of the following three GO groups: biological process, cellular component, and 

molecular function at GO level 3. KEGG pathway analysis was performed using the BBH 

method and insect databases present in the KEGG Automatic Annotation Server (KAAS, 

http://www.genom.jp/tools/kaas/, accessed on January 2021). 
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DEGs in fungus-infected JPS beetles were identified based on the Tribolium castaneum 

protein database (Tcas5.2, Ensembl database) and E-value threshold of 1 × 10−10 using the 

blastx function of Blast2GO. DEGs of fungus-infected JPS beetles were classified into eight 

groups based on up- and downregulated genes (|log2FC| < 1, 1–2, 2–3, and >3) and were 

then subjected to GO enrichment analysis by g:profiler [46] using a Benjamini–Hochberg 

false discovery rate (FDR) < 0.05 to identify GO terms and KEGG pathways associated 

with the various groups of genes. 

2.6. Gene Expression Validation by qRT-PCR 

Ten qPCR primers were used in qRT-PCR analyses to validate RNA-seq results. Pri-

mers were designed based on the coding regions of contigs using the online program 

SnapDragon (https://www.flyrnai.org/snapdragon, accessed on January 2021). Sequences 

of all primers used in this study are listed in Table S1. The actin gene (JPS_TRIN-

ITY_DN629_c0_g1) was used as an amplification control.  

Extracted RNA from JPS beetles was used as a template to synthesize cDNA for RT-

PCR and qRT-PCR. One microgram of total RNA from each sample was subjected to re-

verse transcription with an oligo (dT) 15 primer (Promega, MI, USA) using Accupower® 

RT PreMix (Bioneer, Daejeon, Korea). RT-PCR was conducted using the following condi-

tions: 94 °C for 3 min, 30 cycles of 94 °C for 30 s, 60 °C for 30 s, and 74 °C for 30 s, and a 

final extension step at 74 °C for 3 min using Accupower ® PCR PreMix (Bioneer, Daejeon, 

Korea). PCR products were identified by 1.5% agarose gel electrophoresis (data not 

shown). Real-time PCR was performed using the Thermo Scientific Verso SYBR Green 1-

step qRT-PCR ROX Mix kit (Thermo-Fisher Scientific, Carlsbad, CA, USA) and the 96-well 

Bio-Rad CFX96 Real-Time PCR System (Bio-Rad, Hercules, CA, USA). Total RNA samples 

that were not reverse transcribed were used as additional negative controls for PCR. PCR 

conditions were as follows: 95 °C for 2 min followed by 40 cycles of 95 °C for 5 s and 60 

°C for 15 s. The actin gene of JPS beetle was used to normalize the expression level of 

target genes. Melting curve analysis was performed to assess non-specific amplification. 

Relative gene expression (fold change) was calculated using the 2−ΔΔCt method. All exper-

iments were performed in triplicate. Statistical analyses were performed using Student’s 

t-test, and a p-value < 0.05 was considered to indicate a significant difference. 

3. Results 

3.1. Time Course of Fungal Virulence 

JPS adults sprayed with a conidial suspension (1.0 × 107 conidia/mL) of JEF-197 had 

a mortality of 53.3% on the 8th day after fungal inoculation (Figure 1a), and the LT50 of 

adults was 7.86 days, which was confirmed by probit analysis (χ2 = 8.774, df = 10, p = 0.554). 

On the 10th day after fungal treatment, the mortality of non-treated control and fungus-

treated JPS adults was 11.1% and 66.7%, respectively, which was significantly different (t 

= 9.423, p < 0.001). On the 4th day after death, white mycelia and green conidia were ob-

served on the surface of JPS cadavers (Figure 1b). After the fungal treatment, the time 

point of LT50 in the infected JPS beetles was determined to extract RNAs and analyze gene 

expression to figure out the response of beetle when the fungus was actively infecting. 

In this work, we analyzed gene expression in JPS beetles and the fungus at the same 

time points of LT50 because the fungus in the infected insect needed to grow enough for 

analysis. In the results, significant responses of JPS genes against fungal infection were 

identified; however, the fungal gene expression profile was relatively simple, probably 

due to the small amounts of fungal transcripts obtained from the infected JPS. Because the 

immune response is induced at the onset of infection, the immunity of insects at the LT50 

reflects the late stage of infection. However, it was identified for the persistent immune 

response of insects against fungal infection. These are described in Section 3.4 and 3.6. In 

order to analyze the reaction to the fungi more clearly, an improvement in the method of 
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the experiment was needed. Previous studies have used transcriptome analysis to inves-

tigate interactions based on sequencing of RNA extracted from the pathogen and host at 

different time points [47]. However, using dual RNA-seq, it is possible to simultaneously 

measure multiple transcripts without physically separating cells [48]. Individual studies 

are needed in consideration of the timing of analysis of fungi and insects. 

 

Figure 1. Characteristics of Japanese pine sawyer (JPS) beetle adults treated with the entomopathogenic fungus M. an-

isopliae JEF-197. JPS beetles were inoculated with M. anisopliae JEF-197 by spraying of a 1.0 × 107 conidia/mL conidial sus-

pension, and the number of dead JPS adults was counted daily for 12 days. Beetles were maintained at a temperature of 

25 ± 2 °C. Non-treated control JPS adults were sprayed with 0.03% siloxane solution. (a) Mortality of JPS beetles in response 

to M. anisopliae JEF-197 treatment. (b) JPS beetle symptoms induced by fungal infection. 

3.2. Construction of in Silico cDNA Libraries of M. anisopliae JEF-197 and JAPANESE Pine 

Sawyer Beetle 

A total of 55,816,117 raw RNA-seq reads were obtained from JEF-197 (NCBI SRA 

accession# PRJNA691966) while 51,085,191 and 50,416,917 raw reads were obtained from 

negative control and fungus-inoculated JPS beetles (NCBI SRA accession# PRJNA691967), 

respectively (Table S2). The quality of raw reads was assessed using the fastQC program. 

The de novo assembled transcript sequences of JEF-197 and JPS adults were filtered to se-

lect contigs with protein coding capacity; 35,334 and 52,306 contigs including 9286 and 

19,046 unigenes were obtained from JEF-197 and JPS beetles, respectively. The N50 of JEF-

197 was 1500 bp while that of JPS beetles was 2007 bp (Table S3). JEF-197 and JPS beetles 

had 59.1% and 65.9% contigs with a contig length less than 1 kb, respectively (Figure S1). 

3.3. Differentially Expressed Genes in Japanese Pine Sawyer Beetle as a Result of  

Fungal Infection 

To accurately measure gene expression levels, only contigs with the highest TPM 

were retained, and genes with a TPM value of 0 were removed. Finally, 14,156 contigs 

were filtered for DEG analysis. Illumina short reads of negative control and fungus-

treated JPS beetles were mapped to the 14,156 JPS beetle unigenes. Gene expression levels 

of 2672 JPS beetle unigenes showed significant differences, and there were 719 and 1953 
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unigenes with increased and decreased expression, respectively. The number of unigenes 

that were between 2- and 8-fold upregulated or downregulated genes was 614 (85.4%) and 

1500 (76.8%), respectively (Figure 2a). Gene expression levels were compared using the 

condition of FDR < 0.05 in edgeR. There were more unigenes with decreased expression 

levels than with increased expression levels (Figure 2b,c). To validate the RNA-seq results, 

the expression levels of seven JPS beetle genes were assessed using qRT-PCR. Gene ex-

pression levels measured by qRT-PCR were in a good accordance with those inferred 

based on RNA-seq (Figure S2). 

 

Figure 2. Distribution of differentially expressed genes in JPS adults infected with M. anisopliae JEF-197 based on fold 

change values (FDR < 0.05). The number of contigs for each FC (fold change) value of 1 was counted to assess changes in 

gene expression of JPS beetles treated with JEF-197. (a) Distribution of DEGs in M. anisopliae JEF-197-infected JPS adults. 

(b) MA plot of infected JPS adult DEGs. (c) Volcano plot of infected JPS adult DEGs. 

3.4. Changes in Japanese Pine Sawyer Beetle Gene Expression after Fungal Treatment 

Functions of the 2672 DEGs were annotated by InterProScan based on the EMBL da-

tabase. A total of 578 (48.3%) upregulated and 205 (24.5%) downregulated JPS beetle con-

tigs were annotated with GO functions. As a result, a total 246 and 239 genes were anno-

tated with the GO term of biological process, while 145 and 90 genes were annotated with 

the GO term cellular component function and 327 and 363 genes with the GO term molec-

ular function, respectively (Figure 3). There were more upregulated unigenes than down-

regulated unigenes annotated as being involved in biological processes. In particular, 

many upregulated genes were annotated as being involved in cellular component organ-

ization or biogenesis (GO:0071840), while downregulated genes were annotated as having 

signaling (GO:0023052), transmembrane transport (GO:0055085), cellular response to 

stimulus (GO:0051716), signal transduction (GO:0007165), and cell communication 

(GO:0007154) functions (Figure 3a). Most unigenes with a cellular component annotation 

were upregulated. Only upregulated unigenes were annotated as having a cytoplasmic 

function (GO:0005737), nuclear protein-containing complex (GO:0140513), membrane-en-

closed lumen (GO:0031974), or catalytic complex (GO:1902494) genes, while only down-

regulated unigenes were annotated as having an intrinsic membrane component 
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(GO:0031224) (Figure 3b). Most unigenes annotated as having a molecular function were 

upregulated. Only upregulated unigenes were annotated as having catalytic activity 

(GO:0003824), small molecule binding (GO:0036094), and carbohydrate derivative bind-

ing activity (GO:0140096) (Figure 3c). 

A total of 414 of 719 upregulated unigenes and 259 of 1953 downregulated JPS beetle 

unigenes were annotated by a KEGG ontology (KO) identifiers using pathway-based def-

initions of orthologous genes. KEGG analysis revealed more upregulated pathways than 

downregulated pathways. The 414 upregulated genes were involved in 250 pathways in-

cluding the spliceosome (KEGG:03040, 13), RNA transport (KEGG:03013, 13), neuro-

degeneration-multiple diseases pathways (KEGG:05022, 12), amyotrophic lateral sclerosis 

(KEGG:05014, 11), Toll and Imd signaling pathways (KEGG:04624, 10), and Shigellosis 

(KEGG:05131, 10). The 156 downregulated unigenes were involved in 246 pathways in-

cluding axon regeneration (KEGG:04361, 13), human papillomavirus infection 

(KEGG:05165, 13), pathways in cancer (KEGG:05200, 12), Wnt signaling pathway 

(KEGG:04310, 9), axon guidance (KEGG:04360, 9), and the MAPK signaling pathway 

(KEGG:04010, 8) (Table S4).  

 

Figure 3. Gene ontology (GO) analysis of DEGs of JPS beetles treated with M. anisopliae JEF-197. Unigenes over 2-fold 

upregulated and less than 0.5-fold downregulated were subjected to analysis using InterProScan. DEGs were identified 

as being involved in the three GO categories: (a) biological process, (b) cellular component, and (c) molecular function. 

The 652 and 1218 upregulated and downregulated unigenes were annotated using 

the genome of T. castaneum, respectively, and GO enrichment analysis showed that uni-

genes that were more than 2-fold upregulated were involved in 28 biological processes, 

46 cellular components, and 8 molecular functions while unigenes downregulated less 

than 0.5-fold were involved in 43 biological processes and 10 molecular functions. In the 

GO enrichment analysis, both up- and downregulated unigenes were annotated with the 

GO terms of biological processes and molecular function, while only upregulated uni-

genes received the GO annotation of cellular components. As shown in the GO analysis 

results, JPS adults infected by JEF-197 showed a decrease in the expression of genes in-

volved in signaling and transmembrane transport. Signaling is critical for information 
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transfer in vivo, while transmembrane transport is important for sequestration of patho-

gens and manipulation of the transmembrane transport mechanisms of the host [49–51]. 

We predict that signal transmission and transport in JPS beetles are controlled by the fun-

gus upon infection. In particular, pathways affected by the expression of eight gene ex-

pression level groups were identified. Genes involved in RNA transport (KEGG:03013) 

were 2- to 4-fold upregulated. Genes involved in the Toll and Imd signaling pathways 

(KEGG:04624), ribosome biogenesis in eukaryotes (KEGG:03008), and the spliceosome 

(KEGG:03040) were 4- to 8-fold upregulated. Genes involved in metabolic pathways 

(KEGG:01100), cysteine and methionine metabolism (KEGG:00270), glycine, serine, and 

threonine metabolism (KEGG:00260), purine metabolism (KEGG:00230), one carbon pool 

by folate (KEGG:00670), and ubiquinone and other terpenoid-quinone biosynthesis 

(KEGG:00130) pathways were 8-fold upregulated. Genes involved in the hedgehog sig-

naling pathway-fly (KEGG:00670), Wnt signaling pathway (KEGG:00670), and Notch sig-

naling pathway (KEGG:00670) were 0.5- to 0.25-fold downregulated (Table S5). 

As mentioned above, certain genes involved in Toll and Imd signaling pathways, 

which are the main immune signaling pathways in insects, were 4- to 8-fold upregulated. 

Activation of the Toll and Imd signaling pathways is a typical immune response in fun-

gus-infected insects [52]. Expression levels of the Gram-negative bacteria binding-protein 

3 (GNBP3), modular serine protease (ModSP), and Spätzle (Spz) that recognizes β-1,3-

glucans of fungi were increased, and the expression levels of Tube, Pelle, and Cactus 

genes, which encode cytosolic components, were also increased. Expression of IMD path-

way gene in JPS adults was increased by JEF-197 treatment. In particular, levels of pepti-

doglycan recognition protein LC (PGRP-LC), immune deficiency (IMD) protein, and a 

caspase (CASP8), which are involved in fungal recognition, were upregulated. These two 

pathways were activated in defensive responses, but genes related to antimicrobial pep-

tides (AMPs) were not annotated (Figure 4a, Table S6). Among DEGs, no genes related to 

the production of AMPs were annotated. Cecropin and defensin genes, which are AMPs, 

were identified, but were less than 2-fold upregulated (Table S7). The reason why AMPs 

were not identified may be because assembly was performed with default settings with 

the minimum contig length set to 200 bp, and several types of AMPs are short-length se-

quences. However, expression levels of genes in the Toll and IMD signaling pathway 

should increase prior to AMP production. Our results indicate that the immune response 

of JPS beetles was activated in response to fungal infection, and AMP production was 

likely induced. In previous studies, AMPs such as attacins, cecropin, coleoptericin, and 

lysozymes were identified in JPS beetles [36]; further studies are needed to determine the 

repertoire of AMPs produced by JPS beetles in response to fungal infection. 

Upregulated genes involved in JPS beetle defense against fungi were assessed by 

KEGG analysis, and Toll and IMD signaling pathways were identified as playing major 

roles (Figure 4b, Table S6). The Toll signaling pathway is recognized and initiated by 

GNBP3, which binds to β-1,3-glucan, a major component of the fungal cell wall [53–55]. 

ModSP activation induces sequential activation of Clip-sectine proteases and Spätzle-pro-

cessing enzymes [56,57]. Toll is activated by binding of Spätzle cleaved by proteolysis [58]. 

When Toll is activated, the Toll-interleukin1-resistance (TIR) domain of the Toll receptor 

recruits a cascade of signaling adapters and kinases to induce phosphorylation of cactus 

[59]. Toll signaling ultimately induces activation of AMP genes and dissociation of NF-κB 

protein from cactus [60]. The IMD pathway can be activated as part of the antifungal re-

sponse, and the Rel/NF-κB transcription factor can be induced in later stages of fungal 

infection [61,62]. The IMD pathway is activated by recognition of microbial-derived mol-

ecules by the peptidoglycan recognition protein LC (PGRP-LC) [63]. Components of the 

IMD pathway such as Imd, dTAK1, Ird5, Kenny, CASP8, and Relish, which were genes 

identified as upregulated in our study, regulate the expression of antimicrobial peptide 

genes by activating Rel/NF-κB-like transcription factors [64]. In addition, the expression 

of genes involved in the DUOX pathway was increased, suggesting that the bactericidal 

ROS production pathway was activated in addition to the IMD pathway. Microorganisms 
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capable of destroying DUOX-dependent ROS are regulated by IMD-dependent AMP and 

may play a complementary role in the ROS system, and ROS plays an important role in 

the control of intestinal bacteria [65,66]. 

 

Figure 4. Expression of Toll and IMD pathway-related genes in Japanese pine sawyer adults treated with M. anisopliae JEF-

197. (a) Heatmap of gene expression levels in JPS beetles as a result of fungal treatment. NC, non-treated control JPS adults, 

and FT, fungus-treated JPS adults. (b) Schematic diagram of Toll and Imd pathway genes with altered expression in re-

sponse to fungal treatment of JPS beetles. GNBP3, Gram-negative bacterial binding protein 3; DUOX, dual oxidase; SPZ, 

spatzle; Cactus, NF-kappa-B inhibitor alpha; MODSP, modular serine protease; CASP8, caspase 8; TAK1, mitogen-acti-

vated protein kinase kinase kinase 7; ANK, ankyrin; PGRP-LC, peptidoglycan recognition protein LC; TBK1, TANK-bind-

ing kinase 1; IMD, immune deficiency; JNK, mitogen-activated protein kinase 8/9/10; Toll, protein toll; dMyD88, myeloid 

differentiation primary response protein MyD88; Tube, interleukin-1 receptor-associated kinase 4; Pelle, interleukin-1 re-

ceptor-associated kinase 1; Dorsal, dorsal; Relish, nuclear factor NF-kappa-B p105 subunit. 

The Wnt signaling pathway controls the balance between differentiation and prolif-

eration and is involved in the cell cycle and gene transcription [67]. In KEGG pathway 

analysis, o-palmitoleoyl transferase, which affects both Wnt and Wnt by binding to the 

frizzled protein to transmit a signal to transcription factor 7 in the cells, was upregulated. 

In addition, frizzled expression results in gene transcription via MAPK signaling pathway 

activation. However, genes in this pathway were downregulated, suggesting that Wnt 

was not recognized by the frizzled receptor. This indicates that the Wnt signaling pathway 

was not fully functional and that cell cycle and gene transcription activity in JPS beetles 

was reduced as a result of fungal infection. This is consistent with the decrease in expres-

sion of genes with the GO annotation of ‘Signaling’. Downregulated contigs were in-

volved in the Notch signaling pathway, and the expression level of notch was also de-

creased, suggested decreased activation of the MAPK signaling pathway. Certain genes 

involved in the MAPK signaling pathway were found to be downregulated, suggesting 

reduced activation of Wnt and Notch signaling pathways and a decrease in cell cycling 

and gene transcription [68,69]. Fungal infection appears to reduce the expression of genes 

in the MAPK signaling pathway, which controls the cell cycle and gene transcription via 

Wnt and Notch signaling pathways. In our study, active immunity of JPS adults to fungal 

infection decreased gradually after the eighth day of infection, and infected insects ulti-

mately died.  
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3.5. Changes in the Expression Level of Japanese Pine Sawyer Beetle Immune-Related Genes 

Among the differentially expressed JPS beetle unigenes, 172 unigenes were anno-

tated as immune-related genes base on immunoDB (E-value < 1 × 10−100) (Table S7). The 

immune-related genes belonged to 27 immune groups and included genes involved in 

autophagy, beta glucan binding, as well as genes encoding caspases, clip-domain serine 

proteases, c-type lectins, IMD pathway members, inhibitors of apoptosis, JAK/STAT path-

way members, scavenger receptors class B proteins, serine protease inhibitors, thiore-

doxin peroxidases, and Toll pathway members (Figure 5). The group of gene expressions 

in all immune classes, except catalases, MD2-like receptors, and superoxide dissidents, 

showed significant differences. 

 

Figure 5. Expression of immune-related genes in JPS beetles in response to M. anisopliae JEF-197 fungal treatment. Immune-

related genes in JPS beetles whose expression was altered by JEF-197 fungal treatment were determined by Blast2GO 

based on an arthropod immune-related gene database in immunoDB (E-value < 1.0 × 10−100). Genes that showed over 2-

fold upregulation or 0.5-fold downregulation were considered upregulated and downregulated, respectively. Differences 

between groups of gene expression levels in adults with JPS within the immune class were analyzed using a one-way 

ANOVA in SPSS using a significance level of 0.05 (α). * represents a significant difference in the level of gene expression 

in the two groups, and ** represents a significant difference in the level of gene expression in the three groups. 

Gene expression levels of JPS beetle immune-related unigenes were measured at 6, 

24, 48, 72, and 96 h after treatment with JEF-197. Among IMD pathway members, inhibitor 

of nuclear factor kappa-B kinase gene expression was not significantly altered compared 

with baseline 6 and 24 h after fungal treatment; however, over 4-fold of upregulation was 

observed by qRT-PCR at 48 h after treatment, followed by attenuation of the expression 

level of this gene. Mitogen-activated protein kinase gene expression decreased after fun-

gal infection (Figure S3a,b). Among JAK/STAT pathway members, gene expression of the 

tyrosine-protein kinase hopscotch decreased slightly up to 24 h after fungal treatment; 

however, over 1000-fold of upregulation was observed by pRT-PCR at 48 h after treat-

ment, followed by attenuation over time. Cytokine receptor expression continued to de-

crease after infection, while expression of the signal transducer and activator of transcrip-

tion (STAT) increased (Figure S3c–e). The JAK/STAT pathway is known to be activated in 
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response to viruses; however, the expression level of STAT increased steadily after treat-

ment. Although this gene is only one of the JAK/STAT genes, a previous study suggested 

that fungi cannot activate the JAK/STAT pathway. Our result as one of the highlights sug-

gests that fungal infection may induce the expression of JAK/STAT pathway-related 

genes. Gene expression of Toll-like receptor 7 increased slightly 48 h after fungal treatment 

and decreased thereafter, while that of the Toll-like receptor Tollo decreased continuously 

(Figure S3f,g). Among the beta-glucan binding proteins, the expression of beta-1,3-glucan-

binding protein (GNBP1) increased after 72 h after treatment as did that of GNBP3 after 

24 h after treatment, while the expression of beta-1,3-glucan-binding protein 1 (GNBP2) 

did not change significantly after 72 h after treatment (Figures S3h,j). Although the change 

in expression of the Toll-like receptor appears to be insignificant, KEGG enrichment anal-

ysis result showed that expression of genes involved in the Toll pathway was increased 

after fungal treatment; increased expression of GNBP3, which recognizes fungi, may be 

the trigger that induces activation of the Toll pathway. 

3.6. Expression of M. anisopliae JEF-197 in Japanese Pine Sawyer Beetles 

Three replicate RNA-seq short reads of JEF-197 and fungal-treated JPS beetles were 

mapped to the contigs of JEF-197. Contigs were filtered, and the filtered contigs were an-

alyzed for DEGs as described above.  

A total of 73 DEGs were identified in JEF-197-infected JPS adults, and 42 of these 

DEGs were upregulated (Table S8). Of the upregulated contigs, 17 contigs were annotated 

as functional genes, while 17 hypothetical proteins and 8 no-hit contigs were identified, 

respectively. Functional genes were involved in energy metabolism, gene transcription 

regulation, material transport and degradation, and the stress response.  

Energy metabolism-related genes such as oxidoreductase FAD-binding domain pro-

tein, ubiquinol-cytochrome c reductase complex subunit, and ATP synthase beta chain 

precursor were upregulated. Fungi use ATP synthesis to gain energy for invasion of JPS 

beetles. DNA-directed RNA polymerase Ⅱ, Spt20 family protein, and methyltransferase 

sirN-like protein, which are genes related to gene transcription regulation, were also up-

regulated. Recent studies have shown the modulation of pathogenesis and virulence by 

transcriptional factors of entomopathogenic fungi [70–72]. Regulation of activation of 

gene transcription can contribute to toxicity in the host [73,74], while the recQ family hel-

icase is involved in DNA repair and replication [75]. The increase in expression level of 

these genes suggests that transcription-, repair-, and replication-related genes play im-

portant roles in the pathogenesis and proliferation of the fungus JEF-197 in JPS beetles. 

The general substrate transporter, which transports small solutes in response to a chemi-

cal osmotic ion gradient [76], and the protein BFR2, which regulates protein transport or 

induces mass cell proliferation [77], were also upregulated in JEF-197. 

The response of fungi to stress is essential for fungal growth in an insect host. Super-

oxide dismutase (SOD) and ubiquitin were identified as upregulated genes. SOD, an en-

zyme found in all living cells, breaks down superoxide and prevents tissue damage. It 

also acts as an enzyme that protects against reactive oxygen species (ROS) formed by solar 

ultraviolet radiation (UA-A and UA-B) and protects conidia against adverse environmen-

tal conditions [30,78]. In addition, catalase activity protects against host-derived H2O2 [79]. 

In this study, we predicted that the expression of SOD would increase to protect the fungi 

from H2O2 produced by JPS beetles. Ubiquitin binds to other proteins and promotes the 

breakdown of proteins, and its expression is increased in response to stress. In particular, 

damaged proteins that cannot be recovered due to heat shock are degraded through the 

ubiquitin–proteasome pathway [80]. We assumed that JEF-197 would have evolved strat-

egies to overcome host-cell-induced stress [81]. In addition, we predicted that this fungus 

would overcome host-induced stress by increasing energy and protein metabolism and 

by proliferating in the insect host. 



J. Fungi 2021, 7, 373 13 of 17 
 

 

The 42 upregulated DEGs of JEF-197 are candidate genes that likely play crucial roles 

in invasion of the insect host. Upregulation of genes involved in energy and protein me-

tabolism as well as responses to stressors suggests that these genes are involved in inva-

sion. Defense and proliferation likely occur simultaneously to facilitate the growth of the 

fungus, and changes in expression patterns of certain fungal genes brought about by me-

thyltransferases likely play a role in toxogenesis in insects. Proteins with unknown func-

tions, such as domain of unknown function (DUF) and hypothetical proteins, showed el-

evated expression in JPS beetles. The functions of these genes should be clarified in future 

studies. 

In the future, there is a need for practical verification through proteomics and anti-

body analysis of similar species based on the result of transcriptome analysis. Protein pro-

files have been proposed as more reliable predictors than transcription profiles [82]. Re-

cently, gene and protein expression studies had mutual connectivity, and transcriptomics 

data and proteomics data could be complemented by providing protein database and pro-

tein level verification, respectively [83,84]. The results of present study, transcriptomic 

analysis of JPS and M. anisopliae that interacted after fungal treatment, will be used as a 

basis for further study of genomics-inspired proteomics. In the future, we would like to 

study the correlation between the expression level of the major genes identified in this 

study and the actual protein production. 

4. Conclusions 

To investigate the interaction between M. anisopliae JEF-197 and JPS beetles, we per-

formed RNA-seq analysis of RNA samples obtained from JPS beetles on day 8 after fungal 

treatment. JPS genes related to RNA transport, ribosome biogenesis, and pathways im-

portant for protein production of spliceosomes were upregulated in the JEF-197-infected 

JPS adults, while JPS genes involved in pathways related to the cell cycle and gene trans-

duction were downregulated. Immune-related genes in the Toll and Imd pathway were 

upregulated in response to fungal infection, consistent with previous findings. In JEF-197, 

genes involved in energy, protein metabolism, and stress were upregulated. Although the 

42 genes of M. anisopliae identified in this study cannot fully explain the pathogenetic 

mechanisms of this fungus, these 42 genes are candidate genes that play an important role 

in the fungal invasion to JPS beetles and can provide insight into fungal pathogenesis in 

future studies. 
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