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Abstract: The promising feature of the fungi from the marine environment as a source for anticancer
agents belongs to the fungal ability to produce several compounds and enzymes which contribute
effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which
is the main substance of cancer cells. Moreover, the compounds produced during the secondary
metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis
of the cancer cells. The current review has analyed the available information on the anticancer activity
of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric
analysis revealed many of the properties available for the fungi to be the best candidate as a source
of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical
drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi
are Aspergillus niger, A. fumigatus A. oryzae, A. flavus, A. versicolor, A. terreus, Penicillium citrinum,
P. chrysogenum, and P. polonicum and have been used for investigating the anticancer activity against
the uterine cervix, pancreatic cancer, ovary, breast, colon, and colorectal cancer.

Keywords: anticancer; fungi; marine; L-asparaginase; production

1. Introduction

Fungi have a variety of medical applications due to their capability of generating
various enzymes and antimicrobial agents (Figure 1). It has been reported that fungi
produce more antimicrobial and anticancer products than recorded by bacteria. However,
these efficiencies and functions of the active compounds produced are dependent on
the genes that cluster together in a genetic package, which are known as biosynthetic
gene clusters (BGCs) [1]. Nonetheless, marine fungi represent a rich source of bioactive
compounds and have yielded a wide range of anticancer compounds [2]. Kumar et al. [3]
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detected BGCs in Calcarisporium sp. and Pestalotiopsis sp. isolated from the German
Wadden Sea.
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Figure 1. Applications of fungi in the environment to medicine.

The asparaginase enzyme which has been isolated from A. niger [4], A. tubingensis [5]
A. terreus [6], Fusarium sp. [7], Talaromyces pinophilus [8], Trichosporon asahii [9], Trichoderma
viride [10], and Sarocladium strictum [11] was recorded as the most anticancer properties
among other several enzymes. Besides, several new anticancer products have been isolated
and identified from the secondary metabolic production of marine fungi such as Gliotoxin
which was isolated from Aspergillus sp. [12], Versicolactone B from A. terreus [13], Preussin
from A. candidus [14], Patulin and Deoxytryptoquivaline from A. giganteus [15], and Oc-
tadecanoic from Aspergillus sp. [16]. Wijesekara et al. [17] purified physcion which induces
cell apoptosis through down-regulating of Bcl-2 expression from Microsporum sp. They also
reported that the compounds Nortryptoquivaline, 2,4-dihydroxy-3-methylacetophenone,
chevalone C from Neosartorya siamensis exhibited strong effects against DNA and intracel-
lular accumulation in lung cancer cells as well as induced cytotoxicity against the cancer
cells and the cell death in lung cancer. The 3-hydroxy, benzenemethanol, 2-bromogentisyl
alcohol, 2-chlorogentisyl alcohol, and Epoxydon 6-dehydroxy-6-bromogabosine C com-
pounds purified from the secondary metabolic of P. concentricum exhibited anti-cancer
activity against the human caucasian colon adenocarcinoma cells line [18]. The penta-
cyclic decalinoylspirotetramic acid and pyrenosetin D from Pyrenochaetopsis sp. showed
anti-cancer activity against the melanoma cell line, the noncancerous keratinocyte cell
line [19].

The current review aimed to highlight the applicability of marine fungi to produce anti-
cancer compounds. A systematic literature review (SLR) methodology was performed in
the current paper to avoid misinformation and to fill the gap in the literature. Furthermore,
the bibliometric analysis of the anticancer literature in this article contributes strongly
to creating a roadmap that leads the readers towards the right path to learning more
information about the work.

2. Systematic Literature Review Methodology

The systematic literature review methodology was performed in the current work
according to the methods described in Figure 2 [20,21]. To classify the research points of
interest and derive the vital results, two questions and objectives were stated (Table 1a).
Table 1b shows the components of the current systemic review program.
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Figure 2. SLR Flowchart adopted with modification from the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses.

Table 1. (a) Systematic Literature Review (SLR) objectives and questions. (b) Research plan of the SLR.

(a)

No. Objectives Questions

1 To identify the potential application
of secondary metabolic substances as anti-cancer against

How do secondary metabolic substances
affect cancer cells?

2 To verify the effectiveness of
the asparaginase enzyme against cancer cells

How does the asparaginase work to
inhibit the cancer cells?

(b)

Categories Description

Context This SLR presents the potential of secondary metabolic substances as anti-cancer.

Objectives The objective of the systematic review is to answer the questions regarding the application of secondary
metabolic substances for cancer treatment.

Method The method used in this SLR process is data collection, screening, data verification, data analysis, and discussion.
Result The result shows the performance of each advanced technology, the advantages, and disadvantages of each method.

Conclusion The discussion regarding the objectives and questions is successfully achieved with clear discussion.
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The total number of final papers selected and used for reviewing the potential of sec-
ondary metabolic substances from marine fungi to be used as anticancer was 50, while 24 pa-
pers were used as references for basic concepts. The bias for the papers’ inclusion or
exclusion threshold was performed according to Equation (1).

Ry =
∑n

i
ki
n

Py (1)

where R represents the papers’ relevance ratio of a particular year ( y), k represents the
number of matches.

Keywords, n represent the total number of the proposed keywords, while P represent
the number of the initial papers in a particular year. The included and excluded papers
were determined according to Equation (2).

f (ki)

{{
included, Ry < ki

Py

Excluded (otherwase)

}
(2)

Table 2 shows the included and excluded papers per publication year. According to
the data analysis presented in Table 2, it can be noted that there was a continuous increase
of publications during the last ten years, with 37.5% of the annual growth rate.

Table 2. The included and excluded relevant papers per publication year.

Year Initial R Included Excluded

2020 22 0.0182 4 18
2019 36 0.0111 5 31
2018 29 0.0207 3 26
2017 28 0.0143 4 24
2016 22 0.0364 5 17
2015 24 0.0167 3 21
2014 27 0.0222 7 20
2013 17 0.0471 6 11
2012 20 0.0500 4 16
2011 13 0.0462 3 10
2010 16 0.0625 6 10
Total 254 0.3452 50 204

3. Bibliometric Analysis

The bibliometric analysis was used in the current research to assess the global trends
of the fungal application in cancer treatment based on the Scopus literature database.
The keywords used were “fungi” AND “anticancer” (OR “antitumoral” as synonyms of
anticancer) OR “L-asparaginase” AND ‘’marine” the papers (254) extracted from the Sco-
pus and PubMed database were selected between 2014 and 2020 and download as CSV file.
The screening for the papers was conducted as described in the systematic process. In con-
trast, the VOSviewer software, Leiden University, The Netherland, Year (version 1.6.15)
was used for the bibliographic data analysis based on the countries, journals, and key-
words. All the obtained data of 254 documents, including 86 journals and 54 countries were
imported to the VOSviewer software to be analyzed. In the journal productivity analysis,
79 journals (published 254 documents) were selected by the software for the provided
data based on the TLS (high to low). The 30 most productive journals on anticancer from
fungi were established. Marine Drugs, Journal of Photochemistry, Current Medicinal
Chemistry, Frontiers in Microbiology, and the Natural Products Journal were the most
common (Figure 3a). The color of the circles in the bibliographic map was used to assist in
the definition of the journal′s section where similar keywords and contents of journals were
linked closely together in the same area. The size of each circle expresses the strength of the
journal based on the total publication (TP), total citation (TC), and total link strength (TLS).
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According to the Scopus and PubMed databases, 30 countries have contributed to
studying the potential of fungi to produce anticancer agents. India, China, USA, Korea,
and Germany were at the top of the list indicating the critical role these countries play in
the progress of biomedical drugs (Figure 3b).

Figure 3c show all elements which are used in anticancer research, the most common
fungal used for the production of anticancer compounds are Aspergillus niger, A. wentii,
A. oryzae, A. terreus, A. flavus, A. versicolor, A. fumigatus, Penicillium citrinum, P. chrysogenum,
P. polonicum, as well as Saccharomyces cerevisiae. The products’ compounds from those organ-
isms have been used for investigating the anticancer activity against uterine cervix cancer,
pancreatic cancer, ovary cancer, breast cancer, colon cancer, colorectal cancer, hepatobiliary
cancer, and lung cancer.

The main enzymes associated with cancer and anticancer include asparaginase, acyl-
transferase, α-glucosidase, α-amylase, β-glucosidase, β-glucuronidase, gelatinase, glutami-
nase, laccase, lactate dehydrogenase, triacylglycerol lipase, mono phenol mono-oxygenase,
and xylan endo 1,3, β-xylosindase. Among several bacterial species that cause secondary
infections associated with the cancer disease are Bacillus cereus, B. subtilis, Staphylococcus
aureus, Actinobacteria sp., E. coli, Proteus vulgaris, Pseudomonas aeruginosa and Streptococcus
pyogenes, while the most antibiotics used for the bacteria infection are gentamycin, pivalic
acid, pivampicillin, and tetracycline. Furthermore, doxorubicin, actinomycin d, flavonoids,
rapamycin, bleomycin, clidamycin, hyaluronic acid, mitomycin, and cisplatin are among
the main chemical drugs used for cancer treatment.

Figure 3. Cont.
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Figure 3. (a). Bibliometric analysis of the publication on the anticancer activity of fungi based on the journals. (b) Bibliometric
analysis of the publication on the anticancer activity of fungi based on the countries. (c) Bibliometric analysis of the keywords
of the anticancer activity of fungi papers.



J. Fungi 2021, 7, 436 7 of 27

4. Potential of Secondary Metabolic Substances from Marine Fungi as
Anticancer Agents

The marine environment which includes the water, sediments, invertebrates, drift-
wood as well as marine mammals represents a rich source of fungi [18]. Up-to-date studies
have estimated there are more than 10,000 marine fungal species, including the fungi
belong to the Ascomycota and Basidiomycota phyla [22]. The marine environment has
several secondary bioactive compounds of the marine natural products (MNPs) such as
anticancer, antiviral, and antibiotic which are produced from the fungi. The organisms from
the marine environment produce novel secondary metabolites (SMs). These secondary
products have unique and diverse chemical structures as well as having high potential
as novel drugs [23,24]. Hu et al. [25] reported that more than 2225 bioactive compounds
from marine organisms exhibited anticancer activity. Polyphenols, polysaccharides, and al-
kaloids are among the highly active, biologically potent, and predominant anticancer
compounds isolated from marine organisms as reported by [26,27].

According to the data analysis of reviewed papers and the summarising of the main
findings, it was noted that the main enzymes associated with cancers are presented
in Table 3. Sterol O-acyltransferase (ACAT1) enzyme is associated with increasing the
cholesteryl ester levels. Therefore, in cancer treatment, the used drug acts by inhibiting the
enzyme leading to suppression of proliferation in a variety of cancer cell types.

In contrast, α-amylase exhibited an anti-proliferative effect on breast cancer cells,
while β-Glucosidase has an effective contribution in the inhibition of cancer cells, and the
enzyme acts by combining with cancer-cell-surface antigens causing the conversion of
amarogentin to an active drug acting on cancer cells. Some of the enzymes, such as Beta-
glucuronidase (βG) are used as a biomarker for the diagnosis of cancer and prodrug therapy.
In comparison, the laccases produced by basidiomycetes fungi have high potential as being
anti-cancer as well as possessing anti-proliferative activities mainly against liver carcinoma
cell lines and breast cancer. Understanding these enzymes and their role in cancer growth
or inhibition represent the key element for cancer treatment, for instance, the inhibition
or blocking of triglyceride lipases contributes effectively to prevent the development of
cancer-associated cachexia [22,28].
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Table 3. Most common enzymes associated with cancer in humans.

Enzyme Molecular Structure Gene Location (Human) Role References

Sterol O-acyltransferase
(ACAT1)

The enzyme is involved in a variety of cancer types
because of its association with increasing

cholesteryl ester levels. The anti-cancer drug acts
by inhibiting the enzyme leading to suppression of

proliferation in a range of cancer cell types.

[29]

Glutaminase

The enzyme acts by inhibiting the target breast
cancer cells by blocking the conversion of

glutamine to glutamate. Therefore, some studies
indicated that the enzyme is thereby potentially
interfering with anaplerosis and the synthesis of

amino acids and glutathione.

[30]

β-Glucosidase

β-Glucosidase plays an essential role in the
inhibition of cancer cells by combing with

cancer-cell-surface antigens leading to converting
amarogentin to an active drug that acts on cancer
cells and the surrounding antibodies to achieve a

killing effect.

[31]

Lactate dehydrogenase B
(LDHB)

The enzyme is an intracellular enzyme and is
released into the bloodstream when the cells are

damaged due to tissue destruction caused by
tumor growth. Therefore, the increase of enzyme
levels in the blood is usually used as indicators of

tissue damage.

[32]
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Table 3. Cont.

Enzyme Molecular Structure Gene Location (Human) Role References

Laccase

Laccases from basidiomycetes fungi exhibited high
potential as anti-cancer as well as having

anti-proliferative activities primarily against breast
cancer and liver carcinoma cell lines.

[33]

β-Glucuronidase

Beta-glucuronidase (βG) is a biomarker for the
diagnosis of cancer and prodrug therapy.

Therefore, the image βG activity in patients is
associated with the personalized glucuronide

prodrug cancer therapy.

[34]

α-amylase
The experiments conducted on the primary cell

cultures of human breast cancer cells exhibited an
anti-proliferative effect for salivary α-amylase.

[35]

Matrix metallopeptidase 9
(MMP-9)

The modulation of gelatinase expression in the
host cells is associated with the interactions

between cancer cells and host tissues. Therefore,
the inhibition of gelatinases by synthetic MMP

inhibitors is an attractive approach to block cancer
progression.

[36]



J. Fungi 2021, 7, 436 10 of 27

Some of the most common drugs used for cancer treatment and their side effects
are illustrated in Table 4, the chemical structures are presented in Figure 4. Doxorubicin
is the most common, recently used for treating hematological malignancies, soft tissue
sarcomas, and acute lymphoblastic leukemia. The drug is approved by the Food and Drug
Administration (FDA) and is among the most compelling of anticancer drugs. Nonetheless,
clinical studies have revealed extreme restrictions of the drug, such as toxicity in normal
cells and resistance. The main limitation lies in the negative consequences, including
diarrhea, nausea, loss of appetite, vomiting, darkening of skin or nails, missed menstrual
periods, tiredness, weakness, puffy eyelids, eye redness, as well as appearance of a reddish
color to the urine [37]. According to Liu et al. [38], actinomycin is more effective against
Wilms tumor, Ewing′s sarcoma, rhabdomyosarcoma, testicular cancer, trophoblastic neo-
plasia, and ovarian cancer, but the drug is associated with many side effects, especially
low red and white blood cell levels. In contrast, Rapamycin is among a different type
of anti-cancer which acts by inhibiting the tumor growth leading to halting tumor cell
proliferation, and tumor cell apoptosis, and then suppressing tumor angiogenesis [39,40].
Hyaluronic acid has less toxicity as well as being biodegradable and non-immunogenic.
Besides, the drug receptors are overexpressed on many tumor cells and have fewer side
effects including pain, redness, bruising, swelling, and itching [41].
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Table 4. Some common drugs used for cancer treatment and their side effects.

Drug Formula Utilization Side Effects References

Doxorubicin C17H30ClNO11

The drug is used as anti-cancer for a wide range of cancers such
as hematological malignancies, soft tissue sarcomas, and acute

lymphoblastic leukemia

Vomiting, nausea, loss of appetite, diarrhea, darkening of skin
or nails, missed menstrual periods, tiredness, weakness,
puffy eyelids, eye redness, as well as the appearance of a

reddish color to urine, tears, and sweat.

[42]

Actinomycin d C62H86N12O16

The drug has anti-cancer properties against Wilms tumor,
Ewing′s sarcoma, rhabdomyosarcoma, testicular cancer,

trophoblastic neoplasia, and ovarian cancer.

The drug is associated with low red and white blood cell levels,
decrease in the low platelet levels leading to increased risk of

infection, anemia, and bleeding. Nausea and vomiting, hair loss,
sores in the mouth, skin reactions, diarrhea, acne, peeling,

skin eruptions, and sensitivity to sunlight.

[43]

Flavonoids The flavonoids have high potential as anti-cancer agents and
exhibited great potential against cancer cells.

The side effects have been reported for the flavonoids. However,
some reports indicate the presence of anemia, fever, and hives

which have been disappeared when treatment was
discontinued.

[44]

Rapamycin C51H79NO13

The drug acts by inhibiting the tumor growth leading to halting
tumor cell proliferation, and tumor cell apoptosis, and then

suppressing tumor angiogenesis.

The side effects of the drug include stomatitis and mycositis
which are associated with high doses or long term used.

Moreover, some studies reported non-infectious interstitial
pneumonitis and hyperglycemia.

[40]

Clindamycin C18H33ClN2O5S
Clidamycin which is classified as a member of the enediyne
anti-cancer antibiotic family exhibited cytotoxicities against

cancers in vitro and in vivo.

Nausea, diarrhea, and vomiting, heartburn, metallic taste in the
mouth, abdominal and joint pain, skin rash, redness, itching,

vaginal itching, and burning.
[45]

Hyaluronic acid (C14H21NO11)n

The drug is common because it is biocompatible, non-toxic,
biodegradable, and non-immunogenic, as well as HA receptors

are overexpressed on many tumor cells
Pain, redness, bruising, swelling, and itching. [41]

Mitomycin C15H18N4O5

Mitomycin is anti-cancer produced
by Streptomyces caespitosus and exhibited high efficiency against

a wide variety of cancer types

Anorexia, fever, vomiting, and nausea, as well as a blurring of
vision, headache, drowsiness, confusion, fatigue, syncope,

thrombophlebitis, anemia, diarrhea, hematemesis, and pain
[46]

Cisplatin [Pt(NH3)2Cl2]
The drug is among the most effective anti-cancer against solid

tumors and acts by damaging DNA and inhibiting DNA
synthesis.

Nausea, low blood counts, vomiting, ototoxicity hearing loss,
ringing in the ears, kidney toxicity, blood test abnormalities [47]

Bleomycin C55H84N17O21S3

The drug is used in combination with surgery or radiotherapy
against squamous cell cancers, sarcoma, melanoma,

both Hodgkin′s and non-Hodgkin′s lymphoma as well as
testicular cancer

Fever, chills, redness, stretch marks, and darkening of the skin,
peeling and thickening, nail thickening and banding as well as

hair loss.
[48]
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Table 4. Cont.

Drug Formula Utilization Side Effects References

Doxorubicin C17H30ClNO11

The drug is used as anti-cancer for a wide range of cancers such
as hematological malignancies, soft tissue sarcomas, and acute

lymphoblastic leukemia

Vomiting, nausea, loss of appetite, diarrhea, darkening of skin
or nails, missed menstrual periods, tiredness, weakness,
puffy eyelids, eye redness, as well as the appearance of a

reddish color to urine, tears, and sweat

[42]

Actinomycin d C62H86N12O16

The drug has anti-cancer properties against Wilms tumor,
Ewing′s sarcoma, rhabdomyosarcoma, testicular cancer,

trophoblastic neoplasia, and ovarian cancer.

The drug is associated with low red and white blood cell levels,
decrease in the low platelet levels leading to increased risk of

infection, anemia, and bleeding. Nausea and vomiting, hair loss,
sores in the mouth, skin reactions, diarrhea, acne, peeling,

skin eruptions, and sensitivity to sunlight

[43]

Flavonoids The flavonoids have high potential as anti-cancer agents and
exhibited great potential against cancer cells.

Side effects reported for the flavonoids indicate the presence of
anaemia, fever, and hives which have been disappeared when

treatment was discontinued
[44]

Rapamycin C51H79NO13

The drug acts by inhibiting the tumor growth leading to halting
tumor cell proliferation, and tumor cell apoptosis, and then

suppressing tumor angiogenesis.

The side effect of the drug includes stomatitis and mycositis
which is associated with high doses or chronically used.

Moreover, some studies reported non-Infectious interstitial
pneumonitis and hyperglycemia

[40]

Clindamycin C18H33ClN2O5S
Clidamycin which is classified as a member of the enediyne
anti-cancer antibiotic family exhibited cytotoxicities against

cancers in vitro and in vivo.

Nausea, diarrhea, and vomiting, heartburn, metallic taste in the
mouth, abdominal and joint pain, skin rash, redness, itching,

vaginal itching and burning.
[45]

Hyaluronic acid (C14H21NO11)n

The drug is common because it is biocompatible, non-toxic,
biodegradable, and non-immunogenic, as well as the HA

receptors are overexpressed on many tumour cells
Pain, redness, bruising, swelling, and itching [41]

Mitomycin C15H18N4O5

Mitomycin is anti-cancer produced by Streptomyces caespitosus
and exhibited high efficiency against a wide variety of cancer

types

Anorexia, fever, vomiting, and nausea, as well as a blurring of
vision, headache, drowsiness, confusion, fatigue, syncope,

thrombophlebitis, anemia, diarrhea, hematemesis, and pain
[46]

Cisplatin [Pt(NH3)2Cl2]
The drug is among the most effective anti-cancer against solid

tumours and acts by damaging DNA and inhibiting DNA
synthesis.

Nausea, low blood counts, vomiting, ototoxicity hearing loss,
ringing in the ears, kidney toxicity, blood test abnormalities [47]
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Figure 4. Chemical structure of drugs used for cancer treatment.

Several fungal species have been used as a source for the anti-cancer substances,
among the fungi, the species that belong to Aspergillus spp. and Penicillium spp. have re-
ceived great attention in the last few years, this is because these fungal species have the
ability to produce several secondary metabolic products with anticancer properties against
a variety of cancer cells, including caucasian colon adenocarcinoma cells, breast cancer
cells, hepatocellular carcinoma, HeLa cells, pancreatic duct cancer, colorectal cancer cells,
prostate cancer cells, and human chondrosarcoma cells.

The studies conducted on the possible fungal species in cancer treatment are illus-
trated in Table 5. The main compounds that have been detected in the secondary metabolic
products and have recorded anti-cancer activity are 2,4-dihydroxy-3-methylacetophenone
(1), Nortryptoquivaline (2), Chevalone C (3), Tryptoquivaline H (4), and Epifiscalin-C (5)
which act by their effects on ultrastructural modifications, DNA damage, and intracellular
accumulation in lung cancer cells, as well as obstructing cell proliferation, enhancing
the intracellular accumulation of Dox, and triggering the cell’s death, and were isolated
from Neosartorya spp. In addition, 2-Bromogentisyl alcohol (6) was isolated from Penicil-
lium spp. Moreover, Patulin (8), Gliotoxin (10), Preussin (11), Deoxytryptoquivaline (12),
Octadecanoic (13), and Versicolactone B (14) were isolated from Aspergillus spp (Table 5).
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Table 5. Review of the studies conducted on the application of secondary metabolic products from fungi as anti-cancer agents.

Fungal Genus Fungal Species Active Substances Effectiveness against Cancer References

Alternaria

Alternaria sp. obtained from the fruit
of a mangrove tree Aegiceras

corniculatum
Alterporriol L (7)

Alterporriol L changed the cancer cell morphology and
exhibited a significant inhibition of cell growth, as well
as inducing cancer cell apoptosis or necrosis in breast

cancer cells lines.

[49]

Alternaria sp. from a Callyspongia sp.
sponge

Perylenequinone derivatives
An altenusin derivative

Phthalide racemates (9), Phenol derivatives.

These compounds exhibited cytotoxic activities against
human erythroleukemia, human gastric carcinoma

cells, and hepatocellular carcinoma cells.
[50]

Aspergillus

Aspergillus sp., from marine brown
algae Gliotoxin (10)

Anti-cancer activity and apoptosis of cancer cells and
DNA fragmentation, as well as induced activation of

caspase-3, 8 and 9, down-regulation of Bcl-2,
up-regulation of Bax in human cervical cancer (Hela)

and human chondrosarcoma cells.

[12]

A. candidus associated with the
marine sponge Epipolasis sp. Preussin (11) (10 µM)

Preussin exhibited an ability to cause cell death as
confirmed by caspase-3 immunostaining of breast

cancer cells.
[14]

Aspergillus giganteus isolated from
Ulva lactuca

Aspergilsmins
A–G, Patulin (8), Deoxytryptoquivaline (12),

tryptoquivaline
Quinadoline B. IC50 values between 2.7–7.3 µM

The compounds have exhibited anti-cancer activity
against human hepatocellular carcinoma cells and

prostate cancer cells.
[15]

Aspergillus sp. Hexadecanoic,
Octadecanoic (13), Octadecenoic acids.

The compounds had significantly high cytotoxic
activity against colorectal cancer cells. [16]

A. Protuberus isolated from marine
sediments n-butanol extract of mycelium The extract exhibited anti-cancer activity against the

Hep 2 cell line. [52]

A. terreus from sea deposit

Butenolide derivatives, Asperlides A–C
Butenolides

(+)-3′,3′-di-(dimethylallyl)-butyrolactone II,
Versicolactone B (14)

The compounds exhibited anti-cancer activity against
hepatocellular carcinoma, hepatocellular carcinoma,

and pancreatic duct cancer.
[13]

Aspergillus
Neosartorya
Talaromyces

A. similanensis, N. paulistensis, and T.
trachyspermus Crude ethyl acetate extracts The extract exhibited anti-cancer activity against

HepG2, HCT116, and A375. [51]
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Table 5. Cont.

Fungal Genus Fungal Species Active Substances Effectiveness against Cancer References

Microsporum

Microsporum sp. isolated from the
surface of a marine red alga

Lomentaria catenata
Physcion (11.8 mg)

The compound induces cell apoptosis through
down-regulating of Bcl-2 expression, up-regulating of

Bax expression, as well as induced the formation of
reactive oxygen species in HeLa cells.

[17]

Microsporum sp. isolated
from the surface of marine red algae,

Lomentaria catenata,

Physcion physcion activated caspase-3,8, 9, Ras,
Bcl-xL, and Bcl-2 Bax (0–50 µM)

Physcion decreases cell proliferation and induces cell
apoptosis in human prostate cancer cells. [53]

Neosartorya

N. pseudofischeri

1,4-diacetyl-2,5-dibenzylpiperazine (16),
Derivative, A quinazolinone-containing indole

derivative, A new ester of
2,4-dihydroxy-6-methylbenzoic acid.

The compounds exhibited anti-cancer activity against
human glioblastoma and non-small cell lung cancer

Apoptosis-resistant cells, and distinct cancer cell lines.
[54]

N. siamensis isolated from Rumphella
sp. sea fan

2,4-dihydroxy-3-methylacetophenone (1),
Nortryptoquivaline (2) Chevalone C (3),

tryptoquivaline H (4),
Epifiscalin-C (5) (0.54 to 100 µg/mL)

Effects on DNA damage, ultrastructural modifications,
and intracellular accumulation in lung cancer cells.

NS extract has cytotoxicity by inhibiting cell
proliferation, increasing intracellular accumulation of

Dox, and inducing cell death in lung cancer

[51]

Paradendryphiella
P. salina

(from the brown alga Pelvetia
caniculata)

Hyalodendrin (251.53 mg)
The compound induces the changes in the

phosphorylation status of p53 and altered expression
of epithelial cancer cell line

[55]

Penicillium

P. concentricum
isolated from the healthy liverwort

Trichocolea tomentella

2-Bromogentisyl alcohol (6), 3-hydroxy,
benzenemethanol, Epoxydon

6-dehydroxy-6-bromogabosine C,
2-chlorogentisyl alcohol, gentisyl alcohol

Griseofulvin (IC50 values of 8.4, 9.7, and 5.7 µM)

The compounds exhibited anti-cancer activity against
the human caucasian colon adenocarcinoma cells line [18]

Penicillium sp. isolated from marine
sediments

(Z)-Octadec-9-enamide (oleamide) IC50 = 22.79
µg/mL Anti-cancer activity against breast cancer cells. [56]

P. citrinum from marine sediments Penicitrinine A (12–100 µM)
The compound induces A-375 cell apoptosis by

decreasing the expression of Bcl-2 and increasing the
expression of Bax in multiple tumor types

[38]

P. oxalicum
(from marine algae Chaetomorpho

anteria)
Anthraquinone Cinnamic acid. (20–100 µg/mL)

The extract enhanced the membrane damage and
apoptosis in breast cancer cells. The extract inhibited
anti-cancer activity against human breast cancer and

HeLa cells.

[57]
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Table 5. Cont.

Fungal Genus Fungal Species Active Substances Effectiveness against Cancer References

Penicillium, Cladosporium,
Emericellopsis and

Plectosphaerella

Penicillium, Cladosporium,
Emericellopsis and Plectosphaerella Crude extracts

The extracts exhibited inhibitory potential anti-cancer
against A-549 lung carcinoma cells, breast cancer,

and human keratinocytes.
[58]

Phoma Phoma sp. (obtained from the
marine sponge Ectyplasia perox) Epoxyphomalin A and B (IC50, 0.17–0.33 µg/mL]

The compound
has strong cytotoxic properties in different cancer

cell lines.
[59]

Pyrenochaetopsis Pyrenochaetopsis sp. -from
Fucus vesiculosus

Pentacyclic decalinoylspirotetramic acid,
Pyrenosetin D (IC50 values of 77.5 and 39.3 µM)

Pyrenosetin D showed anti-cancer activity against the
melanoma cell line and noncancerous keratinocyte

cell line.
[7]

Talaromyces T. flavus SP5 from marine sediment

Gusation A,
2-amino-1,3,4-trihydroxy-8-octadecene (18),

Vitamin E, Tetradecanoic acid,
12-dimethyl-methyl ester, 2-O-benzyl-3,4-O

isopropylidene-D-rythrosedi-ethyldithioacetal,
methyl, acetate, 2,5-bis

(4-methoxyphenyl)thiophene, and chalcone(LC50
value of 25.7 µg/mL)

The compounds exhibited anti-cancer activity against
the HEp2 carcinoma cell line. [60]

Tolypocladium T. geodes isolated from a sponge
sample.

Cyclosporin A (19), Efrapeptin D (17),
Pyridoxatin, Terricolin A, Malettinins B and E,

Tolypocladenols (different IC50)
Anti-tumor effects against cancer cell line panel. [61]
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Alterporriol L (7), isolated from Alternaria sp., exhibited a high potential to change the
cancer cell morphology and exhibit a significant inhibition for call growth, as well as induc-
ing cancer cell apoptosis or necrosis in breast cancer cells lines [49]. Phthalide racemates (9),
which has been isolated from the same fungal species exhibited cytotoxic activities against
human erythroleukemia, human gastric carcinoma cells, and hepatocellular carcinoma
cells [50]. Gliotoxin (10) (90 µM of concentration) from Aspergillus spp. has demonstrated
anti-cancer activity and apoptosis of cancer cells and DNA fragmentation as well as in-
duced activation of caspase-3, 8 and 9, down-regulation of Bcl-2, and up-regulation of
Bax in human cervical cancer (Hela) and human chondrosarcoma cells [12]. The Buteno-
lide derivatives, Asperlides A–C, Butenolides (+)-3′,3′-di-(dimethylallyl)-butyrolactone II
and Versicolactone B (14) from A. terreus with IC50 values of 9.4 µM indicated anti-cancer
activity against hepatocellular carcinoma, hepatocellular carcinoma, and pancreatic duct
cancer [13]. Physcion from Microsporum sp. induced the cell apoptosis through down-
regulating of Bcl-2 expression, up-regulating of Bax expression, as well as induced the
formation of reactive oxygen species in HeLa cells [17]. The 2-Bromogentisyl alcohol, 3-
hydroxy benzenemethanol, and Epoxydon compounds from T. concentricum have exhibited
activity against prostate cancer cells and multiple cancer cells [51]. These compounds′

chemical properties are illustrated in Figure 5.

Figure 5. Chemical structure of some compounds from fungi with anti-cancer activity.

5. Application of L-Asparaginase as an Anti-Cancer Agent

L-asparaginase (ASNase) or L-asparagine amidohydrolase, (EC 3.5.1.1) is a hydrolase
enzyme that has the ability to catalyze and hydrolyze L-asparagine into ammonia and
L-aspartic acid. The enzyme has several clinical and medical applications for cancer
treatment based on the differences between the metabolic pathway of the normal and
cancer cells. The normal cells have the ability to synthesize L-asparagine while the cancer
cells are totally dependent on the extracellular L-asparagine. Therefore, the enzyme acts
by degrading the L-asparagine and leading to prevent the cancer cell growth caused by
the lack of L-asparagine acquired for the development. The first study on the activity of L-
asparaginase against cancer cells was reported in 1962, where the enzyme was tested against
acute lymphoblastic leukemia. Several fungal species have been reported to produce
ASNase among them Fusarium oxysporum (174 strains), Fusarium fujikuroi (90 strains),
Pyrenophora triticirepentis (65 strains), Aspergillus niger (44 strains), Alternaria tenuissima
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(43 strains), Aspergillus flavus (40 strains), Aspergillus fumigatus (40 strains), Penicillium
expansum (36 strains), Fusarium graminearum (33 strains), Rhizoctonia solani (33 strains),
Aspergillus oryzae (30 strains), and Trichophyton rubrum (27 strains) (Figure 6) (The data were
extracted from NCBI database as FASTA files and the plotted to Figure 6 using MEGAX,
version 10.1.8).

Figure 6. The most common fungal strains with high production of L-asparaginase.

Based on the summarized data presented in Table 6, the most common culture medium
used for enzyme production is the Modified Czapek Dox (MCD). The fermentation process
used in the production process is solid-state fermentation (SSF) and submerged fermen-
tation (SmF), while several substrates have been used including wheat bran, cottonseed
cake, and red gram husk, consecutive flaxseed oil cake (FOC), passion fruit peel flour,
mustard oil cake (MOC), chicken viscera meal, sugarcane bagasse (SB), chicken feather
meal, soybean, and rice meal [4–6]. In contrast, carbon source, sucrose, glucose, maltose,
and lactose nitrogen source asparagine, glutamine, yeast extract, and peptone have been
used as a carbon source [62], while urea, yeast extract, casein, malt extract, proline and
peptone have been used as a nitrogen source [10]. In many of the experiments, the temper-
ature was between 25 and 45 ◦C, time (1 to 7 days), agitation (0–250 rpm), and inoculum
size ranged from 1–5 mL spores/100 mL, and pH between pH 5 to 8. The enzyme has
exhibited stability at pH 4–10, temperature between 20 and 400 ◦C, with Km is 0.8141 mM
and Vmax, 6.228 µM/mg/min [4]. Da Rocha et al. [63] noted that the enzyme was stable at
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pH 4–10, 20–40 ◦C, Tween 80 and Triton X-100 enhanced the activity, Km was 0.8141 mM,
and Vmax was 6.228 µM/mg/min. The studies revealed that the maximum activity was
between 20.58 to 84.3 U/gds after 120 h [5,6]. However, Grinde et al. [30] revealed that the
highest activity recorded with passion fruit peel flour (2380.11 U/gds) after 48 h at 30 ◦C,
3746.78 U/gds with 60% of moisture and 2.1 × 106 spores/g after 24 h at 25 ◦C.
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Table 6. Experimental conditions for producing L-asparaginase from different fungal species.

Fungal Genus Fungal Species Production/Medium/ and
Substrate Factors Investigated Characteristics References

Aspergillus

A. niger AKV-MKBU MCD Tween 80 and Triton X-100,
pH 4–10

Stable at pH 4–10, at 20–400 ◦C. Km is 0.8141
mM and Vmax, 6.228 µM/mg/min. [4]

A. tubingensis IBBL1

SSF (Tray bioreactor)
Cottonseed cake, wheat bran,

and red gram husk
consecutive

pH-8, 2%(w/w) inoculum,
room temperature

Maximum activity was 20.58 U/gds after
120 h [5]

A. terreus
SmF and SSF,

flaxseed oil cake, mustard oil
cake, sugarcane bagasse

Temperature (25–45 ◦C), time (96–192 h),
agitation (0–250 rpm) and inoculum (1–5

mL/100 mL media), l-asparagine and
dextrose,
pH 5.5.

The highest activity (84.3 U) with flaxseed
oil cake as the substrate for the production
of a purified enzyme with 6.39- fold purity.

[6]

A. terreus MCD pH 6.2, 120 rpm, 32 ◦C, 72 h The activity was 47.29 U/ mL. [6]

A. niger LBA 02

SSF
wheat bran, soybean

meal, rice meal, chicken
feather meal, chicken viscera
meal, passion fruit peel flour

Temperature (25–35 ◦C), initial moisture
content (40–60%) and inoculum concentration

(2.1–7.99 × 106 spores/g).

The highest activity recorded with passion
fruit peel flour (2380.11 U/gds) after 48 h at
30 ◦C, 3746.78 U/gds with 60% of moisture
and (2.1 × 106) spores/g after 24 h at 25 ◦C.

[64]

A.
tamarii

SmF
MCD

Incubation periods (1, 2, 3, 4,
5, 6, 7, 8, and 9 days), temperatures (25, 30, 35,

and 40 ◦C).
pH (2, 3, 4, 5, 6, 7), carbon source, sucrose,

glucose, maltose, and lactose nitrogen source
asparagine, yeast extract, peptone,

and glutamine.

The highest activity (11.01 u/mL) at 30 ◦C
for 7days of incubation pH 7.0,

sucrose is the most effective carbon source,
with L-asparagine as sole

nitrogen source

[59]

A. niger SVUAn1 MCD

30 ◦C and incubation periods
(24–144 h), pH 6.2, 0.2% of

carboxy-methylcellulose, fructose, maltose,
starch, sucrose, and yeast extract.

Maximum production achieved at 96 h (4
days) with the incorporation of glucose as a

carbon source in the culture medium
[65]

A. terreus
Fermentation

in a 5-l bioreactor system
with MCD medium

30 ◦C, 120 rpm, 96 h, glucose, sucrose, lactose
or fructose, arginine, glutamine, asparagine,
tyrosine, leucine, tryptophan, or histidine),

urea, ammonium nitrate, sulfate.

Maximum production is of 108 U with
glucose, proline, and asparagine. [63]
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Table 6. Cont.

Fungal Genus Fungal Species Production/Medium/ and
Substrate Factors Investigated Characteristics References

Fusarium Fusarium sp. LCJ273 SmF
MCD Broth and wheat bran

Dextrose, ammonium sulfate
Production at 120 rpm for 5–8 days.

Activity was recorded 9.18 ± 0.9 U/mL, at 3
g/L Dextrose, 20 g/L ammonium sulphate
and 13.69 ± 0.4 U/mL at 2.5 g/L wheat bran

after 5 d.

[7]

Penicillium sp.
Fusarium sp.

Penicillium sp. T6.2)
(Fusarium sp.)

stationary liquid state
bioprocesses

Medium Bacelar-1
Medium

Glycerol; L-asparagine; 105 mL−1 of inoculum,
incubated for 72 h at 30 ◦C.

The enzyme activity was 8.3 U min/ mL
from Penicillium sp.) and 11.4 U min/ mL
from Fusarium sp. after 72 h in Bacelar-1

medium.

[66]

Penicillium

Penicillium
sp.

the fermentation process in
potato dextrose broth

wheat bran

Temperature (25–35 ◦C), the incubation period
(48–96 h), and initial pH (5–9), L-proline,

L-asparagine, ammonium sulfate,
yeast extract, sucrose, and glucose.

Maximum activity (2.33 IU/mL) detected at
2.8% L-asparagine 4.0% L-proline, 0.75%
Potato dextrose broth, and 0.1% Sucrose.

[67]

Penicillium sp.
LAMAI 505

SSF
multiple reactors with

immobilized cells

pH level (pH), residence time (RT), the time
between cycles (TC), and concentration of

glucose and L-asparagine.

L-asparaginase activity was 13.7 U/gds was
achieved at a residence time of 33.5 min,

pH of 5.1, and concentrations of
L-asparagine and glucose of 1.2 and 3.0 g/L.

[68]

Talaromyces T. pinophilus MCD

Agitation rate (100–150 rpm), pH (4.0–9.5),
temperature (15–40 ◦C), and (7–29 days),

glucose (2–15), starch (2.5–15), yeast extract
(2.5–15),

and L-asparagine (5–15).

The enzyme activity of 108.95 U/mL was
recorded at 120 rpm after at 120 h with
L-asparagine, and starch as the carbon

source than glucose.

[69]

Trichosporon T. asahii IBBLA1 NA Temperature, pH, L-Asparagine concentration
and glucose concentration.

Optimum enzyme activity of 20.57 U mL−1

was obtained at 30 ◦C and pH of 7.0 after
60 h

[9]
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Table 6. Cont.

Fungal Genus Fungal Species Production/Medium/ and
Substrate Factors Investigated Characteristics References

Trichoderma T. viride F2

SSF
maize, rice

bran, rice husk, wheat bran,
wheat germ, rice

straw, cottonseed wastes

pH value (3.0–8.0), 50 to 86%
of moisture content, incubation temperature

(25, 28, 35, and 40 ◦C). Inoculum size (1 ×
104–1 × 109), surfactants (Tween 20,60 and 80

and Triton X-100 at 0.1% w/v).
Carbon source (Glucose, sucrose, maltose,

fructose, xylose, galactose, arabinose, soluble
starch, and raffinose at 1.0% w/v), urea,

yeast extract, casein, malt extract, proline,
and peptone at 0.5%.

Maximal production 113.43 ± 5.11 U/g-ds
with 75% of moisture content of 75%, 1 ×

108 spores/mL, pH 5.0, at 28 ◦C for 4 days.
Tween 20 enhanced the production by 1.19

folds. Glucose was the best carbon.

[10]

Sarocladium S. strictum MCD
L-asparagine

pH 6.8, the incubation period was 2–3 days,
carbon sources were D-glucose, starch and

molasses, glycerol, ammonium sulphate as a
mineral nitrogen source, and soybean powder

and yeast extract

1.84-fold increase in enzyme production, Km
and Vmax was 9.74 m/mol and 8.19 mol/

min
[11]

SSF, (solid-state fermentation); SmF, (submerged fermentation); NA, (nutrient agar); MCD, Modified Czapek Dox.
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The application of L-asparaginase is presented in Table 7. At a concentration of
125 µg/mL, L-Asparaginase showed high activity against lymphoma cancer cells (U937),
with an IC50 value of 500 µg/mL of β-cyclodextrin-asparaginase nanobiocomposite [70].
In the anti-cancer studies of Baskar et al. [6], the L-Asparaginase is incorporated into
the nano biocomposites which have been synthesized using β-cyclodextrin and chitosan
to investigate the anti-cancer activity against prostate cancer cell lines and lymphoma
cancer cells. The results revealed high activity against lymphoma cancer cells (U937) with
IC50 value at 500 µg/mL of β-cyclodextrin-Asparaginase nanobiocomposite. Golbabaie
et al. [11] used a crude L-Asparaginase enzyme mixed with cell viability to investigate the
anti-cancer activity against K562 and HL60 cancer cell lines and lymphoblastic leukemia.
The results revealed that the toxicity of the enzyme was determined with IC50 values were
calculated as 0.4 and 0.5 IU/mL for K562 and HL60 respectively. Ertel et al. [71] used
L-Asparaginase with a dose of ≥6000 IU/sq m three times weekly for treating childhood
leukemia, the enzyme was effective in re-inducing remissions at 9.5% for 300 IU/sq m;
35.1% for 3000 IU/sq m; 53.5% for 6000 IU/sq m; and 62.5% for 12,000 IU/sq m.

Table 7. Examples for the applications of L-Asparaginase as an anti-cancer.

Cancer Type Preparation Activity References

Prostate cancer cell lines
lymphoma cancer cells

L-Asparaginase was incorporated into
nano biocomposites synthesized using

β-cyclodextrin
and chitosan.

The mixture exhibited high activity at
the concentration of 125 µg/mL and
against lymphoma cancer cells (U937)

with IC50 value at 500 µg/mL of
β-cyclodextrin-Asparaginase

nanobiocomposite.

[6]

Cervical and brain cancer cell
lines

The enzyme was immobilized onto a
nanobiocomposite consisting of
β-cyclodextrin and Gelatin.

The anticancer activity was 42.13% at
500 µg/mL and 48.60% at 62.5

µg/mL respectively.
[6]

K562 and HL60
cancer cell lines

lymphoblastic leukemia

A crude enzyme was mixed with cell
viability and then incubated for 24 h at 37
◦C inside a CO2 incubator, thereafter,

ten µL of 10% MTT
(3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) was
added and incubated for 3 h, 100 µL of

DMSO was added to the mixture,
the absorbance was measured at A570 nm.

The toxicity of L-asparaginase against
K562 and HL60 cancer cell lines and
L6 as normal cells was determined
with IC50 values were calculated as

0.4 and 0.5 IU/mL for K562 and HL60
respectively

[11]

Childhood leukemia L-Asparaginase with a dose of ≥ 6000
IU/sq m three times weekly.

L-Asparaginase was effective in
re-inducing remissions at 9.5% for 300

IU/sq m; 35.1% for 3000 IU/sq m;
53.5% for 6000 IU/sq m; and 62.5%

for 12,000 IU/sq m.

[33]

Acute lymphoblastic leukemia
L-Asparaginase in doses from 10 to 1000
international units/kg body weight per

day for 2 to 20 days.

66% response rate for acute
lymphoblastic leukemia and an

approximately 12% response rate for
nonlymphocytic leukemia.

[30]

6. Conclusions

This review has attempted to cover the aspects for anticancer agents from marine fungi,
the reader can get an idea about the different fungal species which have been investigated
as a source for the compounds used for the cancer treatment. The marine environment
represents a rich source of fungi that has the ability to produce several secondary bioactive
compounds from the MNPs such as anti-cancer, antiviral and antibiotic which are produced
from these fungi. Moreover, more than 2225 bioactive compounds from marine organisms
exhibited anti-cancer activity. Some of the most biologically potent and predominant anti-
cancer compounds have been isolated from marine organisms, these secondary products
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have unique and diverse chemical structures as well as has high potential novel drugs
such as polyphenols, polysaccharides, and alkaloids. The main enzymes associated with
cancer and anticancer include asparaginase, acyltransferase, α-glucosidase, α-amylase,
β-glucosidase, β-glucuronidase, gelatinase, glutaminase, laccase, lactate dehydrogenase,
triacylglycerol lipase, mono phenol mono-oxygenase, and xylan endo 1,3, β-xylosindase.
The mode of action of these drugs acts by inhibiting the enzyme leading to suppression of
proliferation in a variety of cancer cell types. The following findings by various researcher’s
point to the possibility of anti-cancer agents from fungi: the anti-cancer agents from fungi
act by cytotoxic activities and apoptosis of cancer cells and DNA fragmentation as well as
by hindering cell proliferation, enhancing Dox aggregation intracellularly, and causing the
cell’s death.
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