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Abstract: Across lower eukaryotes, the transcription factor Crz1 is dephosphorylated by calcineurin,
which facilitates Crz1 translocation to the nucleus to regulate gene expression. In the fungal pathogen
Cryptococcus neoformans, calcineurin–Crz1 signaling maintains calcium homeostasis, thermotolerance,
cell wall integrity, and morphogenesis. How Crz1 distinguishes different stressors and differentially
regulates cellular responses is poorly understood. Through monitoring Crz1 subcellular localization
over time, we found that Crz1 transiently localizes to granules after exposure to high temperature
or calcium. These granules also host the phosphatase calcineurin and Pub1, a ribonucleoprotein
stress granule marker, suggesting a role of stress granules in modulating calcineurin–Crz1 signaling.
Additionally, we constructed and analyzed an array of Crz1 truncation mutants. We identified the
intrinsically disordered regions in Crz1 contribute to proper stress granule localization, nuclear
localization, and function. Our results provide the groundwork for further determination of the
mechanisms behind the complex regulation of Crz1.
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1. Introduction

Crz1 is an important downstream transcription factor in calcineurin signaling in lower
eukaryotes [1]. Deletion of the CRZ1 gene in pathogenic fungi has pleiotropic effects, with
increased sensitivity to calcium, cell wall stress, and attenuated virulence being common
phenotypes. This has been observed in the rice blast fungus Magnaporthe oryzae [2], in the
opportunistic human fungal pathogens Aspergillus fumigatus [3,4], Candida species [5,6],
and Cryptococcus neoformans [7–10]. In C. neoformans, the calcineurin–Crz1 pathway is also
critical for the yeast to hypha transition induced by glucosamine [11].

Crz1 translocates from the cytosol to the nucleus after calcineurin-dependent de-
phosphorylation in the model yeast Saccharomyces cerevisiae [12]. This phosphorylation-
dependent regulation of Crz1′s subcellular localization appears conserved across lower
eukaryotes. In C. neoformans, Crz1 may translocate to the nucleus in response to 37 ◦C,
glucosamine, or calcium stress. In addition to trafficking between the cytosol and the
nucleus, a punctate localization of Crz1 has been observed in response to high salt or high
temperature shock [8,11]. How the subcellular localization of Crz1 and its function are
differentially regulated in response to different stresses is poorly understood. C. neofor-
mans Crz1 protein is ~1100 amino acids in length with a C-terminal DNA binding domain
~90 amino acid long. The remaining ~1000 amino acids of the protein are mostly pre-
dicted to exist in an unfolded or disordered state. Disordered protein sequences have
been shown to contribute to phase separation as well as transcription factor DNA binding
activity [13–16]. It was recently demonstrated in the fungal pathogen Candida albicans, that
the intrinsically disordered regions of the phosphatase Ptc2 allow it to phase separate in
response to host CO2 levels [17]. Because Crz1 contains many regions of intrinsic disorder
with unknown function, we decided to investigate the molecular basis of Crz1 function and
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its subcellular localization by creating and examining Crz1 mutant proteins with trunca-
tions of different regions. Here, we report our systematic characterization of these mutant
Crz1 proteins’ localization in response to calcium, glucosamine, heat, and salt stress, and
their ability to complement the phenotypes of the crz1∆ mutant.

2. Materials and Methods
2.1. Strains and Media

All C. neoformans strains used are listed in Supplemental Table S1. Cryptococcal cells
were freshly thawed from 15% glycerol stocks stored at −80 ◦C and cultured on YPD
medium (1% yeast extract, 2% BactoPeptone, and 2% dextrose) unless specified otherwise.
For all growth assays involving comparisons of different strains, the cells were first adjusted
to the same optical density (OD) by quantification of the OD600 with a spectrophotometer
or with a Biotek Epoch 2 plate reader. For the spotting assays testing growth in hypoxic
conditions, an environment of 37 ◦C, 0.1% O2, and 5% CO2 was maintained with a Bio-
spherix C chamber with a Pro-Ox controller and a Pro-CO2 controller to maintain O2/CO2
levels (Biospherix, Lacona, NY, USA).

2.2. Genetic Manipulation

The plasmids and primers used in this study are listed in Supplemental Table S1. To
overexpress and fluorescently label Crz1, the open reading frame of CRZ1 was first PCR ampli-
fied and cloned into the vectors with mCherry and mNeonGreen for tagging after restriction
enzyme digestion. The vectors contain the GPD1 promoter for constitutive overexpression
and a neomycin (NEO) drug selection marker. Internally truncated CRZ1 mutant alleles
were generated by overlap PCR (or fusion PCR). The primers used for each construct are
listed in Supplemental Table S1. All mutant CRZ1 allele constructs and the wild-type allele
construct were cloned into the same plasmid backbone, pUC19, with expression controlled by
the GPD1 promoter and with a C-terminal mNeonGreen tag. The constructs were introduced
into the C. neoformans crz1∆ mutant genome by TRACE (transient CRISPR-Cas9 coupled with
electroporation) [18,19] and transformants were selected on 100µg/mL of G418. All constructs
in the selected transformants were integrated into the “safe haven” locus SH2 [19,20].

2.3. Microscopy

C. neoformans strains were observed under a Zeiss Imager M2 microscope, and all images
were acquired by an AxioCam MRm camera and processed with Zen pro software version
3.1 (Carl Zeiss Microscopy, Jena, Germany). For heat shock experiments, the cells grown
overnight at 22 ◦C were prepared for microscopy on a 42 ◦C pre-heated glass slide and
incubated at 42 ◦C for 15–20 min. For the high calcium and salt shock experiments, the
cells were suspended in water containing 1 M NaCl or 100 mM CaCl2 for 15–20 min. The
cells were then immediately examined under the microscope. For timelapse experiments
involving heating, the cells were prepared on a pre-warmed slide and examined on the same
Zeiss Imager M2 microscope equipped with a heated stage (PE120 Linkam stage, McCrone
Microscopes & Accessories). For timelapse experiments testing responses to CaCl2, the cells
were suspended in 1 mM CaCl2 on a microscope slide and immediately imaged.

3. Results
3.1. The crz1∆ Mutant Displays Pleiotropic Growth Defects

We first tested the growth of the crz1∆ mutant in various stressful conditions. The
crz1∆ mutant grew poorly at 39 ◦C and under hypoxic conditions (Figure 1A). In addition,
the crz1∆ mutant was sensitive to SDS (membrane disrupting detergent), Congo Red
(cell wall stressor), and high calcium (Figure 1A). Our observation is consistent with
previous findings that deletion of the CRZ1 gene in C. neoformans led to increased sensitivity
to cell wall stresses, high temperature, calcium, and hypoxia [7,8,10,21]. However, the
crz1∆ mutant showed no growth defects in 1 M NaCl and it grew noticeably better than
the WT strain on the filamentation-inducing media YP + Glucosamine. This is likely due
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to the fact that the crz1∆ mutant grows in the yeast form on this medium while H99 can
grow filamentously and the filamentous growth rate is slower relative to yeast growth rate
in C. neoformans [11].

J. Fungi 2023, 9, x FOR PEER REVIEW 3 of 12 
 

 

wall stresses, high temperature, calcium, and hypoxia [7,8,10,21]. However, the crz1Δ mu-
tant showed no growth defects in 1 M NaCl and it grew noticeably better than the WT 
strain on the filamentation-inducing media YP + Glucosamine. This is likely due to the 
fact that the crz1Δ mutant grows in the yeast form on this medium while H99 can grow 
filamentously and the filamentous growth rate is slower relative to yeast growth rate in 
C. neoformans [11]. 

As previously described, the crz1Δ mutant grew similarly as the wild type at 30 °C but 
poorly at 39 °C after two days of incubation on plates at the constant temperature, indicating 
that Crz1 is important for thermotolerance. To test if Crz1 is important for adaptation after 
a brief heat shock, we tested the recovery growth of both WT H99 and the crz1Δ mutant at 
30 °C after 20 min of incubation at 42 °C in liquid culture. When cultured at the constant 
temperature of 30 °C without heat shock, there was a slight growth defect of the crz1Δ mu-
tant compared to the WT strain (left graph, Figure 1B). Although the WT grew to a slightly 
higher optical density, the time spent in lag phase growth was about the same (both ~10 h). 
However, with the short heat shock at 42 °C, the growth defect of the crz1Δ mutant was 
exacerbated (Figure 1B). The crz1Δ mutant experienced a lag growth phase about 30 min 
longer than the WT (p < 0.0001, two-tailed test). These results indicate that Crz1 is important 
for heat shock adaptation even after a short exposure to high temperature. 

 
Figure 1. Growth assays of the crz1Δ mutant under various stress conditions. (A) The WT strain H99 
and the crz1Δ mutant were grown overnight in liquid YPD at 30 °C, washed, adjusted to the same 
cell concentration, serially diluted, and spotted onto the media and incubated under the indicated 
conditions. Images were taken two days after incubation. (B) The overnight cultures of H99 and the 
crz1Δ mutant were split into two groups and diluted to OD600 = 0.1 in YPD medium. Three replicates 
of each strain were included per group. One group was inoculated into a 24-well microplate and 
incubated at 30 °C with double orbital shaking in a Biotek Epoch 2plate reader. Growth was moni-
tored every 30 min by measuring OD600. The second group was heat shocked by incubation at 42 °C 
for 20 min in a thermocycler prior to monitoring growth at 30 °C in the Epoch 2. 

3.2. Crz1 Co-Localizes to Stress Granules with Pub1 and Calcineurin in Response to Heat or Salt 
Stress 

Under non-stimulating conditions, Crz1 showed diffused cytoplasmic localization in 
most cells and enriched nuclear localization in a small proportion of the population (Fig-
ure 2A), as we expected based on our previous study [11]. In response to heat (42 °C) or 
salt (1 M NaCl) shock, we found that both an N-terminal mCherry-tagged Crz1 fusion 
protein (mCh-Crz1) and a C-terminal mNeonGreen-tagged Crz1 fusion protein (Crz1-

Figure 1. Growth assays of the crz1∆ mutant under various stress conditions. (A) The WT strain H99
and the crz1∆ mutant were grown overnight in liquid YPD at 30 ◦C, washed, adjusted to the same
cell concentration, serially diluted, and spotted onto the media and incubated under the indicated
conditions. Images were taken two days after incubation. (B) The overnight cultures of H99 and
the crz1∆ mutant were split into two groups and diluted to OD600 = 0.1 in YPD medium. Three
replicates of each strain were included per group. One group was inoculated into a 24-well microplate
and incubated at 30 ◦C with double orbital shaking in a Biotek Epoch 2plate reader. Growth was
monitored every 30 min by measuring OD600. The second group was heat shocked by incubation at
42 ◦C for 20 min in a thermocycler prior to monitoring growth at 30 ◦C in the Epoch 2.

As previously described, the crz1∆ mutant grew similarly as the wild type at 30 ◦C
but poorly at 39 ◦C after two days of incubation on plates at the constant temperature,
indicating that Crz1 is important for thermotolerance. To test if Crz1 is important for
adaptation after a brief heat shock, we tested the recovery growth of both WT H99 and
the crz1∆ mutant at 30 ◦C after 20 min of incubation at 42 ◦C in liquid culture. When
cultured at the constant temperature of 30 ◦C without heat shock, there was a slight growth
defect of the crz1∆ mutant compared to the WT strain (left graph, Figure 1B). Although
the WT grew to a slightly higher optical density, the time spent in lag phase growth was
about the same (both ~10 h). However, with the short heat shock at 42 ◦C, the growth
defect of the crz1∆ mutant was exacerbated (Figure 1B). The crz1∆ mutant experienced
a lag growth phase about 30 min longer than the WT (p < 0.0001, two-tailed test). These
results indicate that Crz1 is important for heat shock adaptation even after a short exposure
to high temperature.

3.2. Crz1 Co-Localizes to Stress Granules with Pub1 and Calcineurin in Response to Heat
or Salt Stress

Under non-stimulating conditions, Crz1 showed diffused cytoplasmic localization
in most cells and enriched nuclear localization in a small proportion of the population
(Figure 2A), as we expected based on our previous study [11]. In response to heat
(42 ◦C) or salt (1 M NaCl) shock, we found that both an N-terminal mCherry-tagged
Crz1 fusion protein (mCh-Crz1) and a C-terminal mNeonGreen-tagged Crz1 fusion pro-
tein (Crz1-mNG) localized to granules in all cells (Figure 2A). Previously, Kozubowski
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et al. found that calcineurin (Cna1) co-localizes with the polyA-binding protein Pub1 in
stress granules at 37 ◦C [22]. Pub1 is a known marker for stress granules in response to
starvation, heat shock, or acidification [23]. Because Crz1 is a known downstream target of
calcineurin, we decided to test if Crz1 co-localizes with calcineurin catalytic subunit Cna1
or Pub1 at high temperatures or in high salt. To that end, we introduced the Crz1-mNG
into a strain harboring Pub1-mCherry and the mCh-Crz1 into a strain harboring Cna1-GFP.
Under the non-stimulating control condition (22 ◦C), Crz1 and Pub1 were mostly diffused
in the cytoplasm with some cells showing enrichment in the nucleus (Figure 2B, top left
images). By contrast, calcineurin Cna1 was in the cytoplasm and likely excluded from
the nucleus (Figure 2C, top right images). In response to 42 ◦C or salt shock, we found
that Crz1 localized to granules and these granules co-localized with Pub1 (Figure 2B) and
calcineurin Cna1 (Figure 2C). Taking these observations into consideration, we hypothesize
that co-localization of Crz1 and the phosphatase calcineurin to stress granules may be a
mechanism to promote their interaction and facilitate dephosphorylation of Crz1 and its
subsequent translocation to the nucleus.
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Figure 2. Crz1 co-localizes to stress granules with Pub1 and calcineurin in response to heat or salt
shock. (A) mCherry-Crz1- or Crz1-mNeonGreen-expressing cells were incubated at 22 ◦C overnight
and fluorescence was observed. To test the effects of salt and heat shock, cells were suspended in
1 M NaCl or exposed to 42 ◦C for 15–20 min prior to microscopic examination. (B) The same procedure
was done with cells expressing both Crz1-mNeonGreen and Pub1-mCherry and (C) cells expressing
both mCherry-Crz1 and Cna1-GFP. The scale of all images in each panel is the same.

3.3. Crz1 Localizes to Stress Granules at Host Physiological Conditions

Crz1 was previously found to localize to the nucleus when cells were grown overnight
at the mammalian host temperature of 37 ◦C or after being exposed to 100 mM CaCl2 [8,11].
Here we found that Crz1 localizes to stress granules after a short exposure to high temperature
and salt. We wondered if the seemingly conflicting localizations of Crz1 are due to dynamic
trafficking of Crz1 and the differences in the timing of observation in previous studies and
this study. We therefore monitored Crz1-mNeonGreen localization in the same cells over



J. Fungi 2023, 9, 252 5 of 12

time in response to a temperature shift from 22 ◦C to 37 ◦C. Interestingly, after 5 min of
37 ◦C heat shock, Crz1 was found in puncta in some cells (Figure 3A). The Crz1 in the same
cells then later localized to the nucleus after 30 min (arrow heads in Figure 3A). This result
further supports our hypothesis that stress granule localization facilitates Crz1 translocation to
the nucleus, likely by promoting interaction between Crz1 and calcineurin. This punctate-to-
nucleus translocation was not observed when cells were exposed to 100 mM CaCl2. Because
Cryptococcus is likely exposed to much lower concentrations of calcium in the host than the
100 mM CaCl2 used in earlier studies (e.g., CaCl2 concentration in serum is ~2.2–2.6 mM),
we then tested Crz1 localization in response to 1 mM CaCl2. We noticed that ~33% of cells
displayed nuclear localized Crz1 in less than 1 min of exposure to exogenous calcium at 1 mM,
and ~80% of cells displayed punctate Crz1 localization after 5 min (Figure 3B, Supplemental
Videos S1 and S2). We monitored Crz1 localization in response to 1 mM CaCl2 for up to
30 min and found the puncta localization was stable for the whole duration. We observed
similar puncta localization of Crz1 after exposure to 10 mM CaCl2. Thus, it seems that granular
localization of Crz1 likely occurs in the host.
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Figure 3. Crz1 localizes to granules at conditions relevant to host physiology. (A) Cells expressing
Crz1-mNeonGreen were initially grown overnight at 22 ◦C. The cells were then prepared for mi-
croscopy on a 37 ◦C pre-heated glass slide and examined on a microscope equipped with a heated
stage set to 37 ◦C. White arrowheads indicate examples of cells where Crz1 localized to granules first
before typical nuclear localization in response to 37 ◦C. (B) The same cells grown overnight at 22 ◦C
were suspended in 1 mM CaCl2 on a microscope slide and immediately imaged (Crz1-mNG). Images
were taken of the same field of view at the indicated times. The scale is the same for all images in the
same panel.
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3.4. Crz1 Localizes to the Mother–Daughter Bud Neck in Response to Stress Conditions

While subjecting cryptococcal cells to a variety of stresses, we noticed localization of
Crz1-mNeonGreen to the bud neck of replicating cells (mother cells with daughter buds).
At room temperature without any added stress, Crz1 localization to the bud neck was
not observed. To examine the dynamics of this bud neck localization, we monitored Crz1-
mNeonGreen over time after exposure to a 1 mM CaCl2 shock (Figure 4A, Supplemental
Video S3). For a period of 12 min, gradual accumulation of Crz1-mNeonGreen signal in
both the nucleus and the bud neck was observed. We further tested bud neck localization of
Crz1 in response to 37 ◦C, 1 M NaCl, 1 mM CaCl2, and 42 ◦C heat shock. For each condition,
we analyzed over 100 mother–daughter pairs and categorized them as showing Crz1 bud
neck localization or not. We further measured the diameter of the budding daughter cells
to test if Crz1′s bud neck localization correlates with the size of buds. Interestingly, Crz1′s
bud neck localization was observed in response to each stress tested, and it was primarily
observed in a subset of the cells which have larger buds (Figure 4B). The median bud
length measured for all conditions was ~2.6 µm, with the minimum and maximum lengths
found being 0.5 µm and 4.0 µm, respectively. Over 20% of all budding cells and over 60%
of cells with a diameter over 3 µm displayed Crz1 localization at the bud neck. Because
we only captured images at a single timepoint, it is likely that these percentages are an
underestimate of cells with Crz1 localized to the bud neck. These data suggest that Crz1
likely localizes to the bud neck prior to cell separation.
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Figure 4. Crz1 localizes to the bud neck in response to stress. (A) Cells expressing Crz1-mNeonGreen
were suspended in 1 mM CaCl2 on a microscope slide and immediately imaged. The same field of
view was captured at the indicated times and representative images are shown. (B) Cells with buds
were characterized as having Crz1-mNG localization at the bud neck or not. The diameter of each
bud was measured using ZEN 3.1 software. Over 100 cells were quantified per condition tested.
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3.5. Crz1 Truncation Analysis Reveals Functionally Critical Regions

The Crz1 protein contains a C-terminal DNA binding domain (DBD) which makes
up less than 10% of the protein sequence, and several intrinsically disorder regions (IDRs)
predicted by PONDR [24] (Figure 5A). Consistent with this domain prediction, AlphaFold
software predicts one defined domain in the Crz1 protein sequence which corresponds
to the DBD, and no other inter-protein interactions in the remaining sequence [25,26]
(Figure 5B,C). The near N-terminal disordered sequence also contains a poly glutamine
(polyQ) track which may contribute to granular localization [27,28]. In addition, seven
serine phosphorylation sites which are known to be dephosphorylated by calcineurin add
an additional layer of Crz1 regulation [21]. To identify what regions of the Crz1 protein
sequence are important for its localization and function in response to different stresses,
we created 10 internal (∆) and N-terminal (∆N) truncated Crz1 mutant alleles, as well as
a polyQ mutant Crz1(polyQ→A) (Figure 5D). We also utilized the existing phosphorylation
site mutant Crz1(7S→A) [21]. We then tagged these mutant proteins with mNeonGreen and
introduced them into the crz1∆ mutant background to test for functional complementation.
To minimize variations on gene expression caused by positional effects, we integrated
all the constructs into the same “safe haven” SH2 genetic locus [19,20]. For comparison,
we also introduced the WT Crz1 protein sequence tagged with mNeonGreen into the
crz1∆ mutant background using the same procedure. All Crz1 WT and mutant alleles
were tested for (1) their ability to compensate for the loss of Crz1 in terms of growth in
high temperatures, hypoxia, and media supplemented with calcium, Congo red, SDS, and
glucosamine (Figure 5E) and (2) their subcellular localization in response to the various
stresses (Table 1). For subcellular localization, a total of 100 cells were counted for each
condition, and the percent of cells showing nuclear localization (as opposed to cytosolic), or
granular localization are recorded in Table 1. Supplementary Figure S1 shows an example
of cytosolic, nuclear, and granular localization of Crz1-mNeongreen.

Table 1. Localization of Crz1 mutants.

22 ◦C 37 ◦C GlcN NaCl CaCl2 FK506 42 ◦C 42 ◦C + FK506
Strain N N N N G N N G N G N G

WT 13% 99% 78% 1% 99% 97% 0% 5% 0% 100% 0% 100%
7S -> A 37% 100% 96% 0% 100% 100% 1% 0% 100% 0% 0% 100%

polyQ -> A 11% 32% 94% 0% 100% 98% 2% 2% 0% 100% 0% 92%
∆N 1-257 74% 95% 99% 10% 90% 100% 0% 4% 51% 36% 1% 57%
∆N 1-368 92% 100% 97% 100% 90% 97% 95% 0% 97% 0% 99% 0%
∆N 1-451 100% 100% 100% 15% 85% 98% 2% 0% 100% 0% 13% 87%
∆N 1-705 54% 87% 87% 100% 23% 100% 91% 0% 100% 0% 100% 0%
∆N 1-802 100% 100% 62% 100% 100% 98% 94% 0% 100% 0% 95% 0%
∆N 1-823 97% 100% 100% 97% 94% 100% 85% 0% 91% 0% 100% 0%

∆NC
946-1030 85% 94% 52% 100% 0% 98% 84% 0% 100% 0% 96% 0%

∆NC 833-926 73% 98% 100% 100% 100% 100% 100% 0% 100% 0% 100% 0%
∆NC 625-665 23% 82% 97% 5% 84% 85% 0% 23% 17% 0% 0% 20%
% Different

from WT 0–20 >20 >40 >60 >80 100

N: nuclear, G: Granular.

As expected, the WT Crz1 construct was able to rescue all defects of the crz1∆ mu-
tant examined (Figure 5E). To our surprise, mutations of the polyQ did not compromise
functional complementation or granular localization. The Crz1(polyQ→A) mutant protein
showed reduced localization to the nucleus in response to 37°C(32% vs. 99% in the nucleus,
Table 1), but there was no discernable growth defect of this mutant strain even at 39 ◦C
(Figure 5E). Similarly, mutation of the seven phosphorylation sites did not compromise
complementation in any of the growth assays (Figure 5E). The Crz1(7S→A) mutant expect-
edly displayed increased localization to the nucleus at 22◦C (37% vs. 13% in WT) and after
a 42 ◦C heat shock (100% of cells displayed nuclear localization vs. granular localization
of the wildtype). In response to 1 M NaCl, 100% of cells showed Crz1(7S→A) in granules,
indicating these seven phosphorylation sites are not required for granular localization.
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Figure 5. Mutational analysis of the Crz1 protein. (A) Results of PONDR (Predictor of Natural
Disordered Regions) analysis of Crz1. A higher score correlates with higher disorder in the protein
sequence. (B) AlphaFold prediction of Crz1 protein structure. The color pattern indicates the
confidence level of the prediction. (C) The AlphaFold predicted aligned error plot shows dark green
patches indicative of inter-protein interactions. (D) Protein diagrams of Crz1 mutant alleles used in
this study. Green indicates the DNA binding domain (DBD) and grey indicates regions of intrinsic
disorder (IDRs). The putative calcineurin-docking domain (CDD) [10], phosphorylation sites (S) [21],
and polyQ region (12Q) are labeled. (E) The WT strain H99, the crz1∆ mutant, and mutant alleles in
the crz1∆ mutant background were grown overnight in YPD, serially diluted, and spotted onto the
media and incubated for two days as indicated.

Deletions of the different intrinsically disordered regions had various impacts on the
function and subcellular localization of Crz1. Interestingly, deletion of the first 257 amino
acids, which includes part of IDR1 and the polyQ site, did not affect Crz1′s function in
the conditions tested. However, the Crz1(∆N 1–257) mutant showed decreased granular
localization in response to 42 ◦C heat shock (36% versus 100% in WT). Deletion of the
second part of IDR1 (∆N 263–451) had a negative effect on the ability of Crz1 to restore
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cell wall stress, but not other stresses (Figure 5E). Truncation of the first 368 amino acids
(∆N 1–368), which includes the entire IDR1 region, caused a total loss of function because
the Crz1(∆N 1–368) mutant behaved exactly like the crz1∆ mutant in our spotting assays. The
Crz1(∆N 1–368) protein was constitutively found in the nucleus, indicating that this region
contains a possible nuclear exporting signal. Not surprisingly, the larger N-terminal trunca-
tion mutants, namely the Crz1(∆N 1–451) mutant, the Crz1(∆N 1–705) mutant, the Crz1(∆N 1–802)

mutant, and the Crz1(∆N 1–823), mutant had the same phenotype as the crz1∆ mutant.
Deletion of the IDR2 region (∆625–665) in the middle of the protein did not have any

compromising effects in these growth assays, although its deletion abolished granular local-
ization in response to 42 ◦C shock (0%) and slightly reduced granular localization in response
to 1 M NaCl (84% vs. 99% in the WT). Strikingly, deletion of the IDR3 region (∆833–926)
caused constitutive nuclear localization as well as loss of function in spotting assays. Likewise,
the DBD mutant, Crz1(∆N 946–1030), displayed similar localization and loss of function as the
IDR3 region mutant Crz1(∆N 833–926). The IDR3 region is located directly upstream of the DBD
and may play a critical role in its function. Notably, the IDR3 mutant allele Crz1(∆N 833–926),
the DBD mutant allele, and the N-terminal truncated allele Crz1(∆N 1–368) were all not func-
tional despite being constitutively localized to the nucleus, indicating these regions may all
contribute to proper DNA binding and/or transcriptional activity.

4. Discussion

Lev et al. [8] first demonstrated that Crz1 localizes to granules in response to high
salt or heat shock, and additionally, that Crz1 does not co-localize with polyA-binding
protein Pab1 granules. Here, we found that Crz1 does co-localize with Pub1 granules. Our
finding is consistent with previous findings in S. cerevisiae that Pab1 and Pub1 localize
with different RNA binding proteins and/or stress granule components, indicating that the
cytosol contains various types of RNP granules which may serve different functions [29,30].

Intrinsically disordered regions (IDRs) within proteins have been implicated as the
drivers of granular assembly (or phase separation) [15,16]. For example, interactions
between the three IDRs of the human stress granule assembly factor G3BP1 are regulated
by phosphorylation, which will toggle the protein between closed and open states, the
latter of which leads to stress granule assembly [15]. We identified three IDRs in the Crz1
protein sequence (Figure 5A), and individual Crz1 IDR truncations caused partial loss of
stress granule localization (Figure 5B, Table 1). However, neither mutating the seven known
phosphorylation sites (mimicking a dephosphorylated state) nor inhibiting the phosphatase
calcineurin with FK506 (mimicking an enhanced phosphorylated state) prevented granular
localization of Crz1, indicating a mechanism different from phosphorylation for regulation
of phase separation. IDRs have been demonstrated to mediate transcription factor activity
through liquid phase separation, DNA binding, or protein–protein interactions [13,14].
In our study, disruption of IDRs had deleterious effects on Crz1 function. For example,
deletion of the IDR3 region located upstream of the DBD abolished Crz1 function in all
assays (Figure 5B), indicating its critical role in mediating Crz1′s transcription factor activity.

Previously, it was known that Crz1 translocates to the nucleus in response to increas-
ing temperature from room temperature to 37 ◦C. By examining cells expressing Crz1-
mNeonGreen over time, we found that Crz1 may first localize to granules before nuclear
translocation after the temperature shift (Figure 3A). Furthermore, Crz1 localizes to stress
granules in addition to the nucleus in response to exogenous calcium at concentrations near
host serum levels (Figure 3B). These data, together with our observations that Crz1 co-localizes
with the phosphatase calcineurin to stress-induced granules, suggest that Crz1 localization to
stress granules facilitates its translocation to the nucleus due to enhanced dephosphorylation
by calcineurin. As multiple known targets of calcineurin localize to RNP granules [21], we sus-
pect that granular localization of these proteins, including Crz1, may be a general mechanism
to facilitate their dephosphorylation by calcineurin.

We also observed that Crz1 localizes to the bud neck under stress granule-inducing
conditions, specifically in cells with larger buds (Figure 4). Interestingly, calcineurin also
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localizes to the bud neck and may play a critical role in coordinating cytokinesis and
septation in C. neoformans under these stressful conditions through affecting its various
substrate protein targets [22,31,32]. Like Crz1, another calcineurin substrate protein Cts1
co-localizes with calcineurin and Pub1 to cytoplasmic puncta and localizes to the bud neck
of large budded cells [31,32]. Additionally, deletion of the CTS1 gene caused defects in
budding at 37 °C [32]. Calcineurin’s involvement in septation has also been demonstrated
in A. fumigatus [33–35] and Schizosaccharomyces pombe [36]. Whether or not Crz1 plays
an active role in septation or budding, either alone or in collaboration with other factors
targeted by calcineurin, should be investigated in future studies.

Interestingly, loss of Crz1 does not confer any obvious growth defects in some of
the conditions which induced granules (Figure 1). This is not surprising, as loss of Crz1
also does not clearly hamper cryptococcal growth at 37 ◦C or in the presence of 400 mM
calcium [8] even though both conditions induce Crz1 nuclear translocation and activate
its transcriptional activity [10]. While growth of the crz1∆ mutant does not appear to be
sensitive at 37 ◦C, it is sensitive at 39 ◦C (Figure 5C). Moreover, double mutants of Crz1
and other calcineurin target proteins localized to granules caused thermosensitivity at
37 ◦C [21]. These observations suggest robust redundancy of calcineurin substrate protein
function in ensuring cell separation and growth at higher temperatures.
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neck. Reference [37] is cited in the Supplementary Materials.
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