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Abstract: Providing timely antifungal treatment to patients suffering from life-threatening invasive
fungal infections (IFIs) is essential. Due to the changing epidemiology and the emergence of antifun-
gal resistance in Aspergillus, the most commonly responsible mold of IFIs, antifungal susceptibility
testing (AFST) has become increasingly important to guide clinical decisions. This study assessed
the essential agreement (EA) between broth microdilution methods (the Clinical and Laboratory
Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing
(EUCAST)) and the Etest of amphotericin B (AmB), liposomal amphotericin B (L-AmB), and isavu-
conazole (ISA) against 112 Aspergillus section Terrei. An EA within ±2 dilutions of ≥90% between the
two methods was considered acceptable. Excellent EA was found between EUCAST and CLSI of
AmB and ISA (98.2% and 95.5%, respectively). The correlation of Etest results and EUCAST/CLSI
was not acceptable (<90%) for any tested antifungal; however, Etest and CLSI for AmB (79.6%) and
ISA (77.6%) showed a higher EA than Etest and EUCAST for AmB (49.5%) and ISA (46.4%). It was
concluded that the Etest method requires its own clinical breakpoints (CBPs) and epidemiological
cutoff values (ECVs), and interpreting Etest results using EUCAST and CLSI-adapted CBPs and ECVs
could result in misinterpretation as Etest shows lower minimum inhibitory concentrations (MICs).

Keywords: antifungal susceptibility testing; CLSI; EUCAST; epidemiological cutoff values; clinical
breakpoints; antifungal resistance; Aspergillus terreus; amphotericin B; isavuconazole

1. Introduction

Invasive fungal infections (IFIs) are becoming more prevalent due to increasing im-
munosuppressive drugs and immune-modulating diseases [1,2]. In severely immunocom-
promised patients, filamentous fungi are responsible for about 50% to 75% of IFIs, which
are associated with high mortality and morbidity [1]. Invasive aspergillosis (IA) is the most
reported mold infection in IFIs, most often caused by Aspergillus fumigatus, followed by
other Aspergillus species, such as A. terreus [3,4]. Compared to other Aspergilli, A. terreus
has an exceptional clinical status due to its high dissemination potential and reduced
sensitivity to amphotericin B (AmB), the drug of choice for many severe fungal infections in
vulnerable hosts [5–8]. A. terreus isolates exhibit a broad range of AmB minimum inhibitory
concentration (MICs), from infrequently low MICs (≤1 mg/L) to frequently high MICs
(≥2 mg/L), making clinical breakpoints (CBPs) difficult to establish [7,9–12]. The limited
classes of available therapeutic antifungal agents and the rising number of antifungal resis-
tance make the treatment of IFIs challenging [13–15]. Voriconazole remains the preferred
agent for the treatment of aspergillosis, including A. terreus [16]. Alternative therapeutic
options include isavuconazole, voriconazole plus an echinocandin, and liposomal AmB
(L-AmB) [17]. As azole-resistance rates in A. terreus have been rising, other alternative
therapeutic agents are being considered for investigation in the present study, including
isavuconazole, another broad-spectrum azole, and conventional AmB and L-AmB, with
less toxicity [14,17,18].
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Selecting an antifungal agent for therapy depends on the fungal pathogen’s suscep-
tibility to the antimycotic agent. Therefore, antifungal susceptibility testing (AFST) is
becoming increasingly important for managing patient outcomes [19]. Determining the
MIC using AFST provides an in vitro measure of the susceptibility of the causal agent [19].
Several AFST methods are currently used or under development. An ideal susceptibility
testing method must be easy, reproducible, accurate, and cost-effective. In vitro AFST is
influenced by many factors [20], so minimizing their influence on the final MIC value
was the main reason behind standardization. The Clinical and Laboratory Standards In-
stitute (CLSI) [21] and the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) [22] established and standardized two independent standard broth microdilu-
tion methods, frequently referred to as reference guidelines. Agar-based commercialized
gradient diffusion strips (Etest) are the convenient approach for AFST in clinical practice
compared to broth microdilution AFSTs, which are labor-intensive and time-consuming [23].
The best susceptibility testing method for molds is unclear. Therefore, the present study
aimed to compare the agreement between Etest and two broth microdilution methods
(CLSI and EUCAST) for AmB, L-AmB, and isavuconazole (ISA) against a collection of
112 Aspergillus section Terrei isolates.

2. Materials and Methods
2.1. Fungal Strains

A total of 112 molecularly identified Aspergillus section Terrei isolates, including
A. terreus sensu stricto (s.s.) (n = 50), A. hortai (n = 11), A. citrinoterreus (n = 34), A. alabamensis
(n = 9), A. iranicus (n = 5), A. niveus (n = 2), and A. neoafricanus (n = 1) were analyzed. The
isolate collection included strains previously obtained and included in the ISHAM-ECMM-
EFISG TerrNet Study (www.isham.org/working-groups/aspergillus-terreus (accessed on
24 February 2017)) [14,24] and those preserved in the CBS biobank housed at the Wester-
dijk Fungal Biodiversity Institute, Utrecht, the Netherlands. TerrNet Study [14] and CBS
isolates [25] were identified according to the previous description.

2.2. Antifungal Agents

For AFST by broth microdilution, antifungal powders of deoxycholate AmB (Sigma-
Aldrich, Vienna, Austria, A2411) (solvent; dimethyl sulfoxide, Sigma-Aldrich, Vienna, Austria),
L-AmB (Gilead Sciences, Inc., Vienna, Austria, 020122D) (solvent; distilled water), and
ISA (Sigma-Aldrich, Vienna, Austria, SML 000013488) (solvent; dimethyl sulfoxide, Sigma-
Aldrich, Vienna, Austria) were utilized. For Etest AFST, commercialized gradient strips for
AmB (0.002–32 mg/L; BioMérieux, Vienna, Austria) and ISA (0.002–32 mg/L; Liofilchem,
Roseto degli Abruzzi, Italy) were applied.

2.3. Inoculum Preparation and AFST

Broth microdilution AFSTs were carried out according to CLSI [21] and EUCAST [22]
guidelines. The Etest AFSTs for AmB and ISA were performed according to the instructions
provided by the manufacturer. Etest strips of L-AmB were not commercially available
and therefore not included in this study. Isolates were cultured from 10% glycerol frozen
stocks (−80 ◦C) on malt extract agar (MEA) (Carl Roth, Karlsruhe, Germany) at 37 ◦C
for up to 5 days; spores were harvested by applying spore suspension buffer (0.9% NaCl,
0.01% Tween 20 (Sigma-Aldrich, Vienna, Austria, P1379). Briefly, 90 mm diameter plates
containing RPMI 1640 medium agar (Sigma-Aldrich, Vienna, Austria, R6504) supplemented
with 2% glucose buffered to pH 7.0 with 0.165 M morpholinepropanesulfonic acid (MOPS)
(Sigma-Aldrich, Vienna, Austria) were used [23,26]. The agar surface was inoculated with
a swab dipped in a cell suspension adjusted to a turbidity of 0.5 McFarland standard
(equivalent to 1 × 106 CFU/mL). After 15 min, the strips were placed on the agar surface,
and the plates were incubated at 37 ◦C. Etest MIC readings were taken after 24 h, except for
strains with slow or insufficient growth, which were allowed an additional 24 h at room
temperature, thus preventing overgrowth and making reading the results easier.

www.isham.org/working-groups/aspergillus-terreus
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2.4. Interpretation of Results

A final reading of MIC results for broth microdilutions was performed with an inverted
magnifying mirror after 48 h as the lowest drug concentration with complete inhibition of
growth. MIC50 and MIC90 represent the MIC values at which 50% and 90% of the isolates
in a test population are inhibited. The E-test MIC was the lowest drug concentration where
the edge of the elliptical inhibition reached the antifungal strip’s scale. Etest MICs were
rounded up to the next higher log2 dilution for comparison with broth microdilutions.
Essential agreement (EA) between Etest and broth microdilution results was considered
when the MIC values obtained with the methods fell within ±2 dilutions of the 2-fold
dilution scheme [26,27]. EA values of ≥90% were regarded as acceptable.

3. Results

The MIC distribution and in vitro susceptibility testing results of 112 Aspergillus section
Terrei isolates against AmB, L-AmB, and ISA performed by EUCAST, CLSI, and Etest
methods are shown in Figure 1 and Table 1. The broth microdilution and Etest methods
generated different MIC values. Considering all species, Etest MIC values for AmB and
ISA were lower than broth microdilution values. MIC90 values of AmB and ISA obtained
by CLSI were one-fold lower than EUCAST. Although MIC90 values of AmB gained by
Etest and CLSI did not differ, MIC90 of ISA was different by two-fold. The MIC range
of AmB was wider when tested by Etest (0.032–16 mg/L) than by CLSI and EUCAST
(0.125–4 mg/L and 0.5–16 mg/L, respectively). MICs obtained by broth microdilutions of
L-AmB were considerably higher than those of conventional AmB, regardless of the method
(CLSI; 0.125–>16 mg/L, and EUCAST; 2–>16 mg/L). Contrary to CLSI and EUCAST (both
0.125–16 mg/L), Etest had a narrower MIC range for ISA (0.032–0.5 mg/L).

Table 2 presents the EA between broth microdilution and Etest results. AmB and ISA
susceptibility results obtained by broth microdilution methods showed a good correlation
within two dilutions (CLSI 98%, EUCAST 95.5%) but not for L-AmB (71.4%). In contrast,
90% EA was not reached for the Etest versus broth microdilution results. However, there
were notable differences between the EA of Etest versus CLSI of AmB and ISA (79.6% and
77.6%) compared to the EA of Etest versus EUCAST of AmB and ISA (49.5% and 46.4%).
The EA between EUCAST and CLSI results of AmB was excellent for both groups of
A. terreus s.s. (100%) and non-s.s. (96.7%). According to the Etest versus CLSI comparison
of AmB, A. terreus non-s.s. had a better EA (82.2%) than A. terreus s.s. (74%); however,
both did not meet the acceptable range for EA (>90%). The agreement between Etest
and EUCAST of AmB for A. terreus s.s. versus A. terreus non-s.s. did not reach 90%, in
accordance with the agreement between all isolates. Concerning the EA of EUCAST versus
CLSI of L-AmB, A. terreus non-s.s. showed a higher agreement (79%) than A. terreus s.s.
(54%), but neither reached 90% of agreement. For ISA, EUCAST versus CLSI showed the best
agreement (95%), followed by Etest versus CLSI (77.6%) and Etest versus EUCAST (46.4%).
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Figure 1. Minimal inhibitory concentration (MIC) distributions of amphotericin B, liposomal am-
photericin B, and isavuconazole performed by EUCAST, CLSI, and Etest methods against Aspergil-
lus section Terrei. 1. [28], 2. EUCAST database (https://www.eucast.org/mic_and_zone_distribu-
tions_and_ecoffs (accessed on 18 January 2022)), 3. [29], 4. EUCAST database (https://www.eu-
cast.org/mic_and_zone_distributions_and_ecoffs (accessed on 18 January 2022)), (https://www.eu-
cast.org/astoffungi/clinicalbreakpointsforantifungals (accessed on 18 January 2022)), and 5. [29]. 
ECV, epidemiological cutoff value; CBP, clinical breakpoint.

Figure 1. Minimal inhibitory concentration (MIC) distributions of amphotericin B, liposomal amphotericin
B, and isavuconazole performed by EUCAST, CLSI, and Etest methods against Aspergillus section Terrei.
1. [28], 2. EUCAST database (https://www.eucast.org/mic_and_zone_distributions_and_ecoffs
(accessed on 18 January 2022)), 3. [29], 4. EUCAST database (https://www.eucast.org/mic_and_
zone_distributions_and_ecoffs (accessed on 18 January 2022)), (https://www.eucast.org/astoffungi/
clinicalbreakpointsforantifungals (accessed on 18 January 2022)), and 5. [29]. ECV, epidemiological
cutoff value; CBP, clinical breakpoint.
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Table 1. Susceptibility profiles of amphotericin B (AmB), liposomal amphotericin B (L-AmB), and isavuconazole (ISA) against Aspergillus section Terrei, using
EUCAST, CLSI, and Etest methodologies. MIC50/MIC90 (MICs inhibiting ≥50% and ≥90% of strains, respectively), range, and GM (geometric mean) values are
presented for AmB, L-AmB, and ISA. MIC50 and MIC90 are only shown for species with 5 or more isolates.

Species
(Number of Isolates) Method

MIC [mg/L]

AmB L-AmB ISA

MIC50 MIC90 Range GM MIC50 MIC90 Range GM MIC50 MIC90 Range GM

Aspergillus terreus
(n = 50)

Etest 0.25 1 0.032–2 0.27 - - - - 0.125 0.25 0.064–0.25 0.14
EUCAST 2 4 0.5–4 1.84 >16 >16 0.5–>16 6.28 0.5 1 0.25–8 0.62

CLSI 1 2 0.125–2 0.91 4 >16 0.125–>16 2.96 0.25 1 0.125–4 0.36

Aspergillus hortai
(n = 11)

Etest 0.5 0.5 0.064–1 0.37 - - - - 0.125 0.25 0.064–0.25 0.133
EUCAST 4 4 2–4 3.31 >16 >16 8–>16 8 0.5 1 0.25–2 0.53

CLSI 2 2 0.5–2 1.29 16 >16 2–>16 5.66 0.25 0.5 0.125–0.5 0.28

Aspergillus citrinoterreus
(n = 34)

Etest 0.5 4 0.125–16 0.61 - - - - 0.064 0.25 0.032–0.25 0.09
EUCAST 2 4 1–16 2.89 >16 >16 2–>16 7.25 0.5 1 0.125–4 0.48

CLSI 1 2 0.5–4 1.28 >16 >16 0.25–>16 2.59 0.25 0.5 0.125–2 0.32

Aspergillus alabamensis
(n = 9)

Etest 2 12 0.5–16 2.64 - - - . 0.064 0.125 0.064–0.125 0.09
EUCAST 2 4 2–4 2.72 >16 >16 2–>16 2 1 2 0.5–2 0.93

CLSI 1 1 0.5–2 1 8 >16 1–>16 6.56 0.5 1 0.25–1 0.43

Aspergillus iranicus
(n = 5)

Etest 0.25 1 0.25–2 0.66 - - - - 0.25 0.25 0.125–0.5 0.25
EUCAST 1 2 1–4 1.52 >16 >16 2–>16 2 4 16 2–16 6.96

CLSI 0.5 0.5 0.5–1 0.57 8 >16 1–>16 4 2 8 0.25–16 3.03

Aspergillus niveus
(n = 2)

Etest - - 0.125–0.5 0.25 - - - - - - 0.125–0.25 0.18
EUCAST - - 1–2 1.41 - - 8–>16 8 - - 2–4 2.83

CLSI - - 0.25–0.5 0.35 - - 4–8 5.66 - - 2 2

Aspergillus neoafricanus
(n = 1)

Etest - - 0.25 - - - - - - - 0.25 -
EUCAST - - 4 - - - >16 - - - 1 -

CLSI - - 1 - - - >16 - - - 1 -

All isolates
(n = 112)

Etest 0.25 2 0.032–16 0.45 - - - - 0.125 0.25 0.032–0.5 0.12
EUCAST 2 4 0.5–16 2.29 >16 >16 0.5–>16 6.12 0.5 2 0.125–16 0.67

CLSI 1 2 0.125–4 1.01 8 >16 0.125–>16 3.39 0.25 1 0.125–16 0.39
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Table 2. Essential agreement between broth microdilution and Etest results of Aspergillus section
Terrei isolates (n = 112).

Species Antifungal Agents Essential Agreement

Aspergillus terreus s.s. (n = 50)

Etest vs. CLSI Etest vs. EUCAST CLSI vs. EUCAST

AmB 74.0% 44.0% 100%

L-AmB - - 54.0%

ISA 62.0% 58.0% 96.0%

Aspergillus terreus non-s.s. (n = 62)

AmB 82.2% 54.8% 96.7%

L-AmB - - 79.0%

ISA 67.7% 54.1% 95.1%

All species
(n = 112)

AmB 79.6% 49.5% 98.2%

L-AmB - - 71.4%

ISA 77.6% 46.4% 95.5%

4. Discussion

The main goal of AFST is to guide clinical decisions by providing reliable data, which
is sometimes not possible, and some antifungal agents have different in vitro and in vivo
responses [30]. Developing standardized AFST methods is crucial for predicting the
response of fungal infections to a treatment and facilitating interlaboratory comparisons
and agreement [19,31]. Broth microdilution AFST methods have been standardized by
two organizations, CLSI and EUCAST. Several reports have discussed the differences
between these two techniques; however, their results have been shown to be comparable
and are used worldwide [32,33]. Mold susceptibility testing, using reference methods,
albeit accurate, is less common in routine laboratories due to its labor-intensive and time-
consuming procedures, especially in critical cases [19,34].

The commercial agar-based AFST methods, such as Etest, were found to be suitable
alternatives to reference broth microdilution methods. These commercial methods resulted
in faster turnaround times and simplified the inhibitory value evaluation process [19,35,36].
However, not all antifungal agents, such as L-AmB, are available (or approved) to be tested
by these methods [35]. Moreover, some commercial techniques can provide susceptibility
results that contradict those obtained using reference methods [37].

Different AFST methods are routinely used across countries or local laboratories, and
their results can be affected by subtle variations (for example, glucose content, inoculum
size, incubation time and temperature, and reading interpretation), which may explain the
different MIC classifications and interpretations and, consequently, various epidemiological
cutoff values (ECVs) and CBPs [38–40]. For instance, EUCAST does not recommend AmB
for treatment of A. terreus, while Etest shows low AmB MICs against A. terreus. Therefore,
it is crucial to know whether the results obtained by different methods are compatible, and
how the heterogeneity of the results of the AFST methods and technical uncertainty affect
the final interpretation. Hence, the present study evaluated the concordance between the
reference methods (EUCAST and CLSI) and the commercial technique (Etest) while testing
AmB, L-AmB, and ISA. Voriconazole is the first-line treatment for invasive aspergillosis;
alternatively, ISA and L-AmB can be substituted [41,42].

The present study found that the level of agreement between methods varied de-
pending on the antifungal agent and the tested method. Generally, the EUCAST method
generated the highest MIC GM of AmB, L-AmB, and ISA, and the Etest method produced
the lowest MIC GM for AmB, and ISA. The findings are consistent with a previous study that
demonstrated that Etest for Aspergillus spp. usually provides lower MICs than standard mi-
crobroth dilution methods, CLSI, or EUCAST [43]. Consistent with another study [44], L-AmB
resulted in higher MIC GM than AmB, regardless of the method of tested broth microdilution.
L-AmB’s relatively high MICs may be due to incomplete and variable release of the active
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form of the drug into the medium in vitro [45]. More detailed experiments are required to
comprehend the dynamics of lipid-associated polyenes under in vitro test conditions.

In the absence of AmB CBPs, based on the ECVs of EUCAST (wild-type, ≤8 mg/L),
99.2% of isolates were categorized as wild-type [22]. According to CLSI ECVs (wild-type,
4 mg/L), 100% of isolates were classified as AmB wild-type [21]. There are no established
AmB CBPs and ECVs for Etest, but based on the suggested ECVs of AmB by Dannaoui and
Espinel-Ingroff (wild-type, 16 mg/L) [28], all tested isolates were wild-type. Considering
AmB ECVs, all three tested methods yield almost the same results, indicating that ECVs do
not fully represent the diverse MICs obtained by each method.

Based on the EUCAST CBPs (≤1 mg/L) and ECVs (wild-type, ≤1 mg/L) for ISA [22],
39.2% of isolates were resistant. Based on the CLSI ISA ECVs of (wild-type, 1 mg/L) [29],
all tested isolates belong to the wild-type population. There are no established CBPs
and ECVs of Etest for ISA. Considering the tested species separately, EUCAST obtained
the highest ISA MIC GM for A. iranicus and A. niveus, followed by CLSI, which both
disagreed with Etest. EUCAST and CLSI had the best EA for AmB and ISA, but Etest
had no acceptable agreement with any of them, for which the Etest method demonstrated
lower MICs. However, the EA of Etest and both broth microdilution methods did not
reach the accepted range, but CLSI showed a higher EA with Etest than EUCAST. The EA
comparison showed Etest could not be compared to EUCAST or CLSI when testing ISA
and AmB’s in vitro activity against the A. terreus species complex. This study’s limitation is
that L-AmB did not have gradient strips, so comparisons were not possible.

There were no significant differences between Etest and reference methods when
A. terreus s.s. and A. terreus non-s.s. were compared separately. Nevertheless, susceptibility
profiles of A. terreus s.s. showed some trends compared with those of A. terreus non-s.s.
(Table 1). Considering the EUCAST method, MIC GM of AMB for A. terreus non-s.s.
(2.73 mg/L) was higher than A. terreus s.s. (1.84 mg/L), with the highest MIC GM assigned
to A. hortai, A. citrinoterreus, and A. alabamensis. There was no big difference between
the overall MIC GM of the ISA of A. terreus s.s. (0.62 mg/L) and non-s.s (0.71 mg/L) by
EUCAST; however, the MIC GM of some species, such as A. iranicus and A. niveus, showed
a higher value than those of A. terreus s.s.

In agreement with previous studies [28,46], this study emphasizes the need to deter-
mine the Etest-based ECVs and CBPs for antifungal agents such as AmBs and ISA and not
interpret Etest MIC results based on the ECVs and CBPs of EUCAST or CLSI. Furthermore,
ECVs should not be used instead of breakpoints, even though they can facilitate MIC
interpretation. Prospectively collecting and pooling MIC data could confirm the calculated
Etest-based ECVs, especially for AmB and ISA against A. terreus. On the basis of the results,
the present study recommends caution regarding utilizing the Etest method for the AFST of
AmB and ISA against Aspergillus section Terrei isolates since it is unclear whether the lower
MICs determined with the Etest might affect the interpretation and choice of treatment and,
subsequently, the in vivo outcome.
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