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Abstract: In this work, a photo-polymerization route was used to obtain potassium acrylate-co-
acrylamide hydrogels with enhanced mechanical properties, well-defined microstructures in the dry
state, and unique meso- and macrostructures in the hydrated state. The properties of the hydrogels
depended on the concentration of the crosslinking agent. Mechanical properties, swelling capacity,
and morphology were analyzed, showing a well-defined transition at a critical concentration of the
crosslinker. In terms of morphology, shape-evolving surface patterns appeared at different scales
during swelling. These surface structures had a noticeable influence on the mechanical properties.
Hydrogels with structures exhibited better mechanical properties compared to unstructured hydrogels.
The critical crosslinking concentration reported in this work (using glycerol diacrylate) is a reference
point for the future preparation of multistructured acrylic hydrogel with enhanced properties.

Keywords: hydrogels; photo-polymerization; potassium acrylate-co-acrylamide; swelling
capacity; multistructured

1. Introduction

Hydrogels are polymeric tridimensional networks that can absorb large amounts of
water and other fluids without compromising their structure [1–3]. Their swelling depends
on the presence of certain functional groups, crosslinking degree, chain flexibility, tacticity,
crystallinity of components [4], and thermal history [5]. These unique materials are being
used in several commercial applications, for example, as ophthalmic devices, biosensors,
biological membranes, and drug carriers [1,2]. Potential applications of hydrogels as
soil conditioners and as removal agents for heavy metal ions have also been mentioned
in the literature [6–8]. The properties of hydrogels strongly depend on the synthesis,
concentration, and nature of components and the polymerization process. In this regard,
several studies dealing with methods of synthesis, effects of swelling, and crosslinkers on
properties have been reported [9–22].

UV curing (photopolymerization) is an alternative process for synthesis of hydrogels.
It allows for a better control over the reaction kinetics and it is not affected by the presence
of oxygen in the system [23–25]. Additionally, photopolymerization can be utilized with
most monomers, and only one additive (photoinitiator) is needed [26,27]. Other advantages
of photopolymerization are short times of synthesis and minimum generation of heat [28].
It is also important to mention that photopolymerization is widely used to prepare hy-
drogels with applicability in medical and biological fields. For example, successful cell
encapsulation and high cell viability in photopolymerized hydrogels [23] and the develop-
ment of advanced photoinitiators suitable for several medical conditions [29] have been
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reported. Moreover, excellent resistance against bacteria in photopolymerizable hydrogels
have also been reported. Lin et al. (2011) prepared a biocompatible silicone based on
carboxybetaine and a macromer (bis-α,ω-(methacryloxypropyl) poly-dimethylsiloxane)
via photopolymerization using Darocur® TPO as the photo-initiator. These hydrogels
showed excellent resistance against bacterial adhesion and protein adsorption [30].

In the case of acrylic hydrogels prepared via photopolymerization, there are also
plenty of published studies, from copolymer systems [31] to reinforced hydrogels [22,32,33],
among others. In the case of photopolymerized hydrogels based on potassium polyacry-
lates, there are only a few studies reported. Ruan et al. (2004) studied polyacrylate potas-
sium and polyacrylate sodium hydrogels using different photoinitiators in the synthesis.
They found that the highest water absorptions were exhibited by hydrogels synthesized
with Irgacure 1700 and Irgacure 1800 [34]. In this work, we utilized Irgacure 1700.

The superficial instabilities that appear during swelling in gels are a phenomenon
known since the XIX century [35]. Tanaka et al. (1987) observed the appearance of patterns
in polyacrylamide-based gels during phase transition. This phenomenon affected the under-
standing of the kinetic process in the gels [36]. In another study by Tanaka et al. (1992), the
morphologic evolution and kinetics of superficial patterns in acrylic gels during swelling
was reported. A dynamic ordering of patterns was observed [37]. Li et al. (1994) re-
ported the presence of hexagonal-, grain-, and bubble-like shape patterns in ionic N-
isopropylacrylamide (N-IPA)-based gels. These patterns were observed below, near, and
above the transition phase temperature, and their behavior depended on the temperature,
time, external constraint, and thermal history [38]. In a study dealing with photopolymer-
izable polyhydroxythylmethacrylate (PHEMA) hydrogel films with a crosslinking gradient,
Guvendiren et al. (2009) reported a method that allowed them to form various osmotically
driven surface patterns without organic solvents for swelling. They observed and captured
the shape evolution of such patterns, being first hexagonal structures, then peanut shapes,
and then lamellar and finally worm-like patterns [39]. The same research group later
reported creasing formation in the gradient PHEMA hydrogels using various solvents.
They found that the morphology of patterns depended on the equilibrium linear expansion,
which was as a function of the solvent–polymer interaction and the concentration of the
crosslinker [40]. Recently, Chuang et al. (2021) demonstrated that the UV irradiation dose
and the immersion conditions in DI water determined the characteristics of surface patterns
in pHEMA-based hydrogels [41]. The maximum characteristic wavelength of the formed
wrinkles depended on the initial immersion time. This dependency had a relationship that
followed the power law. Furthermore, it is important to mention that surface structures
seem to have an important effect on cells attached on hydrogels. In this regard, Saha
et al. (2010) reported that wrinkled patterns on the surface of soft hydrogels made of
polyacrylamide greatly influenced cell attachment and cell behavior [42]. Figure 1 displays
some of the surface patterns that can be generated in acrylic hydrogels.

It is clear that there is a great interest in polymeric systems that display spontaneous
formation of patterns that can be controlled in terms of size, order, morphology, and com-
plexity. Such materials could be useful in many applications such as coatings, optical filters,
batteries, actuators, valves, microfluidic devices, and flexible electronics [43–47]. In this
work, we prepared multi-structured hydrogels of poly(potassium acrylate-co-acrylamide)
via photopolymerization. Photo initiation allowed us to control the temperature of the
synthesis, which led a higher structural stability of hydrogels during swelling. We used the
term multi-structured due to the ability of these hydrogels to display patterns/structures at
different scales (micro-, meso-, and macroscales). The effect of the crosslinking agent (glyc-
erol diacrylate or DAG) on the swelling capacity, morphology, and mechanical properties
was evaluated.
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ecules from the pho-initiator and the monomers, as well as free oligomers, were removed 
in the cleaning step [48]. 

During preparation of hydrogels, it was possible to control the temperature of the 
reaction by means of photo-polymerization. By controlling the entropy of the reaction so-
lution at low temperatures, an ordered polymeric network was formed, allowing for the 
preparation of transparent and homogeneous hydrogels. These hydrogels presented a 
fractal-like structure in three different scales: micro (10−7 to 10−8 m), meso (10−5 to 10−7 m), 
and macro (10−3 to 10−5 m). Such properties were consistent with those from hydrogels 
synthetized via redox initiation [20]. The polymer gel fraction (GF) was calculated for all 
hydrogels (shown in Table 1), as mentioned in the experimental section. All values were 
higher than 91%, which is consistent with values reported by Rodgers et al., who deter-
mined GF’s of 89% and 90% for acrylamide and 93% for acrylic acid [29]. Lara-Valencia et 
al. [10] reported values lower than 90% for acrylic hydrogels obtained by redox initiation 

Figure 1. Surface patterns of acrylic hydrogels.

2. Results and Discussion

Figure 2 shows the probable reaction between the acrylic monomers and the crosslink-
ing agent to form the polymeric network. Undesired residues such as unreacted molecules
from the pho-initiator and the monomers, as well as free oligomers, were removed in the
cleaning step [48].
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Figure 2. Proposed formation of the polymeric network.

During preparation of hydrogels, it was possible to control the temperature of the
reaction by means of photo-polymerization. By controlling the entropy of the reaction
solution at low temperatures, an ordered polymeric network was formed, allowing for
the preparation of transparent and homogeneous hydrogels. These hydrogels presented
a fractal-like structure in three different scales: micro (10−7 to 10−8 m), meso (10−5 to
10−7 m), and macro (10−3 to 10−5 m). Such properties were consistent with those from
hydrogels synthetized via redox initiation [20]. The polymer gel fraction (GF) was cal-
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culated for all hydrogels (shown in Table 1), as mentioned in the experimental section.
All values were higher than 91%, which is consistent with values reported by Rodgers
et al., who determined GF’s of 89% and 90% for acrylamide and 93% for acrylic acid [29].
Lara-Valencia et al. [10] reported values lower than 90% for acrylic hydrogels obtained
by redox initiation and higher than 90% for photoinitiated ones. Wen et al. [31] reported
values lower than ours for poly acrylic acid/cellulose nanofibers hydrogels. This could be
attributed to the nanofibers, which could have had decreased the UV light transmittance.

Table 1. Maximum swelling and mechanical tests results for hydrogel samples.

Concentration
of DAG (wt %)

Polymer Gel
Fraction, GF(%)

Maximum
Swelling K × 108

Characteristic
Length,

λ × 106 m

Tensile
Strength (Pa)

Young’s
Modulus (MPa)

Elongation at
Break(%)

0.5 91.2 ± 0.8 216.2 ± 7.5 4.28 ± 0.15 1.46 ± 0.038 1979 ± 19 2.64 ± 0.09 1647 ± 52.4

1.0 92.5 ± 1.1 155.1 ± 5.9 4.72 ± 0.18 1.41± 0.036 2087 ± 17 3.66 ± 0.10 1036 ± 43.1

2.0 92.4 ± 0.9 136.8 ± 4.0 5.62 ± 0.16 1.34 ± 0.039 2121 ± 32 3.73 ± 0.18 871 ± 36.0

3.0 93.6 ± 1.4 120.2 ± 4.3 6.03 ± 0.21 1.18 ± 0.025 2206 ± 16 6.48 ± 0.19 660 ± 34.3

4.0 92.1 ± 0.9 99.7 ± 3.9 5.54 ± 0.22 1.08 ± 0.031 2262 ± 34 7.80 ± 0.22 517 ± 32.0

5.0 93.4 ± 1.2 93.7 ± 3.4 5.93 ± 0.21 1.04 ± 0.016 2261 ± 28 8.84 ± 0.43 391 ± 15.2

6.0 93.1 ± 1.3 93.0 ± 3.5 6.86 ± 0.26 0.99 ± 0.007 2343 ± 24 13.43 ± 0.38 349 ± 23.7

7.0 92.9 ± 1.4 79.2 ± 2.3 8.08 ± 0.23 0.97 ± 0.008 2427 ± 20 14.38 ± 0.86 279 ± 21.0

8.0 91.6 ± 0.9 75.0 ± 2.7 7.38 ± 0.26 0.95 ± 0.005 2435 ± 18 15.25 ± 0.44 251 ± 15.5

9.0 92.0 ± 0.9 70.7 ± 2.8 8.34 ± 0.33 0.92 ± 0.008 2482 ± 26 22.34 ± 1.45 210 ± 19.2

10.0 92.7 ± 1.4 69.4 ± 3.3 10.21 ± 0.49 0.91 ± 0.006 2515 ± 33 28.47 ± 0.81 128 ± 12.5

± standard deviation.

2.1. Infrared Spectroscopy FTIR

Figure 3A shows the FTIR spectrum corresponding to acrylic acid. Here, the bands
at 3260 cm−1 were attributed to the OH groups, while the bands corresponding to the
asymmetric and symmetric tension vibrations of CH2 were detected at 2968 cm−1 and
1460 cm−1, respectively. The band at 1733 cm−1 corresponded to the carboxylic carbonyl
group, while the one at 1635 cm−1 was attributed to the vibration of the C=C double
bond. The out-of-plane deformation (=C-H) was represented by the band at 812 cm−1.
Figure 3B corresponds to the FTIR spectrum of the glycerol diacrylate (DAG), in which the
same characteristic bands were observed as in the spectrum shown in Figure 3A. This was
because both compounds possess the same functional groups. However, here, we had the
presence of a secondary alcohol (-CHOH) that generated bands at 1059 cm−1, 1300 cm−1,
and 1413 cm−1. Figure 3C shows the FTIR spectrum of acrylamide. Here, we had the
combination of N-H strain and C-N bending in the bands at 1356 cm−1 and 675 cm−1,
respectively, while the combination of N-H strain and C-N strain occurred at 1610 cm−1.
Bands corresponding to the double bond C=O (≈1735 cm−1) and the N-H strain (from 3342
to 3200 cm−1) were also observed. It can be noted that the band for the carbonyl group
(C=O) appeared at 1670 cm−1, which could be attributed to the presence of the amino
group [10]. In Figure 3D, the spectrum obtained for the acrylamide/potassium acrylate
copolymer, with 4 wt % glycerol diacrylate (DAG), is shown. Here, the absence of the C=C
double bond signal was evident, and the presence of the characteristic signals for both
monomers can be noted. Bands located at 1677 and 1572 cm−1 can be attributed to the
carbonyl and amino groups, respectively.
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2.2. Swelling Kinetics

Figure 4a shows the swelling kinetics of the obtained hydrogels. The swelling of
hydrogels with 0.5 wt % DAG was significantly higher than the rest. On the other hand,
hydrogels with DAG concentrations from 1 wt % to 10 wt % showed a very similar
behavior, having their swelling capacities reduced with increasing crosslinking. It can also
be observed that groups of samples followed practically the same behavior (groups of 1, 2,
and 3 wt %; groups of 4, 5, and 6 wt %; and groups of 7, 8, and 9 wt %). The maximum
swelling ranged from 69 to 217 times the weight of the xerogel. This behavior depended
on the amount of DAG (Figure 4). Table 1 shows the values of the maximum swelling
for all formulations. Magalhães et al. [49] reported swelling degree values from 144 to
189 for hydrogels where they varied the amount of sodium acrylate in the formulation of
poly(sodium acrylate-co-acrylamide) hydrogels. Leitão et al. [50] reported swelling degrees
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from 620 to 1100 times in acrylamide/potassium acrylate hydrogels crosslinked at 0.05, 0.1,
and 0.2% mol with respect to the total mass of monomers.
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Figure 4b shows the maximum swelling as a function of the crosslinking agent (DAG).
A change in slope was observed at 4 wt % of DAG, similar to the characteristic length (λ) of
the mesostructures and macrostructures at different times (as can be seen in the figure of
the characteristic lengths). This critical value of 4 wt % of DAG is consistent with a critical
crosslinking concentration reported in a study from Lopez-Ureta et al. (2008), in which
the authors synthetized acrylic acid/acrylamide hydrogels via redox initiation. They also
used DAG as a crosslinker [20]. We believe that, starting from this critical concentration
(4 wt %), stronger networks were formed, which led to less swelling in the hydrogels. At
lower DAG concentrations, the hydrogels physically collapsed near the equilibrium, which
can be attributed to weaker networks.

The Schott’s model was used in order to analyze the adsorption behavior of hydrogels
in water. Figure 5a shows the linear behavior obtained from Equation (5) (see below in
the Experimental section), which showed linearity values close to 1, demonstrating that it
followed the model adequately.
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In this context, Figure 5b shows the normalized slopes for all samples (m/mcritical).
Here, a linear dependence can be observed. Table 1 shows the values of the constant K for
all the samples evaluated.

2.3. Surface Analysis

Figure 6a shows images of the surface of the xerogels where it can be observed that
with a higher the amount of DAG, the structuring of the hydrogel was more noticeable.
A critical crosslinking concentration (CCLC) of around 4 wt % was observed. For DAG
concentrations below 4 wt %, an irregular surface arrangement was noted, while for DAG
concentrations higher than 4 wt %, a compact surface, aligned preferentially in one direction,
and with a more regular surface texture, was observed. Similar results were reported by
López-Ureta et al. [20]. The characteristic length of the structure was in the microscale in
xerogels with 10 wt % of DAG but increased when the concentration of DAG decreased.
The mesostructure of hydrogels was observed by optical microscopy. When the water
penetrated the hydrogels, four distinctive wrinkle patterns were spontaneously formed
and transited to random worms, lamellae, peanuts, and ordered hexagonal patterns during
swelling, until the maximum swelling was reached. Figure 6b shows images of hydrogels
with 1 wt %, 2 wt %, 4 wt %, 6 wt %, and 10 wt % of DAG at short hydration times (10,
40, and 180 s). The order of magnitude of the structures was in the range of 10−6 m. The
size of structures increased with hydration time, becoming more defined as the amount
of DAG increased. There was evidence in this research that the crosslinking gradient
plays a critical role in the evolution of surface patterns and their ordering along with the
lateral confinement of the hydrogel, promoting anisotropic osmotic pressure along with
the thickness. Similar systems were described [35,36,39,40].

Figure 5b shows images of hydrogels exhibiting meso- and macrostructures at differ-
ent swelling times as a function of DGA. The macrostructure was defined from the first
minutes of contact of the xerogel with water. After 24 h, all macrostructures disappeared.
Equilibrium was reached approximately 32 h after the start of the swelling process. De-
pending on the degree of crosslinking of the hydrogel, the hydrogel can undergo large
volume changes during swelling. During the water absorption process, the resulting com-
pressive stresses can be quite large, even exceeding the elastic modulus of the gel. When
this compressive stress becomes large enough (and the material cannot delaminate and
buckle macroscopically), an elastic instability arises in which the free surface folds in on
itself to locally relieve the compressive stress.

Table 1 shows the average characteristic length values for the mesostructure, measured
at 60 s of hydration. Initially, the gel was in an almost stress-free state; however, immersion
in a solvent led to swelling of the network until the osmotic stress, due to the mixing of
solvent with polymer chains and counterions, was balanced by the elastic strain due to
chain stretching. Because of the mechanical constraint provided by the substrate, a gel
attached to the surface that was much thinner than its lateral dimensions can only expand
in the direction normal to the surface. The result of this uniaxial expansion is that the gel
undergoes a state of equibiaxial compressive stress [35].

Figure 7a shows the characteristic length (λ) of the mesostructures at 60 s and 180 s as a
function of DAG concentration. The order of magnitude (10−6 m) increased with the water
absorption. Similar to Figures 3B and 7b, when the DAG concentration was 4 wt %, there
was a clear change in the behavior of the data. This was probable due to the reordering
of the polymeric network. Figure 7b displays the relationship between λ and the DAG
concentration, but this time at 60 and 360 min. The order of magnitude was 10−3 m. The
mesoestructures disappeared when the hydrogels reached their swelling equilibrium.
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The size of the meso- and macrostructures slightly decreased when the DAG con-
centration also decreased, generating regular “packed” shapes and thus more compacted
hydrogels. This type of superficial morphology was observed in all sides of the samples
(cubes), demonstrating the tridimensional nature of the patterns. The size of these well-
defined structures augmented with the time after immersion. However, the number of
these structures remained constant.

2.4. Mechanical Tests

Table 2 shows the values of tensile strength, elongation at break, and Young’s modulus.
Figure 8a displays tensile test curves for all compositions evaluated, and Figure 8b shows
the Young’s modulus as a function of the concentration of DAG. It can be observed that
the elastic modulus increased when the concentration of DAG increased. In the case of the
elongation at break, it was observed that it decreased when DAG concentration increased.
For the tensile strength, it generally increased when the concentration of DAG increased as
well. These results were expected due to the formation of stronger and stiffer polymeric
networks as the DAG concentration increased.

Table 2. Formulations of hydrogels obtained.

Substance Amount (g)

Acrylamide 49.0

Acrylic acid 51.0

DAG 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Irgacure 1700 0.03

Water 100.0

KOH neutralizer and generating potassium acrylate
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3. Conclusions

By means of the photo-polymerization of potassium acrylate and acrylamide, the
temperature of the synthesis was controlled. This allowed for the preparation of transpar-
ent and homogeneous hydrogels based on potassium acrylate-co-acrylamide that were
obtained via photo-polymerization. The resulting hydrogels presented a fractal-like struc-
ture in the micro-, meso-, and macroscales. The maximum swelling ranged from 69 to
217 times the weight of the xerogel. This swelling behavior depended on the amount of the
crosslinking agent (DAG). The critical concentration of DAG was 4 wt %, which could be
a reference point to produce a hydrogel with better mechanical properties and structure
characteristics. Upon increasing the amount of DAG, the mechanical resistance increased,
and simultaneously, values of elongation at break and swelling capacity decreased. The
morphology, swelling capacity, and Young’s modulus showed a transition between 4 and
5 wt % of DAG. This work is a starting point for the future preparation of advanced
multi-structured hydrogel materials that could have a wide range of applications, such as
coatings, batteries, flexible electronics, actuators, and optical filters.

4. Materials and Methods
4.1. Materials

The monomers used for hydrogel preparation were acrylamide and acrylic acid from
Aldrich with purities of 98.5% and 99.3%, respectively. Potassium hydroxide (KOH),
99%, was also purchased from Aldrich. As a photoinitiator, a mixture of 25% bis(2,6-
dimethoxybenzoyl)-2,4,4-trimethyl pentylphosphineoxide and 75% 2-hydroxy-2-methyl-
1-phenyl-propane-1-one (Irgacure 1700) from Ciba Speciality Chemicals Inc. was used.
Glycerol diacrylate (DAG), 97% purity, was obtained from Industria Azteca Integral.

4.2. Synthesis of Hydrogels

Figure 9 shows a scheme of the complete methodology of this work. The acrylic acid
was dissolved in bidistilled water according to the formulation shown in Table 2. The
solution was taken to a pH 7 with the addition of a KOH solution at 47 wt %. The solution
was kept below 25 ◦C to avoid thermal polymerization. Subsequently, the acrylamide
and DAG were added, the mixture was stirred until the system was homogeneous, and
the temperature was lowered to 2 ◦C. Finally, 1 mL of photoinitiator solution (3 wt % in
methanol) was added. The reaction solution was poured into a 0.450 L glass semi-infinite
plate reactor, and nitrogen was bubbled for 15 min. It was placed 15 cm away from the lamp
(Tecno F15T8-BLB 20 W, 127 v) rich in 366 nm wavelength radiation, inside an isothermal
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bath at 2 ◦C for 1 h (to achieve higher conversion). After the reaction time, the hydrogels
were removed, and 0.5 × 0.5 × 0.3 mm3 samples were cut and allowed to dry until constant
weight, and then were introduced into double-distilled water at 25 ◦C for three days. The
water was changed every 24 h, and they were submerged in the water again for three days
at 45 ◦C. Once the cleaning process was completed, the hydrogels were left to dry at room
temperature for 5 days and then put in a vacuum oven at 40 ◦C until constant weight. The
polymer gel fraction (GF) was calculated as follows:

GF(crosslinked polymer %) =

(
Wd
W0

)
∗ 100 (1)

where Wd is the weight of the dry insoluble part of the hydrogel after extraction with water,
and W0 is the initial weight of the xerogel [10].
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4.3. Swelling Kinetics

Dried samples were weighed and placed in double-distilled water at 25 ◦C. The
samples were taken out and weighed at different times. Absorbent paper was used to
remove the excess of water on the surface of samples. Water absorption was calculated
by the difference in weight between the weight of the dry sample and the weight of the
swollen sample, using the following equation:

Sw

(
Wt − W0

W0

)
(2)

where Wt and W0 are the weight of the hydrogel at time t and the weight of the xero-
gel, respectively. To model the swelling kinetics, the second-order model is commonly
used, as proposed by Schott [51], which has been used to predict the swelling in acrylic
hydrogels [10,20,52]:

dSw

dt
= K(Sw∞ − Sw)

2 (3)
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where Sw and Sw∞ are the swellings at time t and at equilibrium swelling, respectively, and
K is a constant of the system.

Integrating Equation (3), in the limits of t, Sw, and 0, this gives

Sw =
K S2

w t
1 + K Sw t

(4)

Rewriting Equation (4):
t

Sw
=

1
K S2

w∞
+

1
Sw∞

t (5)

Equation (5) represents second-order kinetics. In this case, the rate of swelling at any
time is directly proportional to the square of the still available swelling capacity, that is, to
the solvent uptake that has not yet occurred before reaching the maximum or equilibrium
uptake [52].

4.4. Morphological Characterization

For morphological characterization, a JEOL JSM 5400 LV scanning electron microscope
was used. SEM micrographs were obtained for xerogels, which were coated with gold.
The mesostructure of hydrated samples was visualized at different times (10, 20, 30, 40, 40,
60, 120, and 180 s), using an OLIMPUS BX4OF optical microscope with a 40× objective.
Images were obtained with a SCC-131A SAMSUNG digital video camera adapted to the
microscope. The macrostructure was observed with a Hitachi CCD camera. A coin (21.0 mm
of diameter) was used for size comparison.

4.5. Mechanical Characterization

Mechanical measurements of the hydrogels were carried out by an SFM-10 Universal
Testing Machine. The strain rate was set at 50 mm per minute at room temperature. The
experimental data were obtained using an ASTM D-638-14 Standard Test Method [53] as
a reference for tensile properties of plastics with eight specimens. Young’s modulus was
calculated from the initial slope of the tensile curve.
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