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Abstract: Natural gels are emerging as a hotspot of global research for their greenness, environmental-
friendliness, and good hydrate inhibition performance. However, previous studies mostly performed
experiments for simple pure water systems and the inhibition mechanism in the sediment envi-
ronment remains unclear. Given this, the inhibition performance of xanthan gum and pectin on
hydrate nucleation and growth in sediment environments was evaluated via hydrate formation
inhibition tests, and the inhibition internal mechanisms were revealed via a comprehensive analysis
integrating various methods. Furthermore, the influences of natural gels on sediment dispersion
stability and low-temperature fluid rheology were investigated. Research showed that the sediments
of gas hydrate reservoirs in the South China Sea are mainly composed of micro-nano quartz and
clay minerals. Xanthan gum and pectin can effectively inhibit the hydrate formation via the joint
effects of the binding, disturbing, and interlayer mass transfer suppression processes. Sediments
promote hydrate nucleation and yet inhibit hydrate growth. The interaction of sediments with active
groups of natural gels weakens the abilities of gels to inhibit hydrate nucleation and reduce hydrate
formation. Nonetheless, sediments help gels to slow down hydrate formation. Our comprehensive
analysis pointed out that pectin with a concentration of 0.5 wt% can effectively inhibit the hydrate
nucleation and growth while improving the dispersion stability and low-temperature rheology of
sediment-containing fluids.

Keywords: natural gas hydrate; sediment; natural gel; hydrate nucleation and growth;
inhibition mechanism

1. Introduction

Natural gas hydrates (NGHs) are clathrate solid complexes formed by water molecules
and guest molecules under low temperatures and high pressure [1,2]. The total organic
carbon of NGHs in the world is about twice that of conventional fossil fuels and thus, NGHs
are considered an important potential high-efficiency clean alternative solution for oil and
gas resources [3]. More than 90% of NGHs occur in the sea area [4,5]. During the drilling
and production of marine NGHs, free gas produced via hydrate dissociation and free water
of working fluids in the wellbore tends to re-form and accumulate hydrates under low
temperatures and high pressure, which leads to multiple problems severely impacting
the operation safety [6–8], such as the deterioration of the working fluid performance,
blockage of blowout preventers and well oil pipelines, and other problems. Hydrate
prevention has become a major challenge for the safe and efficient drilling and production
of marine NGHs.

It has been proved that hydrate formation can be effectively inhibited in the presence
of hydrate inhibitors in working fluids, especially kinetic hydrate inhibitors characterized
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by high inhibition and low dosage [9,10]. However, most typical commercial kinetic hy-
drate inhibitors cannot be extensively applied because of their high toxicity, high costs, and
low biodegradability [11,12]. Therefore, green, environment-friendly, and biodegradable
natural gels have gradually become a hot spot of research [13]. Yaqub et al. [14] reported
that pectin, sodium carboxymethylcellulose, cassava starch, and xanthan gum can effec-
tively inhibit the formation of methane hydrates; the induction time was prolonged by
47 min, 26.2 min, 37 min, and 45 min, respectively, with the additive concentration of
0.2 wt%. Wang et al. [15] found that in the case of weak driving forces for hydrate nucle-
ation, the hydrate formation was almost completely suppressed by 0.3–0.5 wt% sodium
carboxymethylcellulose. Effendi et al. [16] claimed that under the undercooling degree of
25 ◦C and pressure of 10 MPa, the inhibition capacity of 0.5 wt% low-methoxy pectin on
the hydrate formation was triple that of PVCap.

Marine NGH-bearing sediments have abundant clay minerals. Wang et al. [6] pointed
out that kaolinite can shorten the induction time of the hydrate formation; the hydrolysis
of smectite interlayer cations can inhibit the hydrate formation, yet the clay structure
promotes the hydrate formation. Kumar et al. [17] found that bentonite can slow down
hydrate growth. Zhao et al. reported [18] that nano-scale clays reduce the induction
time of the hydrate formation by 92%. Smaller particle sizes, larger specific surface areas,
chemically active interfaces, and the electric charging of sediments also affect the physical
and chemical properties of natural gels [19]. However, previous studies mostly evaluated
the hydrate inhibition of natural gels in pure water instead of the complex system of
sediment solutions. Therefore, the natural gels selected via existing research methods are
probably not applicable to the drilling and production of marine NGHs.

At present, the hydrate formation inhibition of natural gels in pure water has been
deeply investigated. Nonetheless, the research on hydrate prevention during the drilling
and production of marine NGHs has not been publicly reported. In particular, the internal
mechanism of hydrate inhibition of natural gels is still unclear. Given this, the effects of
xanthan gum and pectin with 0.1–0.5 wt% concentration on hydrate formation in a 1.0 wt%
sediment environment were explored via the methane hydrate inhibition evaluation test.
Moreover, the Raman spectroscopy, capillary suction time test, mesostructured observation,
and EDS (Energy Dispersive Spectrometry) elemental mapping were integrated to system-
atically reveal the internal mechanism. At last, the effects of xanthan gum and pectin on
sediments were studied in view of the dispersion stability and low-temperature rheology.
The research findings offer new insights into the effective applications of NGH inhibitors.

2. Results and Discussion
2.1. Basic Physical Properties of Sediments

The microscopic morphology of sediment particles was observed via the SEM and is
shown in Figure 1. The sediments presented irregular laminated morphology. Moreover,
the sediments were mixed with deionized water and the mixture was thoroughly stirred
to test the particle size distribution. The particle size frequency curve of the sediments
was bimodal (Figure 2) and the particle sizes were within 0.087–34.25 µm, with a median
diameter of 4.489 µm and an average diameter of 5.336 µm, indicating micro-nano particles.
Research shows that micro-nano particles affect hydrate formation. The X-ray powder
diffractometer was used to analyze the bulk rock and clay mineral composition of the sedi-
ments (Table 1)—quartz and clay with the contents of 44.6 wt% and 30.8 wt%, respectively,
were the main minerals of the sediments, followed by feldspar and calcite; dolomite and
pyrite had relatively lower content (the total content of the two was 5.5 wt%). The clay
minerals in sediments mainly included illite and illite–smectite mixed layers (41.6 wt%
and 34.2 wt%, respectively), followed by kaolinite and chlorite. No smectite was observed.
During drilling, the interaction between clay minerals in sediments and drilling fluids tends
to trigger hydration, and the hydration degrees of clay minerals may affect the nucleation
and growth of hydrates.
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Figure 2. Particle size distribution of sediments.

Table 1. Mineral composition of sediment.

Bulk Mineral Composition (wt%) Clay Mineral Composition (wt%)

Clay Quartz Feldspar Calcite Dolomite Pyrite Illite I/S Kaolinite Chlorite
30.8 44.6 11.9 7.2 4.3 1.2 41.6 34.2 15.5 8.7

Notes: I/S represents the illite–smectite mixed layer.

2.2. Effects of Natural Gels on Hydrate Formation

The temperature and pressure curves during the hydrate formation in the 1.0 wt%
sediment solution and the experimental phenomena at key time points are presented in
Figure 3. The hydrate formation process is divided into three stages: gas dissolution,
hydrate nucleation, and hydrate growth. When the gas dissolution reached equilibrium,
the pressure in the reactor was 6.828 MPa. The occurrence of a synchronized “temperature
rise” and “pressure drop” indicates the beginning of the hydrate formation. The induction
time was 7.33 min. When the reaction time reached 711.58 min, the reactor pressure was
stable at 3.761 MPa, which indicated that the hydrate formation in the reactor had been
completed. Using the formulas in Section 2.2, the methane consumption was calculated
to be 0.1662 mol and the average methane consumption rate was 2.360 × 10−4 mol/min.
The observation via the fully transparent reactor showed hydrates were initially formed at
the gas–liquid interface; with the proceeding of experiments, free water molecules in the
liquid phase continuously migrated upward to the gas–liquid interface to participate in
the hydrate formation, which led to the aggregation of sediment particles and finally the
stratified separation between hydrates and sediments.
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Figure 3. Temperature and pressure curves and experimental phenomena at key time spots during
hydrate formation in 1.0 wt% sediment solutions.

The effects of natural gels on the hydrate nucleation in pure water and sediment
solutions were evaluated with respect to the induction time of each solution. As shown in
Figure 4a, the induction time of hydrate formation is 12.17 min in pure water and is pro-
longed to a different extent with the addition of xanthan gum and pectin. This indicates that
xanthan gum and pectin both have inhibitory effects on hydrate nucleation. The inhibition
strength of xanthan gum first increased and then decreased with the increasing xanthan
gum concentration, while that of pectin was positively correlated with its concentration.
The highest induction times in the presence of xanthan gum and pectin were 65.67 min and
157.33 min, respectively. As shown in Figure 4b, the induction time of 1.0 wt% sediment
solutions was 39.77% shorter than that of pure water, which means that the presence of
sediments promotes the hydrate nucleation. Compared with the pure water systems with
the same gel concentrations, the induction time of sediment solutions mixed with xanthan
gum and pectin was also decreased, and the maximum induction times were reduced
to 44.25 min and 90.58 min, respectively. This demonstrated that sediments degrade the
inhibition of xanthan gum and pectin on hydrate nucleation. In addition, compared with
xanthan gum, pectin still presented relatively higher inhibition on hydrate nucleation in
sediment solutions.
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Figure 4. Effects of xanthan gum and pectin on the induction time of hydrate formation: (a) pure
water systems; (b) sediment solution systems.

The effects of xanthan gum and pectin on hydrate growth were evaluated with respect
to the methane consumption and average methane consumption rate during the whole
experimental process. As shown in Figure 5a, 0.1783 mol of hydrates was in pure water.
The addition of xanthan gum and pectin reduced the hydrate formation in solutions,
and with the increasing gel concentration, formed hydrates decreased continuously. In
the case of the gel concentration of 0.5 wt%, the hydrate formation in xanthan gum and
pectin solutions decreased to 0.1317 mol and 0.1138 mol, respectively. Furthermore, as
illustrated in Figure 5b, the hydrate formation in 1.0 wt% sediment solutions decreased by
6.742%, compared with that in pure water. With the same concentrations of xanthan gum
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and pectin, the gas consumption in sediment solutions was larger than that in pure water
(Figure 5b), which means that more water molecules and methane molecules participated in
the hydrate formation. Although the abilities of xanthan gum and pectin to reduce hydrate
formation were both weakened in the sediment solutions, pectin delivered relatively
stronger inhibition than that of xanthan gum. Figure 6 showed the effects of natural gels on
hydrate formation rates in pure water and sediment solutions, respectively. The average
methane consumption rate in pure water is 2.938 × 10−4 mol/min and in comparison,
the presence of sediments reduces the hydrate formation rate by 19.67%. Compared with
pure water systems, xanthan gum and pectin in sediment solutions can slow down the
hydrate formation to a greater extent. With the gel concentration of 0.5 wt% for sediment
solutions, the average methane consumption rates of xanthan gum and pectin decreased to
1.318 × 10−4 mol/min and 1.492 × 10−4 mol/min, respectively.
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The above experimental results demonstrated that sediments promote the hydrate
nucleation yet inhibit the hydrate growth. Moreover, they also have multiple effects on
the hydrate formation inhibition of xanthan gum and pectin. To begin with, sediments
weaken the hydrate nucleation inhibition of xanthan gum and pectin, which leads to a
shorter induction time. Moreover, sediments degrade the performance of xanthan gum and
pectin in reducing hydrate formation, which results in more formed hydrates. Finally, the
hydrate formation rate in sediment solutions with xanthan gum and pectin is lower, and
the presence of sediments can further enhance such deceleration of hydrate formation.

2.3. Analysis of Inhibition Mechanisms

For pure water systems (Figure 7a), xanthan gum and pectin disturb water molecules.
The concern is that although xanthan gum presents stronger disturbance than pectin, its
ability to inhibit hydrate formation is relatively weaker, which means that the inhibition
effects of xanthan gum and pectin on hydrate formation are not dependent on only their
disturbance effects. Due to their hydrophilia, the active groups (–COOH and –OH) of
xanthan gum and pectin can form hydrogen bonds with water molecules [20–22]. The
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capillary suction time tests (Figure 7b) proved that xanthan gum and pectin can adsorb and
bind surrounding water molecules. Therefore, in the hydrate nucleation stage, xanthan
gum and pectin can hinder the oriented arrangement of water molecules by binding and
disturbing, and thus prevent water molecules from forming clathrate structures, which is
ultimately manifested as the hydrate nucleation inhibition. Previous studies have shown
that both xanthan gum and pectin can transform free water into bound water via binding,
and the amount of bound water in pectin solutions is more than that in xanthan gum [23].
The bound water may not participate in the hydrate formation and thus, the formed
hydrate is reduced. Figure 8 displays the mesoscopic structures of lyophilized samples of
xanthan gum and pectin aqueous solutions. The xanthan gum and pectin frameworks can
form network spatial structures, of which the complexity grows with the increasing gel
concentration. An educated guess is that xanthan gum and pectin have interlayer mass
transfer hindering effects similar to those of kinetic inhibitors such as PVP and VC-713; the
polymer layer is formed on the hydrate surface by building the complex network spatial
structure, which increases the mass transfer resistance and prevents water molecules from
coming into contact with methane hydrate crystal nuclei. This process may be decisive, in
terms of the strength of the hydrate growth inhibition. To sum up, xanthan gum and pectin
inhibit hydrate growth with the comprehensive influences of binding and disturbing water
molecules and interlayer mass transfer obstruction [24]. Compared with pectin, xanthan
gum has a weaker binding effect, which leads to weaker hydrate nucleation inhibition.
Nevertheless, it is associated with lower pore connectivity of network spatial structures
and hindered free water migration. Accordingly, it delivers stronger obstruction of the
interlayer mass transfer and then stronger hydrate growth inhibition.
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For sediment solution systems, sediments stimulate the methane hydrate nucleation
yet delay the methane hydrate growth, which is similar to the finding of REN et al. [25,26].
Sediments contain a large number of micro-nano particles, which increase the contact area
between gas and liquid and also serve as the “cores” for hydrate nucleation. Moreover, due
to the surface characteristics of clay minerals, clay minerals in sediments may participate
in hydrate formation [27]. Consequently, sediments shorten the induction time of hydrate
formation via the above processes. Wang et al. [6] found that water absorbed and bound by
the hydration of clay minerals no longer participates in the hydrate formation. Therefore,
the hydration of clay minerals in sediments lead to fewer formed hydrates. The laminated
structure of sediments prevents water and methane molecules from migrating from the
liquid phase to hydrate crystals, which increases the mass transfer resistance during hydrate
formation. In addition, sediments contain abundant inorganic salt ions (such as Na+, Ca2+,
and Cl−), which can also reduce the driving force of hydrate formation to a certain extent
and slow down the hydrate formation process (Figures 1 and 3).
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Figure 8. Meso-structures of lyophilized samples of xanthan gum and pectin aqueous solutions:
(a–d) 0.1 wt% xanthan gum; (e–h) 0.5 wt% xanthan gum; (i–l) 0.1 wt% pectin; (m–p) 0.5 wt% pectin.

Figure 7 reveals that the binding and disturbing effects of xanthan gum and pectin
on water molecules are weakened in sediment solutions. Liu et al. claimed that kinetic
inhibitors adsorbed by clay particles lose their ability to inhibit hydrate nucleation, which
is likely to be the reason for the degradation of the hydrate nucleation inhibition of xanthan
gum and pectin since the active groups (carbonyl and hydroxyl groups) of xanthan gum
and pectin can adsorb electrically charged sediment particles by the van der Waals force
or ion–dipole interaction. As shown in Figure 9, a large number of sediment particles are
adsorbed on the surface of xanthan gum and pectin frameworks. To further clarify the
adsorption of xanthan gum and pectin on sediments, the surface elemental distributions of
filter cakes of sediment solutions before and after adding xanthan gum and pectin were
measured using the EDS (Table 2 and Figure 10). The carbon (C) content increased from
10.90 wt% to 31.31 wt% and 32.96 wt%, in the cases of 1.0% sediment solutions mixed
with 0.5 wt% of xanthan gum and pectin, respectively. This indicates that xanthan gum
and pectin were still adsorbed onto clay mineral particles. It can be inferred that during
the hydrate nucleation stage, the active groups of xanthan gum and pectin adsorb a large
number of clay mineral particles, which reduces the binding and disturbing effects of gels
on water molecules and thus shortens the induction time of hydrate formation; during
the hydrate growth stage, more free water molecules are directionally arranged to form
clathrate structures due to the decrease of the amount of bound water, which leads to more
formed hydrates. The network spatial structure of xanthan gum and pectin becomes more
complex and tighter and presents lower pore connectivity due to sediment adsorption
(Figure 9), which results in significant growth of the resistance to the migration of water
and guest molecules from the liquid phase to hydrate crystals. Such a drastic enhancement
of the interlayer mass transfer suppression further reduces the hydrate formation rate.
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Table 2. Elemental content of filter cakes of xanthan gum and pectin sediment solutions.

Element
Element Content (wt%)

Sediment Sediment + 0.5 wt% Xanthan Gum Sediment + 0.5 wt% Pectin

C 10.90 31.31 32.96
O 51.32 48.40 48.24

Na 0.49 1.13 0.96
Al 7.58 3.67 3.09
Si 16.25 9.63 7.26
Cl 0.00 0.55 0.47
Ca 13.46 5.31 7.02

2.4. Effects of Natural Gels on Sediments

The zeta potential is often used to characterize the stability of drilling fluids. When
the absolute value of the zeta potential is greater than 30 mV, drilling fluids are relatively
stable [28,29]. As shown in Figure 11, the zeta potential of the pure sediment system is
−25.1 mV, indicating inferior electrostatic repulsion and stability and high odds of settling.
The zeta potential of the sediment system increases with increasing concentrations of
xanthan and pectin, which means that xanthan and pectin enhance the dispersion stability
of sediments in solutions. Xanthan gum and pectin contain a large number of polar groups
(such as hydroxyl and carboxyl groups). The adsorption thickens the diffuse double layer of
sediments and raises the electric potential. Compared with pectin, xanthan gum presented
better enhancement of the dispersion stability of sediment particles; with the concentration
of 0.5 wt%, the zeta potential of sediments increased to −51.3 mV.
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During the drilling of NGH reservoirs, the considerable change in the drilling fluid
temperature greatly affects the fluid rheology and thus, it is required that drilling fluids
have both high hydrate inhibition and stable rheology. This research assessed the effects
of xanthan gum and pectin on the apparent viscosity of 1.0 wt% sediment solutions in the
temperature range of 3–20 ◦C, of which the experimental results are shown in Figure 12.
Clearly, the addition of xanthan gum and pectin increases the apparent viscosity of sediment
solutions, yet to different degrees. The growth of apparent viscosity is positively correlated
with the gel concentration. Although the apparent viscosity of sediment solutions increases
slightly with a drop in temperature, sediment solutions still present high thermal stability
under low temperatures. In addition, xanthan gum has been widely applied to drilling
fluids as a thickening agent and delivers high viscosity growth. When the xanthan gum
concentration is above 0.3 wt%, sediment solutions are excessively viscous, which tends to
cause great surge pressure in the wellbore and trigger wellbore instability during drilling.
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The effects of pectin on the viscosity of sediment solutions are relatively small. With the
pectin concentration of 0.5 wt%, the apparent viscosities of sediment solutions at 20 ◦C and
3 ◦C were 8.0 mP·s and 12.5 mP·S, respectively.
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3. Conclusions

In this research, the inhibition performance of xanthan gum and pectin on hydrate
nucleation and growth in sediments was clarified via the inhibition evaluation experiment
of methane hydrate formation. Moreover, the inhibition internal mechanisms were revealed
by integrating the Raman spectroscopy, capillary suction time test, mesoscopic structure
observation, and EDS elemental mapping. Finally, the effects of xanthan gum and pectin
on the dispersion stability of sediments and fluid rheology were studied. The following
conclusions were drawn:

(1) The natural gas hydrate-bearing (NGH-bearing) sediments in the South China Sea
present an irregular laminated morphology. The sediment particles are micro–nano-
scale, with a median particle size of 4.489 µm. The sediments are mainly composed
of quartz and clay minerals, followed by feldspar and calcite. The clay minerals
mainly include illite and illite–smectite mixed layers, with the contents of 41.6 wt%
and 34.2 wt%, respectively.

(2) By binding water molecules and disturbing their oriented arrangement, the resultant
formation of clathrate structures, xanthan gum, and pectin prolong the induction time
of hydrate nucleation. With the joint effects of the binding, disturbing, and interlayer
mass transfer suppression processes, xanthan gum and pectin reduce the amount and
rate of hydrate formation.

(3) Sediments promote the hydrate nucleation yet inhibit the hydrate growth. Moreover,
they have multiple effects on the hydrate inhibition performance of natural gels. On
the one hand, the interaction between sediments and active groups of natural gels
weakens the abilities of xanthan gum and pectin to inhibit hydrate nucleation and
reduce hydrate formation. On the other hand, sediments significantly enhance the
interlayer mass transfer suppression of xanthan gum and pectin and thus improve
their effects on slowing down hydrate formation.

(4) The comprehensive analysis pointed out the optimal gel concentration of 0.5 wt%,
which delayed the induction time to 90.58 min, reduced the formed hydrates to
0.1342 mol, and decreased the hydrate formation rate to 1.492 × 10−4 mol/min. The
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hydrate formation was effectively inhibited, and the dispersion stability of sediments
and the low-temperature rheology of fluids were considerably improved.

4. Experiments
4.1. Materials and Apparatus

The materials used in our experiments include methane gas (CH4; purity > 99.99%)
supplied by Beijing Chengxin Shunxing Gas Raw Material Sales Co., Ltd. (Beijing, China);
pectin (purity ≥ 98%) manufactured by Beijing MREDA Technology Co., Ltd. (Beijing,
China); UPS-grade xanthan gum manufactured by Shanghai Macklin Biochemical Technol-
ogy Co., Ltd. (Shanghai, China); seabed sediments collected from the South China Sea; and
deionized water produced in our laboratory.

The hydrate formation inhibition performance was tested using a fully transparent hy-
drate formation and dissociation experimental apparatus (Figure 13). The fully transparent
reactor had an inside diameter of 40 mm and a height of 100 mm, and the data acquisition
frequency was once every 5 s. The Raman spectroscopy was performed using the LabRam
HR Evolution laser confocal Raman spectrometer manufactured by Horiba (Japan-based).
For the scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS),
the lyophilized sample solutions were first prepared with the LGJ-10D freeze dryer and
then observed using the Nova nanoSEM450 field-emission scanning electron microscope
(FE-SEM) manufactured by FEI (US-based).
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4.2. Methodology
4.2.1. Experimental Evaluation of Hydrate Formation Inhibition

The hydrate formation inhibition performance was tested via a constant-temperature
constant-volume approach [30]. The experimental temperature was determined to be
3.0 ◦C, according to the mud line temperature in the Shenhu area of the South China Sea.
For the purpose of comparing experimental results, the initial experimental pressure was
determined to be 7.0 MPa [3]. The experimental procedure is presented below: (1) Clean
the fully transparent reactor using deionized water and perform the gas tightness check
of the reactor using N2; (2) Inject 30 mL of the sample solution into the reactor and set the
stirring speed at 300 r/min and the water bath temperature at 3.0 ◦C; (3) After the reactor
temperature is stabilized at 3.0 ◦C, vacuum the reactor for 30 min prior to injecting CH4
into the reactor until the reactor pressure reaches 7.0 MPa and then increase the stirring
speed to 600 r/min; (4) Turn on the monitoring program to collect data such as temperature
and pressure until the end of the experiment. In addition, the hydrate formation in the
reactor during the experiment was recorded using a high-definition camera. To ensure the
data reliability, each experiment was repeated three times.

The induction time, methane consumption, and average methane consumption rate
are important indexes to evaluate the kinetic inhibition performance of inhibitors. The
induction time is the time T1 characterized by the synchronized “temperature rise” and
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“pressure drop” in the reactor. The methane consumption represents the formed hydrate
and the calculation formula is shown below [31]:

∆n =

(
P1

Z1
− P2

Z2

)
× V

RT
(1)

where ∆n is the methane consumption, mol; R is the gas constant and equals
8.31441 J/(mol·K); T is the gas temperature, K; V is the gas volume, m3; and Z1 and
Z2 are the gas compressibility factors at the beginning and end of the hydrate formation,
respectively.

The average methane consumption rate is indicative of the hydrate formation rate and
the calculation formula is [32]:

ν =
∆n

t2 − t1
(2)

where ν is the hydrate formation rate, mol/min; ∆n is the methane consumption, mol;
t2 is the time the hydrate formation ends, min; and t1 is the time the hydrate formation
begins, min.

4.2.2. Raman Spectroscopy

Measuring the disturbance degree of different components to water molecules is an
important means to reveal the mechanisms of the inhibition of xanthan gum and pectin on
the hydrate formation in sediments. The testing steps are as follows: (1) Take a few drops
of the sample on the glass slide and cover the sample with the cover glass, place it on the
microscope stage, and observe it by adjusting the stage height; (2) Excite the DPSS diode
for the laser irradiation of a 532 nm green laser with the irradiation power of 50.0 mW;
(3) Perform the scan within 100–4000 cm−1 at a time interval of 10 s and a resolution
of 0.5 cm−1.

Usually, the relative intensity C is used as a measure of the disturbance of materials in
aqueous solutions on the order degrees of water molecules [24]. C > 1 indicates that the
material strengthens the ordered arrangement of water molecules, while C < 1 implies that
the material disturbs the ordered arrangement of water molecules. The relative strength C
is calculated below [33]:

C =
IL

IH
(3)

where IL is the low-frequency band peak intensity (at ~3250 cm−1) and IH is the high-
frequency band peak intensity (at ~3400 cm−1). The peak intensity can be calculated from
the peak area of the corresponding Raman peak.

4.2.3. SEM/EDS Elemental Mapping

Understanding the xanthan gum, pectin, and their mesoscopic structures and surface
elemental distribution in sediment solutions is helpful to gain more insights into the internal
mechanism of their influence on the hydrate formation. The solution to be tested was freeze-
dried, and then its mesoscopic structure was observed via the SEM. The experimental
procedure followed Wang et al. EDS elemental mapping test steps are as follows: (1) Add
300 mL pure water to the three beakers, and then add 1.0 wt% sediment to each beaker.
Set the stirring speed at 600 r/min, stirring for 30 min; (2) Add 0.5 wt% xanthan gum
and 0.5 wt% pectin to two beakers, respectively, and continue stirring for 60 min; (3) After
mixing, load the solution to be tested into the API filter press instrument and pressurize to
0.69 MPa with N2. The filter cake was taken out after 15 min of filtration. The relatively flat
part of the mud cake was freeze-dried and then put through EDS elemental mapping.
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