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Abstract: Novel double cross-linked (DC) hydrogels with pH-/temperature-sensitive properties were
designed and developed. Therefore, linear pH-sensitive poly(methyl vinyl ether-alt-maleic acid)
(P(VME/MA)) macromolecules were absorbed within a thermosensitive poly(N-isopropylacrylamide-
co-hydroxyethylacrylamide)-hydrogel (PNH) and, subsequently, cross-linked together through a
solvent-free thermal method. As a novelty, double cross-linked hydrogels were obtained from
previously purified polymers in the absence of any solvent or cross-linking agent, which are generally
harmful for the body. The new DC structures were characterized by FT–IR spectroscopy, SEM,
swelling kinetic measurements, and mechanical tests. The resulting scaffolds exhibited interconnected
pores and a flexible pattern, compared to the brittle structure of conventional PNH. The swelling
kinetics of DC hydrogels were deeply affected by temperature (25 and 37 ◦C) and pH (7.4 and 1.2).
Furthermore, the hydrogels absorbed a great amount of water in a basic environment and displayed
improved mechanical properties. Metoclopramide (Met) was loaded within DC hydrogels as a model
drug to investigate the ability of the support to control the drug release rate. The results obtained
recommended them as convenient platforms for the oral administration of drugs, with the release of
the largest part of the active principle occurring in the colon.

Keywords: smart hydrogels; double cross-linked; drug delivery systems

1. Introduction

Hydrogels are three-dimensional (3D) networks made of natural, synthetic or
semi-synthetic polymers, physically or chemically cross-linked, which can absorb a large
amount of water and biological fluids [1,2]. This specific capacity is due to the existence
of hydrophilic groups in the polymer network, such as amino, hydroxyl, carboxyl,
sulfonate, etc. [3]. These functional groups are responsible for the formation of non-
covalent interactions with various natural tissues [3,4]. The structure and physicochemical
properties of hydrogels can be developed and controlled by choosing the appropriate
biomaterials, cross-linking methods, and fabrication strategies [5]. As mentioned above,
these 3D structures can be obtained by physical or chemical cross-linking. The physically
cross-linked hydrogels are obtained through secondary hydrogen linking amongst polar
groups in the polymer network, while the chemically cross-linked hydrogels are formed by
molecular bonds of distinct functional groups in the polymer network, mediated by specific
cross-linking agents, such as glutaraldehyde, N,N′-methylenebisacrylamide, etc. [6].

Hydrogels based on intelligent polymers exhibit sensitivity to small changes in the
external medium and display responses in varying their form or volume when exposed to
particular conditions. The polymeric networks are responsive to physical, chemical, and
biological stimuli. Among them, the most common stimuli are light [7], temperature [8,9],
electric and magnetic fields, ultrasound, pH, redox, ionic strength, CO2, glucose, enzymes,
antigens, glutathione, and DNA [10]. Hydrogels can be safely applied as devices in tissue
engineering, due to their hydrophilicity, viscoelasticity, biodegradability and similarity to
the extracellular matrix [11,12]. Moreover, this class of materials is frequently used as a
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support for drug delivery, because it presents high biocompatibility [13], spatiotemporal
control of drug release, protects the bioactive compound from harsh conditions in the
body [14], display physicochemical adaptability [15], etc. Amongst stimuli responsive
hydrogels, temperature and pH sensitive ones are the most used for biomedical applications,
because they exploit change in the temperature and pH of the human body [10].

Thermo-responsive hydrogels exhibit reversible swelling and shrinking behavior,
depending on temperature changes [3]. Poly(N-isopropylacrylamide) (PNIPAAm) is the
first and most studied thermosensitive synthetic polymer [8,9,16]. PNIPAAm presents a
lower critical solution temperature (LCST) in aqueous solutions at approximately
32 ◦C, a value that can be adjusted by copolymerization with hydrophilic or hydrophobic
monomers [17–19]. The introduction of hydrophilic monomers generally increases the
LCST, while the incorporation of hydrophobic units/groups has the opposite effect [20,21].
However, PNIPAAm-based hydrogels are limited in their biomedical applications because
they exhibit low biocompatibility and biodegradability [20,22]. Overcoming these impedi-
ments can be done by copolymerization, grafting PNIPAAm on different natural or biocom-
patible polymers such as the following: hyaluronic acid [23], chitosan [24], Gantrez [25], etc.
In order to design optimal drug carriers, natural hydrogels can be combined with synthetic
ones to obtain supports with synergic properties [14]. The pH-sensitive hydrogels exhibit a
special affinity for biomedical applications, especially as drug delivery platforms [1]. These
3D structures have the ability to respond to alterations of the pH along the gastrointestinal
tract and different cellular compartments, through structural and functional changes, such
as modification of surface activity, conformation, solubility and configuration [20]. The
pH-sensitive hydrogels are obtained from polymers with ionizable acidic or basic groups
in the main chain, or as pendant groups that are able to accept or donate protons [1,21,26].
The properties of these hydrogels are controlled by various factors, such as the nature of
functional groups, ionic strength, pKa or pKb, wettability, macromolecule concentration.
For example, chitosan and poly(ethylene imine)–based hydrogels [27], swell at low pH as a
consequence of protonation of the amino/imine groups. In fact, the protonated positively
charged groups cause repulsion between the polymeric chains and extension of the 3D
network. On the other hand, anionic hydrogels, made of carboxymethyl chitosan [28] or
carboxymethyl pullulan [29], swell at basic pH, due to ionization of the acidic groups. The
negatively charged ionized groups cause repulsion between macromolecules and, therefore,
swelling of the hydrogel. This characteristic of anionic hydrogels is exploited to deliver
drugs in intestines [30].

The composition and inner structure of the hydrogels are essential characteristics
when they are designed for tissue engineering applications [2,3,16,31]. The scaffold should
supply temporary mechanical and non-toxic support for the cells [31]. On this matter,
the hydrogels should provide a tunable porosity and a soft three-dimensional network
that is similar to the connective tissue [32]. In order to enhance the biodegradability of
PNIPAAm hydrogels, poly(ethylene glycol) (PEG) [5] and poly(ε-caprolactone) (PCL) [19]
are the most applicable, whereas biocompatibility is mostly accomplished with
biopolymers [12,19]. Most PNIPAAm-based hydrogels are weak and brittle with low
strength (low value of Young modulus (5–10 kPa)) [33]. The design of strong and resilient
hydrogels would expand their applications to innovative areas, such as actuators [34],
robotics [33], self-folding [35], etc. [9].

Poly(methyl vinyl ether-co-maleic anhydride), (P(VME/MA)) is a biodegradable
and biocompatible linear polymer and presents low toxicity [36,37], and is authorized
by the FDA. This copolymer, industrially known as Gantrez (G), was employed in de-
signing dental adhesives [25], scaffolds for tissue engineering [38], and in microneedle
arrays for drug delivery [39]. Moreover, the copolymer is biocompatible, having a large
number of carboxylic groups. By combining P(MVE/MA) with other macromolecules
containing alcohol groups, an esterification reaction occurs, resulting in biomaterials with
improved properties [37].
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The cross-linked network of hydrogels used as drug transport systems can protect the
drugs against enzymes or harsh environments, like low pH in the stomach [1]. Adjustment
of their cross-linking degree leads to better optimization of drug loading and release [1,40]
as well as improving the mechanical properties of the hydrogels [40]. This can be achieved
by using more than one cross-linker, which generally reduces the degree of swelling of the
reagents [1]. However, if one of the cross-linkers contains hydrophilic groups, the obtained
hydrogels show higher degrees of swelling, compared with hydrogels cross-linked with
hydrophobic reagents.

Che et al. [41] obtained an interesting hydrogel, based on polyacrylamide (PAM) and
poly(2-methyl-2-oxazoline), through a double cross-linking approach. In order to obtain
on-demand tailored mechanical properties, an inclusion complex, based on adamantane
and β-CD, was used as a second cross-linker [41]. Chen et al. [42] obtained a hydrogel
based on quaternized chitosan and PAM using polydopamine as a novel connecting bridge.
The authors showed that both covalent and physical cross-linking methods improved
the mechanical stability and self-healing capacity of the hydrogels [42]. Li et al. [40]
obtained a hydrogel based on poly(2-acrylamido-2-methylpropane sulfonic acid-co-N,N-
dimethylacrylamide) double cross-linked with Laponite and graphene oxide. The resulting
hydrogel exhibited intrinsic ultra-elasticity and excellent healing performance, either under
heating or infrared light treatment [40].

In the present study, novel pH/thermosensitive double cross-linked (DC) hydrogels were
prepared by the inclusion of pH-sensitive P(VME/MA) linear copolymer within the cross-linked
network of thermosensitive poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) (PNH).
Subsequently, P(VME/MA) was fixed by additional cross-linking through a solvent-
free thermal method. The novel pH-/thermo-sensitive hydrogels were characterized
by SEM, FTIR and in terms of swelling/deswelling kinetics. The effect of the polymer
concentration P(MVE/MA) on the mechanical properties of DC hydrogels was investi-
gated. To test the capacity of these hydrogels to control the delivery of drugs, in vitro
release studies of metoclopramide (Met) were carried out in buffer solutions simulating
physiological conditions.

2. Results and Discussion
2.1. Synthesis and Characterization of Conventional Poly(NIPAAm-co-HEAAm) (PNH) and Double
Cross-Linked Hydrogels

Conventional poly(NIPAAm-co-HEAAm) hydrogels were prepared by copolymer-
ization of 5 mmol of NIPAAm and 1 mmol of HEAAm in the presence of BisAAm as a
cross-linker (Figure 1A). This molar ratio was already established by Fundueanu et al. [43],
in order to obtain copolymers with a lower critical solution temperature (LCST) value,
close to that of the human body [44]. HEAAm was selected as the comonomer since its
molecule contains a hydrophilic, secondary alcohol group that can be involved in covalent
cross-linking. The synthesis parameters of conventional and double cross-linked hydrogels
are presented in Table 1. Thus, conventional hydrogels were immersed in P(MVE/MA)
solutions of different concentrations (2 and 5%, w/v) until equilibrium was reached, and
then the swollen hydrogels were lyophilized. The obtained semi-interpenetrated polymeric
samples had a cylindrical shape, being formed first by a cross-linked network based on
poly(NIPAAm-co-HEAAm) including free linear polymers(P(MVE/MA)). To link the free
polymer to the first network, the lyophilized samples were placed in an oven at 80 ◦C for
24 h. At this temperature, condensation reactions occurred between the hydroxyl groups
of PNH and the carboxyl groups of P(MVE/MA), resulting in ester bonds (Figure 1B).
Moreover, at this temperature, the water could be removed between the adjacent carboxyl
groups of P(MVE/MA), resulting in anhydrides [44]. The cross-linking method occurring
in the dried state offered several advantages over conventional reactions in solutions. One
of the most important advantages was the fact that no solvent was necessary, and, thus, it
was an eco-friendly method. The synthesis steps of DC hydrogels are illustrated in Figure 1.
Both PNH and DC hydrogels were successfully prepared with a yield of 85–90%. The
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samples were noted in the form DCx-Py, where “x” represents the BisAAm percentage
(BisAAm vs. monomers, % mmol) and “y” indicates the concentration of P(MVE/MA) (P)
(%, w/w) in the initial mixture. The composition of the initial reaction mixture and of the
DC hydrogels is given in Table 1.
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(B) hydrogels. Illustrative depiction of the hydrogel synthesis (C).

The synthesized DC–P hydrogels presented different balances between hydrophilic
(–CONH– and –(COOH)2 pendant groups) and hydrophobic (–CH(CH3)2 groups) inter-
actions. In fact, the hydrophilic and hydrophobic groups of the P(MVE/MA) interacted
with the preformed PNH network during the cross-linking reaction. Thereby, the DC hy-
drogels presented different morphologies, thermal, mechanical and swelling properties. As
follows, the lyophilized PNH and DC hydrogels were analyzed in terms of morphology by
SEM microscopy (Figure 2).
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Table 1. Composition of the initial reaction mixture and of DC hydrogels.

Sample

Comonomer Composition in the Feed a

10−3 M (% moles) b

NIPAAm HEAAm BisAAm

PNH0.4 5 1 0.4
PNH0.6 5 1 0.6
PNH0.8 5 1 0.8

Conventional hydrogels used to obtain DC hydrogels

P(MVE/MA)

in the feed solution
(%, g/v)

in the final hydrogel
(% g/g)

DC0.4–P2 PNH0.4 2 25.88 ± 2.4
DC0.4–P5 PNH0.4 5 44.57 ± 1.8
DC0.6–P2 PNH0.6 2 25.55 ± 2.2
DC0.6–P5 PNH0.6 5 40.67 ± 1.9
DC0.8–P2 PNH0.8 2 22.90 ± 2.1
DC0.8–P5 PNH0.8 5 34.58 ± 1.5

a Monomers were polymerized by the radical initiator KPS (2% to monomers) in water (5 mL). b vs. total mols
of comonomers.
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It is worth mentioning that the addition of P(MVE/MA) into conventional PNH
hydrogels (Figure 2) notably changed the inner aspect of the pores. Since the DC hydrogels
were obtained from the preformed PNH network, it was expected that the size of the
pores would remain the same but many would be filled with P(MVE/MA), the degree
of filling being dependent on the concentration of P(MVE/MA). Along with structure
information, these images showed a pretty homogeneous interpenetrating structure. These
results may be attributed to a good diffusion of P(MVE/MA) in the swollen PNH at all
the compositions and at both concentrations of linear polymer. In addition, intermolecular
H-bonding interactions between P(MVE/MA) and PNH occurred, stabilizing the network.

The DC hydrogels obtained from conventional ones cross-linked with 0.6% BisAAm
proved to be the most convenient to be studied further. They had approximately the same
amount of linked P(MVE/MA) as those cross-linked with 0.4% BisAAm but higher than
those with 0.8% BisAAm (Table 1). From a stability point of view, they were preferable to
those cross-linked with 0.4% BisAAm.

The porosity of DC hydrogels decreased with the increase of the P(MVE/MA) amount,
as can be seen in Table 2. In fact, the higher the percentage of P(MVE/MA) in the hydrogel
the more pores were filled and the less void spaces were available.

Table 2. The main characteristics of the most relevant DC hydrogels in comparison with conventional ones.

Samples Porosity (%) Second Cross-Linking Degree (%) * Exchange Capacity (meq/g)

PNH0.6 95.44 - -
DC0.6–P2 84.27 10.52 1.02
DC0.6–P5 74.52 25.35 1.37

Data were the results of three independent experiments. * The cross-linking degree was determined by dividing
the difference between the theoretical and effective exchange capacity to the theoretical exchange capacity.

The degree of the second cross-linking was indirectly determined by the conductomet-
ric titration of carboxylic groups, calculated as the difference between the theoretical and
effective exchange capacities. The obtained data are reported in Table 2.

The comparison of the FTIR spectra of the conventional PNH and P(MVE/MA) with
those of double cross-linked hydrogels (Figure 3) confirmed the presence of P(MVE/MA)
and the appearance of ester bonds in the final product. The spectrum of the PNH0.6 hydrogel
showed a band from 3600 to 3050 cm−1, related to the stretching vibration of hydroxyl
groups (OH) of HEAAm and amide groups (–NH–CO–) of NIPAAm. In P(MVE/MA),
the bands between 2940 and 2845 cm−1 were assigned to C–H stretching vibrations of
CH, CH2, and CH3 groups, followed by an –OH specific broadband [25]. The band of
the carbonyl groups of P(MVE/MA) shifted from 1705 cm−1 to a higher wavenumber
(1716 and 1718 cm−1) in DC hydrogels [36]. In fact, the shift and broadening of the
carbonyl group specific band proved the formation of the ester bonds, as also reported in
the literature [36,39]. The formation of these bonds could not be evidenced in the FTIR
spectra due to their low concentration [45]. However, the formation of at least 1–2 ester
bonds inside the hydrogel was sufficient to form a stable cross-linking network [45]. More-
over, the peak at 1643 cm−1 was attributed to the carbonyl group of the amide in PNH
hydrogel and this peak shifted at 1635 cm−1 in the double cross-linked network.

2.2. Thermo-Sensitive Properties
2.2.1. Phase Transition Characterization

It is well established that the most important property of a smart hydrogel is the
amplitude of the volume change under the action of environmental stimuli, which mainly
depends on the degree of network cross-linking and the density of functional groups [25].

The swelling ratios (SRs) of both conventional and DC hydrogels are depicted in
Figures 4 and 5, respectively. Experiments were carried out in a temperature domain
ranging from 25 to 60 ◦C, in PBS and ABS, in the absence (Figure 4) or presence of Met
at different concentrations (Figure 5). The VPTT was determined as the inflection point
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in the curve swelling factor-temperature by Boltzmann fitting of the experimental data.
All the conventional hydrogels showed a relatively sharp volume transition from high
to low swelling degrees around the VPTT (34 ◦C in PBS and 37 ◦C in ABS). The pres-
ence of P(MVE/MA) in DC hydrogels significantly modified the value of VPTT and also
influenced the allure of the swelling curves. Due to the hydrophilicity given by the ion-
ization of carboxyl groups in PBS at pH = 7.4, the VPTT values were moved to higher
values (40–50 ◦C) (Figure 4B). The swelling degrees decreased almost linearly and the slopes
were less sharp. In acidic buffer (ABS, pH = 1.2) the conventional hydrogels underwent a
decrease of the swelling degree with temperature, and the allure of the curves were almost
similar to those in PBS (Figure 4A). In fact, since the conventional hydrogels did not possess
ionizable groups, the pH should not have influenced the VPTT. However, a slight increase
of VPTT was observed (37 ◦C). Given that the ionic strength was almost the same in the
two buffers (PBS and ABS), this increase was due to the easy ionization of the nitrogen in
NIPAAm [46]. On the opposite side, the DC hydrogels contained carboxylic groups which,
in acidic buffer, were in the protonated state, and more hydrophobic. The swelling degree
was low and the difference between the highest and lowest hydrogel volume was much
more reduced (Figure 4B).
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Surprisingly, in the presence of Met that electrostatically interacted with the new
carboxylic groups introduced into the DC network, the hydrogels showed a decrease of the
VPTT to a temperature close to that of the human body (Figure 5). Moreover, the slopes of
the curves were more abrupt. In fact, as Met is a drug with hydrophobic properties, after
electrostatic interactions with the carboxylic groups of maleic acid, the hydrophobicity of
the copolymer increased and, therefore, the VPTT decreased. In the acidic medium, the
carboxylic groups were in the protonated state and, therefore, the hydrogel practically
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collapsed. As follows, the influence of the Met was almost negligible at both concentrations
of the drug (1 and 5 mg/mL) (Figure 5).
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2.2.2. Swelling/Deswelling Kinetics

A significant characteristic of the stimuli-sensitive hydrogels used as biomaterials
with potential applications in tissue engineering or drug delivery is the rapidity of the
swelling/deswelling process when temperature changes below and above the VPTT. There-
fore, the swelling kinetics of hydrogels were investigated in simulated physiological condi-
tions (PBS and ABS) in relation to temperatures of 21 ◦C and 37 ◦C (Figure 6).
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As shown in Figure 6, at 21 ◦C the swelling rates of the conventional hydrogels were
almost similar in PBS and ABS, both increasing almost linearly. On the contrary, the DC
hydrogels swelled more rapid in PBS than in ABS, since the carboxylic groups at pH = 7.4
were in ionized states, and so more hydrophilic. At 37 ◦C, the swelling rate of conventional
hydrogel was low, both in PBS and ABS, because at this temperature the polymeric matrix
was in a collapsed state. However, the DC hydrogels swelled faster in PBS because the
ionization of the –COOH groups prevented intermolecular hydrogen bonds and favored
the expansion of the network. In acidic buffer at 37 ◦C, the DC hydrogels were almost
collapsed and the volume change in time was insignificant. We already demonstrated that,
in the presence of the Met, DC hydrogels had a VPTT very close to the temperature of
the human body. This behavior is very advantageous since the hydrogels are intended to
be used for biomedical applications (drug delivery or tissue engineering). As in the case
of the swelling tests, the deswelling studies were performed in simulated physiological
conditions in the presence of Met (Figure 7).

As shown in Figure 7, the deswelling rates were much higher than the swelling rates
because, during the shrinking process, the water was mechanically expelled from the
hydrogel, a process much faster than diffusion within a polymeric network. The deswelling
rates, as well as the amplitude of the volume change, increased with increase of Met
concentration. Moreover, the deswelling rates were higher in acidic than basic buffer,
due to the increase of the network hydrophobicity given by the protonated carboxylic
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groups. Unexpectedly, even if the conventional hydrogels did not contain ionizable groups,
they behaved similarly. In this case, an increase of drug concentration signified a higher
ionic strength and, therefore, a more hydrophobic character of the hydrogel due to the
desolvation of polymer chains through the “salting out” effect.
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The swelling/deswelling repeatability of the DC hydrogel between ABS and PBS
solutions is depicted in Figure 8. Due to the porous structure, the polymeric 3D structures
were capable of absorbing and desorbing the aqueous solution from the medium quickly
upon pH change from basic to acidic conditions and the reverse. However, the time for
swelling was longer than that for deswelling, because, during protonation of the carboxylic
groups, the swollen network collapsed, mechanically expelling a large amount of water, as
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2.3. Mechanical Properties

The mechanical properties of hydrogels are among the most important characteris-
tics in biomedical applications. Young’s modulus has been highly investigated in this
regard [12]. Before the compression tests, the hydrogel samples were swollen at equilib-
rium in buffer solutions with pH 7.4 and 1.2, simulating physiological conditions. The
compression modulus of the conventional and DC hydrogels was measured between 5 and
10% compression, in the linear area of the stress–strain curves (inset of Figure 9). It can be
observed that the values of the elastic modulus increased from 2.78 kPa for conventional
hydrogel (PNH0.6) to 6.54 kPa for DC hydrogel (DC0.6–P5). The Young modulus changed
directly proportional to the amount of cross-linker, due to the considerable number of
bonds between macromolecules in the polymeric network and, consequently, the mobility
of macromolecules diminished. However, the elastic modulus values of DC hydrogels
were still low, unlike other double cross-linked hydrogels [47], and, thus, highly elastic.
Nevertheless, the highest stress value was also observed for the DC0.6–P5 with 21.32 kPa in
ABS, which was significantly higher, compared with PNH0.6 (4.5 kPa) (Figure 9). As a result,
the Young’s modulus and maximum stress of the DC hydrogels might provide insight into
designing a suitable scaffold for tissue engineering, or other biomedical applications, that
require soft and flexible, as well as strong materials [9,12].
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2.4. In Vitro Release Studies

Usually, the delivery of drugs can be controlled by the swelling of the polymeric matrix
and diffusion of the entrapped drug [48]. Met was chosen as a drug model to investigate the
drug loading/release characteristics of DC hydrogels in comparison with the conventional
ones. Met is a cationic molecule with a pKa value of 9.2 [49], and P(MVE/MA) is an
anionic macromolecule with pKa values of 3.47 and 6.47 [36]; therefore, at physiological
pH (PBS at pH 7.4) both are completely ionized. Drug loading takes place by physical
retention of the drug in the polymeric network and mainly by electrostatic interactions
between the anionic carboxylic groups of the DC hydrogel and the cationic amino groups
of metoclopramide. Therefore, the higher the number of carboxylic groups (exchange
capacity) in the hydrogel the more the drug is loaded. As follows, the drug loading
capacity increased from 10 mg Met/g for the un-charged conventional hydrogel (PNH0.6) to
18 mg Met/g for DC0.6–P2 with a lower exchange capacity (1.02 meq/g) and 22 mg Met/g
for DC0.6–P5 with a higher exchange capacity (1.37 meq/g). On the other side, the covalent
cross-linking supposes the involvement of carboxylic groups in the formation of ester
bonds and, as a result, reduces their number. Therefore, with the increase in the degree
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of cross-linking, the capacity to retain the drug through electrostatic interactions should
decrease. On the other hand, a more cross-linked network should physically retain more
drug. Increasing the degree of cross-linking had two opposite effects that could not be
dissociated. The release kinetics of Met from DC were investigated in PBS (pH 7.4) and
ABS (pH 1.2), at 37 ◦C. As can be observed from Figure 10, Met was released faster from the
DC, than from the PNH, hydrogel, due to the higher degree of swelling in PBS (ionization of
carboxylic groups). At pH = 1.2, the DC hydrogels were fully protonated and the network
collapsed. Hydrogels display a delayed drug release, compared to rapid release from the
conventional ones. It should be emphasized that Met is much more soluble in pH = 1.2
(hydrochloride form) than in pH = 7.4, so, as a result, the contribution of the polymer
network in delaying the release of the drug in the gastric fluid is even more significant.
In conclusion, the DC hydrogels exhibited a delayed drug release pattern in acidic media
and a faster release in alkaline media. Thus, DC hydrogels, loaded with metoclopramide,
could be orally administered. After administration, these polymeric structures first reach
the stomach fluid, where the pH is low (1.0–3.0). Here, the residence time is between
2 and 4 h. Then, the gastric chyme (partially digested food) formed in the stomach passes
into the small intestine for nutrient absorption (residence time of more than 24 h). To
illustrate this theory better, the release kinetics was investigated for 4 h at pH = 1.2 and
then continued for another 24 h in PBS (Figure 10). It was obvious that the amount of Met
released after 4 h in pH = 1.2 was very small; changing the pH of the buffer from 1.2 to 7.4,
the release rate increased significantly.
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Figure 10. Release kinetics of Met from DC0.6 hydrogels in PBS (pH 7.4) (A) and ABS (1.2) (B), at 37 ◦C.
Met release profile in ABS (pH 1.2) for 4 h and then transferred in PBS (pH 7.4) for 24 h (C). For
comparison, the release profile of Met from PNH0.6 is also depicted (A–C).

In order to determine the main release mechanism of Met from hydrogels, the
Korsmeyer–Peppas, Higuchi and Zero-order models were applied. The obtained data
are listed in Table 3.

Table 3. Release parameters corresponding to Met-loading hydrogels.

Samples

Korsmeyer-Peppas Higuchi Zero Order Model

KKP × 102 (Hours −n) n R2 KH × 102

(Hours −1/2) R2 K0 × 102 (Hours−1) R2

PNH0.6
ABS 41.06 0.59 0.999 0.46 0.998 0.042 0.8747
PBS 19.64 0.56 0.996 0.22 0.992 0.066 0.9578

DC0.6–P2 ABS 11.84 0.59 0.994 0.15 0.991 0.039 0.9862
PBS 29.60 0.76 0.998 0.46 0.999 0.110 0.9063

DC0.6–P5 ABS 8.51 0.55 0.996 0.10 0.999 0.025 0.967
PBS 21.90 0.79 0.994 0.46 0.996 0.100 0.9449
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The values of the correlation coefficient R2 indicate the kinetic model that is appro-
priate for the release of the drug. A regression coefficient value, R2, close to 1 indicates
the best model fitting the release mechanism. As shown in Table 3, irrespective of the pH
values, the best kinetic model was the Higuchi equation, as the plots showed high linearity
(R2 values in the range 0.991–0.9998), mainly suggesting a diffusion process. These results
were consistent with the data obtained by the Korsmeyer–Peppas model analysis for all
hydrogels. According to this model, the drug is transported via Fickian diffusion if the
value of the parameter n is below, or equal to, 0.5, while an n value between 0.5 and 0.9
indicates anomalous transport [50]. In an acidic medium, fitting the data to the Higuchi
equation, together with n values slightly above 0.5, might suggest a diffusion-controlled
drug release, both for conventional and double cross-linked hydrogels. In PBS, n values
for double cross-linked hydrogels were 0.76 (DC0.6–P2) and 0.79 (DC0.6–P5), suggesting
a coupling of diffusion and anomalous diffusion, which might indicate that Met release
was controlled by more than one process (Fickian diffusion and polymer chain relaxation).
The KKP constant decreased with increase in cross-linking degree, both in acid and basic
release mediums.

3. Conclusions

Thermo-/pH-responsive double cross-linked hydrogels were prepared in three steps.
First, poly(PNIPAAm-co-HEAAm)–based hydrogels (PNHs) were obtained by the free-
radical polymerization of NIPAAm and HEAAm in the presence of different amounts
of BisAAm, as a cross-linker. In the second step, a semi-interpenetrated hydrogel was
obtained, by entrapping linear P(MVE/MA) within the 3D-network of the PNH hydrogels.
The last step consisted of double cross-linking of PNH with P(MVE/MA) through a thermal
method, without using any solvent. The morphology, swelling degree, and release kinetics
of Met in simulated physiological conditions were studied. SEM observations of lyophilized
hydrogels showed the presence of filled pores. It must be noted that in PBS at pH = 7.4 the
VPTT value increased from 33 ◦C, for un-charged conventional hydrogels, to 50 ◦C, for DC
hydrogels with the carboxylic groups in the ionized state. However, surprisingly, when the
carboxylic groups of the DC hydrogels interacted electrostatically with Met, the VPTT value
decreased to 37 ◦C, a temperature close to that of the human body. This behavior represents
a great advantage for the hydrogels, since they are usually designed as biomaterials with
potential applications in tissue engineering or drug delivery. The DC hydrogels proved to
have higher swelling capacities in a basic medium. On the contrary, in the acidic medium,
the DC hydrogels had lower swelling capacities compared to conventional ones. Moreover,
the DC hydrogels showed a rapid and controllable deswelling process by complexation
with Met. Contrary to the fast release rate of Met from conventional hydrogels in gastric
fluid, the DC hydrogels displayed a delayed release pattern in acidic medium and a faster
release in the alkaline medium. Thus, DC hydrogels loaded with metoclopramide could be
administered orally. Moreover, the initial concentration of P(MVE/MA) in hydrogel could
be adjusted to tailor for the desired properties and to obtain scaffolds for different tissue
engineering applications.

4. Materials and Methods
4.1. Materials

N-isopropylacrylamide (NIPAAm) and hydroxyethylacrylamide (HEAAm) were bought
from Sigma-Aldrich Chemie Gmbh, Darmstadt, Germany. Potassium persulfate (KPS),
N,N′-methylenebisacrylamide (BisAAm) and N,N,N′,N′-tetramethylethylenediamine (TEMED)
were acquired from Fluka, Buchs, Switzerland. Poly(methyl vinyl ether-co-maleic anhy-
dride) (P(MVE/MA)) was purchased from Aldrich, Germany). Metoclopramide (Met) was
purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). The phosphate buffer
solutions (PBS) at pH 7.4 (50 mM NaH2PO4 + 40 mM NaOH) and acidic buffer solutions (ABS)
at pH 1.2 (50 mM KCl + 64 mM HCl) were prepared in our laboratory.
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4.2. Methods
4.2.1. Synthesis of Conventional and Double Cross-Linked Hydrogels

The synthesis of conventional hydrogels (PNHs) was carried out as follows:
0.565 g of NIPAAm (5 mmol), 0.115 g of HEAAm (1 mmol) and varied amounts of BisAAm
from 0.4 to 0.8% mol vs. monomers were dissolved in 5 mL distilled water. Dry nitrogen
was bubbled through the solution for 30 min before polymerization. Next, the initiator
(0.03 g, 0.111 mmol of KPS; 1.85% mol KPS vs. monomers) was added and the solution
kept for 5 min under nitrogen atmosphere to generate free radicals. Finally, 100 µL of
TEMED were added to accelerate the polymerization, then the solution was poured fast
into a 5 mL syringe (15 mm diameter). The reaction mixture was left for 24 h for a complete
polymerization of the PNH. The obtained samples were extracted from the syringe and cut
at a 10 mm width.

In order to obtain double cross-linked hydrogels, the PNH were immersed in a
P(MVE/MA) solution of different concentrations (2 and 5%, w/v) for 48 h at ambient
temperature. Subsequently, the hydrogel samples were removed from the solution, wiped
with a filter paper, and then rapidly frozen in liquid nitrogen and lyophilized (−57 ◦C,
5.5 × 10−4 mbar) for 48 h. The chemical cross-linking took place in solid state by thermal
treatment at 80 ◦C in a vacuum oven.

4.2.2. Scanning Electron Microscopy (SEM) Analysis

The SEM analyses were achieved on lyophilized samples with an Environmental
Scanning Electron Microscope (ESEM, Quanta 200, in Low Vacuum, at 20 kV).

4.2.3. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy

The IR spectra of lyophilized samples were registered using a FT–IR Vertex 70
spectrophotometer (Bruker, Wien, Austria, with KRS-5 ATR accessory). The frequency
ranged between 4000 and 600 cm−1 and the resolution was 4.0 cm−1. To obtain the spectra,
the average of 128 scans was used and the obtained data were processed with the OPUS 6.5
software (Bruker Optics, Wien, Austria).

4.2.4. Conductometric Titration

The carboxyl groups in DC hydrogels were quantitatively determined by conduc-
tometric titration. A conductivity meter CMD 210 (Radiometer, Copenhagen, Denmark)
provided with a CDC 865 cell was used. Previously, the DC hydrogels were weighed and
placed in an excess of 0.1 M NaOH aqueous solution. After the ion exchange reached
equilibrium, the samples were titrated with 0.1 M HCl solution. The exchange capacity
was determined from the graphical representation of the conductivity variation with the
HCl volume added. The second cross-linking degree of DC hydrogel was also determined
from the exchange capacity.

4.2.5. Porosity Measurement

Porosity of both conventional and DC hydrogels was determined using the solvent
replacement method. Thus, cylinder-like samples of dried hydrogels were weighed and
submerged in absolute ethanol (purity > 99.9%) for 100 h. After that, the samples were
weighed. To remove the excess of ethanol on the surface, the samples were wiped with a
filter paper. In addition, the dimensions of the hydrogel discs were evaluated [51,52]. The
porosity was calculated according to the following equation:

P% =
W1 −W2

ρV
(1)

where W1 and W2 are the weight (g) of the samples before and after soaking in absolute
ethanol, respectively; ρ is the density of absolute ethanol (g/cm3) and V is the volume of
the DC samples (cm3).
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4.2.6. Mechanical Tests

The compressive experiments were realized at room temperature using a Texture
Analyzer (Brookfield Texture PRO CT3®, Middleboro, MA, USA). To compress the samples
into disks with radius and thickness of around 8 mm, a strain rate of 50% min−1 was
used. Testing was carried out at a speed of 30 mm/min. The Young’s modulus of hydrogel
samples was obtained from the slope of the stress–strain plot.

4.2.7. Swelling Studies

The swelling ratio (SR) of both PNH and DC hydrogel samples was studied over
a 22–60 ◦C range with 3–5 ◦C heating rate, using a thermostatic water bath. Previously,
the dry samples were weighed and then left in buffer solution to equilibrate for 12 h at
each predefined temperature. To remove the excessive solution, the samples were wiped
with filter paper before each weighing. The swelling ratio was calculated according to the
following equation:

SR =
Ws −Wd

Wd
(2)

where SR is the swelling ratio, Ws is the mass of swollen sample at each temperature and
Wd is the mass of dry sample. The dry mass of samples (Wd) was achieved after drying at
room temperature and subsequent vacuum drying for 24 h.

The VPTT of hydrogels was determined as the inflexion point in the curve swelling
factor-temperature by means of Boltzmann fitting of the experimental data.

Swelling/Deswelling Kinetics

The swelling/deswelling kinetics in simulated physiological conditions were studied
by the gravimetric method. For swelling measurements, the dry hydrogel sample was
weighed and then immersed in an excess of buffer solution at room temperature (21 ◦C). For
deswelling experiments, the samples were first left in buffer solutions at room temperature
until the equilibrium swelling degree was reached. Subsequently, the samples were rapidly
placed in hot solutions at 50 ◦C. For both swelling and deswelling analysis, at predefined
time intervals, the samples were taken out from the solution, wiped with a filter paper and
then weighed.

The volume change of DC hydrogels with pH variation was evaluated at 37 ◦C by
shifting PBS (pH 7.4) with ABS (pH 1.2) as the swelling media. Previously, the samples
were weighed and placed in PBS for 2 h (being weighed at each predefined time point).
Subsequently, the samples were moved to the ABS solution and weighed following the
same operation as in PBS. The buffer solution was changed every 2 h.

4.2.8. Drug Loading and Release Studies

For drug loading, each dried sample (~0.180 g) was placed in 5 mL of Met aqueous
solution (1 mg/mL) for three days at room temperature. Then, the loaded hydrogels were
washed with distilled water and left to dry at room temperature, followed by vacuum oven
drying. The amount of loaded Met was estimated from the amount of drug in the washing
water (UV determination) according to the following equation:

Metloaded = Meti −Metr (3)

where Meti and Metr are the amount of Met in the initial and final solution, respectively.
In vitro release studies were performed in PBS (pH 7.4) and ABS (pH 1.2) at 37 ◦C. A

quantity of 0.180 g of sample containing 3 mg of Met was placed in a buffer solution. In
order to determine the amount of drug released, 3 mL from the release medium were
extracted, at predefined time points, and analyzed spectrophotometrically at 272 nm. 3 mL
of fresh buffer solution was added after each extraction to keep the volume of the release
medium constant.
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The data from the release kinetics of Met from conventional and DC hydrogels were
fitted to the following mathematical model:

Korsmeyer–Peppas :
Mt

M∞
= KKPtn (4)

Higuchi :
Mt

M∞
= KHt0.5 (5)

Zero−Order :
Mt

M∞
= KZOt (6)

where:
-Mt/M∞ is the fraction of drug released at time t,
-KKP, KH, KKO are the Korsmeyer-Peppas, Higuchi, and Zero-Order constant, respectively,
-n is the release exponent indicative for the drug release mechanism. The drug release

mechanism was the following: Fickian (Case I) for a value around 0.5 and non-Fickian
(anomalous) diffusion for a value between 0.5 and 0.9 and in Case II transport for a value
around 0.9 [50].

Experimental results were expressed as mean ± SD (n = 3).
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