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Abstract: Biosurfactants are eco-friendly surface-active molecules recommended for enhanced oil
recovery techniques. In the present study, a potential lipopeptide (biosurfactant) encoding the iturin
A gene was synthesized from Bacillus aryabhattai. To improvise the yield of the lipopeptide for specific
applications, current research tends toward engineering and expressing recombinant peptides. An
iturin A gene sequence was codon-optimized, amplified with gene-specific primers, and ligated
into the pET-32A expression vector to achieve high-level protein expression. The plasmid construct
was transformed into an E. coli BL21 DE3 host to evaluate the expression. The highly expressed
recombinant iturin A lipopeptide was purified on a nickel nitrilotriacetic acid (Ni-NTA) agarose
column. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the
purity and molecular mass of iturin A was 41 kDa. The yield of recombinant iturin A was found to be
60 g/L with a 6.7-fold increase in comparison with our previously published study on the wild strain.
The approach of cloning a functional fragment of partial iturin A resulted in the increased production
of the lipopeptide. When motor oil was used, recombinant protein iturin A revealed a biosurfactant
property with a 74 ± 1.9% emulsification index (E24). Purified recombinant protein iturin A was
characterized by mass spectrometry. MALDI-TOF spectra of trypsin digestion (protein/trypsin of
50:1 and 25:1) showed desired digested mass peaks for the protein, further confirming the identity
of iturin A. The iturin A structure was elucidated based on distinctive spectral bands in Raman
spectra, which revealed the presence of a peptide backbone and lipid. Recombinant iturin A was
employed for enhanced oil recovery through a sand-packed column that yielded 61.18 ± 0.85%
additional oil. Hence, the novel approach of the high-level expression of iturin A (lipopeptide) as
a promising biosurfactant employed for oil recovery from Bacillus aryabhattai is not much reported.
Thus, recombinant iturin A demonstrated its promising ability for efficient oil recovery, finding
specific applications in petroleum industries.

Keywords: iturin A; lipopeptide; biosurfactant; expression; MALDI-TOF; Raman spectroscopy;
enhanced oil recovery

1. Introduction

Biosurfactants are produced as extracellular molecules on microbial cell surfaces.
These are surface-active molecules that reduce the surface tension between hydrophobic
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and hydrophilic regions and are produced by several microbes, such as bacteria, fungi,
and yeast [1]. Biosurfactants are biochemically made up of hydrophilic segments, such
as carbohydrates, polar peptides, or acids, and hydrophobic segments, usually lipids [2].
A lipopeptide is a specific class of biosurfactant that has a lipid moiety attached to a
peptide and is produced as part of microbial metabolism. Lipopeptides have a wide range
of applications, especially those produced by Bacillus species, which have been shown
to exhibit antibacterial and antifungal activities [3]. Lipopeptides produced by bacterial
species can be classified into three types, namely, surfactin, iturin, and fengycin. Out of
these three lipopeptides, iturin is comparatively smaller and is amphiphilic in nature. It
has a peptide linked to the fatty acid chain. As lipopeptides are molecules of biological
origin, they are biodegradable, nontoxic, and nonpolluting biomolecules; hence. they are
environmentally acceptable [4].

Iturin A is a type of cyclic lipopeptide produced by Bacillus species as a secondary
molecule and acts as an antibiotic [5]. Iturin A has been known to show inhibitory activity
by limiting the growth of fungi [6]. The lipopeptide nature of the biosurfactant has shown
thermal, pH, and salinity stability [7]. Many researchers are interested in replacing synthetic
surfactants with biosurfactants; however, a genuine problem still exists in the economics of
production, lower yield, and costly downstream and recovery process of a biosurfactant [8].
However, with the application of statistical design methods, such as response surface
methodology (RSM), the yields of biosurfactant production has improved by 2.51-fold
using crude oil [7]. To reduce the cost involved in the production of biosurfactants, it is
essential to construct hyperproducing or mutant strains with better yields [8]. Improved
yield combined with a cost-effective carbon source can result in lesser production cost [9].

The development of recombinant biosurfactants is gaining scientific attention in recent
times due to industrial applications. A strategy for improving the gene expression that
encodes a biosurfactant is receiving focused interest to improve the yields and modify the
chemical attributes [10]. The mycosubtilin and iturin A operons have been determined as
operons of the iturin lipopeptide family. The lpa-14 gene is a homologue of the sfp gene,
which is responsible for the biosynthesis of surfactin and iturin A in B. subtilis RB14 [11].
The Escherichia coli lac operator and the promoter core region of the penicillinase gene of
B. licheniformis present in the hybrid promoter P spac was reported to increase lipopeptide
biosynthesis fivefold [12]. Biosurfactants are amphipathic molecules that enable them to
perform a vital function. Recently, it has been proved that biosurfactants can solubilize and
mobilize organic compounds adsorbed on soil constituents. Biosurfactants have shown
good results for the decontamination of soil, as it has unique properties [13]. Biosurfactants
can also be employed in biomedical applications owing to their antimicrobial and antivi-
ral activities [14]. The lipopeptide surfactin is one of the most well-known and studied
surfactants [15]. A lipopeptide can be used for antimycoplasmal, antibacterial, and an-
tiviral activities. It can also be used for antiadhesive and anti-inflammatory applications.
It has also shown good results for environmental applications, such as oil recovery, in
environmental bioremediation, and it also accelerates the biodegradation of hydrocar-
bons [16]. With the help of genome shuffling, 179.22 mg/L of iturin A was obtained from
Bacillus amyloliquefaciens, which had a 2.03-fold increase compared with a wild strain [17].
Iturin A production was 330 µg/mL from the recombinant Bacillus subtilis strain as com-
pared with 110 µg/mL from a wild strain, which indicated a threefold increase [6,17].
A biosurfactant produced from Bacillus species was characterized previously by mass
spectrometry and Raman spectroscopy [17,18].

However, not many reports are available on the high-level expression of iturin A
(lipopeptide) as a promising biosurfactant from Bacillus aryabhattai. The current study
reports the design and synthesis of the lpa-14 gene responsible for iturin A production
and cloning in the pET-32A vector, followed by the overexpression in E. coli BL21 DE3.
The structural characterization of a purified recombinant iturin A protein was carried
out by Raman spectroscopy, and molecular mass was analyzed by mass spectroscopy
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(MALDI-TOF MS). The biosurfactant activity of expressed iturin A was demonstrated in a
sand-packed column for enhanced oil recovery.

2. Materials and Methods
2.1. Chemicals, Vectors, and Bacterial Strains

All the chemicals and nickel nitrilotriacetic acid (Ni-NTA) resin column used in the
present research were purchased from Sigma-Aldrich Pvt Ltd. (Burlington, MA, USA)
and Merck and Co. Inc. (Rahway, NJ, USA). The iturin A gene was synthesized from
Bacillus aryabhattai. The pET-32A vector, pUC19 vector, E. coli BL21 DE3, and E. coli DH5α
were used for cloning, sequencing, and expression activities.

2.2. Genome Sequence Identification

Iturin A production by B. aryabhattai was identified based on the results obtained from
antiSMASH, which predicts the genome clusters producing secondary metabolites [18].
Iturin A synthesis is assisted by the enzyme phosphopantetheinyl transferase coded by the
lpa-14 gene. The FASTA sequence of the lpa-14 gene was retrieved from the National Center
Biotechnology Information (NCBI).

Gene Synthesis, Amplification, and Cloning

From the synthesized codon-optimized DNA template, the iturin A gene was amplified
using the gene-specific primers and ligated into the pET-32A expression vector. The ligated
product was transformed into an E. coli DH5α host. Using BamHI and EcoRI, restriction
digestion was carried out for the confirmation of the gene insert. The FASTA sequence
of the iturin A gene was retrieved from the NCBI (Accession no. QHD44466.1) database,
and then it was reverse-translated using the Transeq tool, European Molecular Biology
Laboratory (EMBL) [19]. The translated protein sequences were further analyzed for the
presence of GC content and subjected to codon optimization for E. coli expression by
interchanging certain nucleotide sequences without altering the protein sequence for the
enhanced expression of the protein. The gene was amplified using synthesized T7 gene-
specific primers (forward primer 5′-ATGAAAATTTACGGAGTATA-3′ and reverse primer
5′-TTATAACAGCTCTTCATACGTT-3′) from the synthesized DNA template. The amplified
gene was cloned into the pUC19 vector.

Upon restriction digestion, the cloned insert was confirmed through sequencing. Fur-
ther, the restricted insert was subcloned into the pET-32A bacterial expression vector; for
this activity, BamHI and EcoRI with GGATCC and GAATTC restriction sites were employed.
The pET-32A vector used for cloning was designed for the high-level expression of recombi-
nant peptide sequences and was fused with a 109 amino acid thioredoxin protein tag, with
cleavable His-tag and S-tag. The plasmid construct with a concentration of 106 ng/µL was
transformed into E. coli BL21 DE3 chemical competent cells using heat shock to evaluate
the expression. The transformants were subjected to lysate/colony PCR using gene-specific
primers to confirm the presence of the insert (iturin A gene). The positive transformants
were grown in Luria–Bertani (LB) media and evaluated for protein expression.

2.3. Expression of the Iturin A Lipopeptide

The pET-32A-vector-transformed fresh colony was selected and cultured on an LB
agar plate. The starter culture was prepared by inoculating the culture into an LB medium
containing ampicillin at 100 µg/mL. The medium was incubated at 37± 2 ◦C under shaking
conditions (160 rpm) for 16 h. An amount of 10 mL of starter culture was added to the flask
containing a 1 L LB medium with ampicillin and incubated at 37 ± 2 ◦C. The flask was kept
under shaking conditions (200 rpm) to achieve optical density (OD) between 0.55 and 0.7 at
600 nm. Further, the flask was cooled to 16 ◦C, and isopropyl β-D-1-thiogalactopyranoside
(IPTG) at 1 mM was added. The flask was kept at 15 ◦C at 180 rpm for 16–18 h. The induced
cell culture was centrifuged at 4000 rpm at 4 ◦C for 20 min, and the pellet was collected and
stored at −80 ◦C until further use. For protein purification, the cell pellet was resuspended
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in ice-cold lysis buffer (20 mM Na2HPO4, 500 mM NaCl, 10 mM imidazole, 2.5% v/v
glycerol, and 0.1% v/v Triton), and to this, 80 mg of lysozyme, 20 µL of benzamidine, and
20 µL of phenylmethylsulfonyl fluoride (PMSF) were added. The solution was subjected to
sonication for 1 min at 60 amplitude, and this cycle was repeated six times. The solution
was centrifuged at 4900 rpm for 60 min at 4 ◦C. The obtained supernatant was collected in
2 mL tubes and centrifuged again at 4 ◦C at 11,000 rpm for 60 min to remove any precipitate
or suspended material. The clear supernatant was further subjected to purification.

2.4. Purification of the Recombinant Iturin A Lipopeptide

For purification, the obtained supernatant containing protein was loaded onto an
agarose column containing nickel nitrilotriacetic acid (Ni-NTA) resin pretreated with ly-
sis buffer for purification of the His-tagged iturin A recombinant protein. The column
was washed with 30 mL of wash buffer (20 mM Na2HPO4, 500 mM NaCl, 30 mM imida-
zole, 2.5% v/v glycerol, pH 7.40) to remove any nontagged proteins. An elution buffer
(20 mM Na2HPO4, 300 mM NaCl, 300 mM imidazole, 2.5% v/v glycerol, pH 7.40) was
used to elute the His-tagged recombinant protein from the column. The purity of the
protein was assessed by sodium dodecyl sulfate polyacrylamide gel (12.5%) electrophoresis
(SDS-PAGE) [8]. The expressed iturin A concentration was determined by the Bradford
assay (using BSA as the standard protein). The absorbance measurement was recorded
at A280 nm (molar extinction coefficient was obtained from the Expasy ProtParam tool
using the primary sequence of iturin A; http://web.expasy.org/protparam/, accessed on
15 October 2021).

2.5. Evaluation of Biosurfactant Activity

Iturin A was examined for activities related to biosurfactants by various assays. The
oil spread assay was carried out according to the method of Yaraguppi et al. (2020) [7].
An amount of 40 mL of distilled water was taken in a Petri plate, and to this, 25 µL of
motor oil was added. An amount of 10 µL of purified recombinant iturin A was added to
the oil surface, and oil displacement was measured. The dispersion index is calculated by
measuring the diameter of oil after dispersion, and the oil dispersion area was calculated by
using the equation = πr2, where r is the radius. The biosurfactant activity of iturin A was
also assessed by measuring the emulsification index (E24) [7]. Briefly, 3 mL of a recombinant
protein (cell-free supernatant) was added to 3 mL motor oil, mixed rigorously (10 min) and
allowed to stand for 24 h. The height of the emulsion layer (mm) divided by the total height
of the solution (mm) multiplied by 100 indicated the percentage emulsification index [20].

2.6. Analytical Characterization
2.6.1. Mass Spectrometry Analysis

To confirm the identity of the recombinant protein, mass spectrometric (MS) analysis
was performed on a tryptic digest of iturin A. The digestion of protein was carried out
by using Trypsin-ultra™ Mass Spectrometry Grade from New England Biolabs (NEB,
Hertfordshire, UK). Two trypsin digestion reactions for the protein were set up with a
protein/trypsin ratio of 50:1 and 25:1 each containing 1 µL of trypsin (1 µg/µL), 2.5 µL of 2X
trypsin reaction buffer, 2.5 µL of ultrapurified water, and 50 and 25 µL of protein (1 µg/µL),
respectively. These reactions were incubated under shaking conditions overnight (16 h) at
37 ± 2 ◦C and stored at −80 ◦C. Samples for Matrix Assisted Laser Desorption/Ionization
Time-of-Flight (MALDI-TOF) MS analysis were prepared by desalting the reaction mixtures
with C-18 Zip-Tip (Millipore, CA, USA). MALDI-TOF MS was performed at the Indian
Institute of Science (IISc, Bangalore, India) Mass Spectrometry Facility, Department of
Biological Sciences, Bangalore, using sinapic acid as the matrix.

2.6.2. Raman Spectroscopy Analysis

A Raman alpha 300R (WITec, GmbH, Remscheid, Germany) confocal Raman micro-
scope was used for acquiring spectra of purified protein sample. The equipment consisted

http://web.expasy.org/protparam/
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of an excitation laser of 532 nm, 50X objective (Zeiss, NA = 0.8), 300 mm spectrograph
equipped with 1200 gr/mm grating, and Thermo cooled charge-coupled detector (CCD).
Raman-scattered photons were collected through a 50 µm fiber, and the spectra were ob-
tained over the fingerprint region (600–1800 cm−1). The specimen was placed on a quartz
window, and a total of 10 spectra were obtained at different locations. Each spectrum was
acquired for 5 s and averaged over 10 accumulations. The highest peak normalization
was performed using MATLAB (version R2021a). The mean spectrum was computed by
averaging the intensities at the Y-axis and keeping the X-axis constant.

2.7. Sand-Packed Column Assay for Enhanced Oil Recovery

To evaluate the biosurfactant nature of recombinant iturin A, sand-packed column
experiments were designed for improved oil recovery. Columns were made using 50 mL
syringe tubes and were filled with 35 g of sand totally dried at 100 ◦C in a hot-air oven.
Positive and negative controls were performed using SDS solution (1 mg/mL) and ultrapure
water, respectively. Each column was flooded with 30 mL of 5% brine solution. The pore
volume (PV) of the sand-packed column was calculated by determining the volume of the
brine required to saturate the column. PV divided by the volume of the column indicates
the porosity (%) of the sand-packed column. Crude oil was flooded into the sand-packed
column till it replaced the whole volume of the brine. Hence, the oil in place (OOIP)
indicates the volume of crude oil retained in the column [21].

Soi (%) = (OOIP/PV) × 100 (1)

Swi (%) = ((PV − OOIP)/PV) × 100 (2)

Residual oil saturation was obtained by flooding the brine into the column. Using
the following equation, the oil recovered after flooding with the brine and the residual oil
saturation was calculated.

Sor (%) = ((OOIP − Sorwf)/OOIP) × 100 (3)

The remaining oil was flooded with recombinant iturin A and incubated at 50 ± 2 ◦C
for 24 h. Recovered oil was used to identify the additional oil recovery.

AOR (%) = (Sorif/(OOIP − Sorwf)) × 100 (4)

Where Sorwf in mL is residual oil saturation after water flooding, Sorif in mL is oil
collected over residual oil saturation after iturin A flooding, Soi % is initial oil saturation,
Swi in % is initial water saturation, Sor in % residual oil saturation and AOR in % represents
additional oil recovery [22]. AOR % represents the enhanced oil recovery from the sand-
packed column.

3. Results and Discussion
3.1. Genome Sequence Identification

The gene track of the lpa-14 nucleotide sequence was identified and retrieved from
NCBI and showed the product obtained from the gene (nucleotide accession no.: MN006821,
protein ID: QHD44466.1), and the same was confirmed from the Norine database [23,24].

The same sequence was further used for the codon optimization, which was carried
out using the Transeq tool. A codon-optimized sequence was further used for the cloning
(Figure 1). The protein product translated from the nucleotide sequence was annotated
as iturin A, which was considered to be a reference for the further process of cloning and
expression through the vector.



Gels 2022, 8, 403 6 of 15

Gels 2022, 8, 403 6 of 15 
 

 

(Figure 1). The protein product translated from the nucleotide sequence was annotated as 

iturin A, which was considered to be a reference for the further process of cloning and 

expression through the vector. 

 

Figure 1. Graphical representation of the lpa-14 (iturin synthesis gene) track with protein features 

and region features. Sfp-4′-phosphopantetheinyl transferase; QHD44466.1—protein ID (antimicro-

bial lipopeptide (iturin). 

3.2. Cloning into the pET-32A Vector 

The coding region of the functional gene, iturin A, was amplified from the custom 

synthesized template DNA. The PCR product revealed a single band of 687 bp, as shown 

in Figure 2. PCR-amplified products of the gene were purified and cloned into the pET-

32A vector and transformed. To confirm the presence of an insert, restriction digestion 

was performed with the help of BamHI and EcoRI. The transformed colonies were se-

lected based on blue-white screening with colonies grown on ampicillin containing an 

agar plate. The coding sequences obtained from sequencing were then compared with the 

reference sequence in the GenBank with its orthologues for confirmation. Several factors, 

such as high production cost, downstream processing, and lower recovery rate of the bi-

osurfactant, have triggered research on cloning biosurfactant genes to overcome these lim-

itations. Cloning approaches can improvise the biosurfactant secretion capability of 

strains that can be efficiently utilized for oil recovery from reservoirs. Cloning aids to 

overcome the time-consuming biosurfactant screening procedures. Researchers have sug-

gested the development and utilization of engineered strains for biosurfactant production 

with specific applications [25]. 

 

Figure 2. Cloning of the lpa-14 gene from Bacillus aryabhattai: (A) amplification of the iturin A gene 

by PCR and (B) recombinant plasmid showing a band size of 687 bp (iturin A gene) and a band size 

of 6.5 Kb (pET-32A vector). 

Figure 1. Graphical representation of the lpa-14 (iturin synthesis gene) track with protein features
and region features. Sfp-4′-phosphopantetheinyl transferase; QHD44466.1—protein ID (antimicrobial
lipopeptide (iturin).

3.2. Cloning into the pET-32A Vector

The coding region of the functional gene, iturin A, was amplified from the custom
synthesized template DNA. The PCR product revealed a single band of 687 bp, as shown
in Figure 2. PCR-amplified products of the gene were purified and cloned into the pET-32A
vector and transformed. To confirm the presence of an insert, restriction digestion was
performed with the help of BamHI and EcoRI. The transformed colonies were selected
based on blue-white screening with colonies grown on ampicillin containing an agar plate.
The coding sequences obtained from sequencing were then compared with the reference
sequence in the GenBank with its orthologues for confirmation. Several factors, such as
high production cost, downstream processing, and lower recovery rate of the biosurfactant,
have triggered research on cloning biosurfactant genes to overcome these limitations.
Cloning approaches can improvise the biosurfactant secretion capability of strains that
can be efficiently utilized for oil recovery from reservoirs. Cloning aids to overcome
the time-consuming biosurfactant screening procedures. Researchers have suggested the
development and utilization of engineered strains for biosurfactant production with specific
applications [25].
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Figure 2. Cloning of the lpa-14 gene from Bacillus aryabhattai: (A) amplification of the iturin A gene
by PCR and (B) recombinant plasmid showing a band size of 687 bp (iturin A gene) and a band size
of 6.5 Kb (pET-32A vector).

3.3. Expression and Purification of His–pET-32A-Iturin A Fusion Protein

The evolution of novel strains and the improvement of metabolites are both aided by
genome shuffling. This method was utilized in an attempt to boost iturin A production by
optimizing the codon. This approach aided in the high expression of recombinant iturin A,
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which possesses similar activity as a lipopeptide and surfactin. Hence, a highly expressed
iturin A from Bacillus aryabhattai species was developed. The iturin A gene was composed
of 687 bp with a conserved acyl transferase domain. The previous development of iturin A
required cloning of a ~37 kbp gene cluster responsible for the biosynthesis of iturin A-like
lipopeptides. Our attempt was to clone a functional fragment of partial iturin A, resulting
in the increased production of the lipopeptide. This technique could be useful for creating
microorganisms that operate as biological control agents. The expressed recombinant iturin
A was purified on a nickel-NTA agarose column. Purified iturin A was further concentrated
to 50 folds with the help of buffer exchange. SDS-PAGE (Figure S1) revealed the purity
and molecular mass of iturin A with a fusion protein, which was observed to be 41 kDa
(Figure 3). The yield of recombinant iturin A was found to be 60 g/L.
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There was a 6.7-fold increase in production in comparison with wild iturin A, which
yielded 8.86 g/L under optimized conditions (crude oil, 4.0%; yeast extract, 0.7%; NaNO3,
3.0%), as reported in our previous studies [23]. In a recent study [26], the recombinant strain
HZ-PbacA showed high iturin A production owing to the replacement of the promoter
PbacA in place of the promoter of the iturin A synthetase cluster. Additionally, an attempt
was made to delete the regulator gene abrB to enhance the expression of iturin A synthetase
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by relieving the repression caused by AbrB on PbacA. As per previous studies, iturin A
production from B. subtilis ZK0 and wild-type B. subtilis ZEB01 was found to be 0.005 g/L,
which increased to 0.215 g/L by the simultaneous overexpression of the comA and sigA
regulatory genes in B. subtilis ZK0 [27]. Dang et al. (2019) [28] reported 0.037 g/L of iturin
A when a strong promoter was inserted into the upstream of itu operon for the transcription
enhancement of iturin A genes. A further increase in yield (0.113 mg/L) was observed
by the overexpression of the DegQ regulator. Several strategies for the overexpression of
biosurfactant genes have been reviewed by Jimoh et al. (2021) [29] where the authors have
reported the overexpression of signaling molecules that are involved in the regulation of
biosynthetic clusters that trigger the production of a biosurfactant. For example, the overex-
pression of ComX and PhrC in B. subtilis revealed a 6.4-fold improvement in biosurfactant
production. A high-level expression of molecules, such as biosurfactants and enzymes, is
receiving importance as the functionality attributions of the molecules could be improved
through this workflow [30].

3.4. Evaluation of Biosurfactant Activity

Recently, there has been great research interest in biosurfactants due to their excep-
tional properties, such as specificity, low toxicity, and eco-friendly characteristics. Biosurfac-
tants have a wide range of applications in industries, such as food, medical, pharmaceutical,
petrochemical, and agriculture. They have been demonstrated to have the ability to signifi-
cantly decrease the surface tension and interfacial tension and form microemulsions [10].

The recombinant protein iturin A revealed biosurfactant activities based on a screening
assay. The recombinant protein was evaluated for its emulsification index, which was found
to be 74 ± 1.9% (Figure 4A). Additionally, the purified recombinant protein showed the
dislocation of oil with a 2.2 cm diameter and an oil dispersion area of 29.88 ± 1.47 cm2

during the oil spread assay (Figure 4B). The oil dispersion and significant results of E24
prove the potential biosurfactant nature of recombinant iturin A. An E 24 higher than 30%
is usually considered a significant emulsification activity.

Gels 2022, 8, 403 9 of 15 
 

 

 

Figure 4. (A) Emulsification activity of recombinant iturin A: (i) test sample, (ii) negative control. 

(B) Oil spread assay: (i) motor oil before adding recombinant lipopeptide, (ii) recombinant lipopep-

tide added on oil surface, (iii) oil dispersion by recombinant lipopeptide. 

3.5. Analytical Characterization 

3.5.1. Mass Spectrometry Analysis 

The digestion of protein was performed using the trypsin enzyme that cuts at the C-

terminal of arginine (R) and lysine (K) [34]. The digestion was performed under two dif-

ferent conditions (protein: trypsin) of 50:1 and 25:1. The fragments were analyzed by 

MALDI-TOF MS. The MALDI-TOF spectra for both reactions showed the desired di-

gested mass peaks for the protein. The predicted 16 mass fragments were computed with 

the iturin A primary protein sequence using the Expasy PeptideMass tool 

(https://web.expasy.org/peptide_mass, accessed on 15 October 2021). The mass spectra 

(Figure S2) showed 13 fragments for 50:1 reaction (Table 1), and [M + H]+ of iturin A at 

m/z 213.9814, m/z 627.2845, and m/z 594.3034 was not observed when compared with the 

predicted fragments, thus indicating 81.25% of protein sequence coverage. On the other 

hand, 14 fragments for 25:1 reaction were shown (Table 1), indicating 87.5% of the protein 

sequence coverage (a few lower molecular weight fragments were not observed). Follow-

ing lower molecular weight fragments, [M + H]+ of iturin A at m/z 627.2845 and m/z 

594.3034 was not observed; thus, the MALDI-TOF MS information for iturin A trypsin 

digestion confirms the identity of the iturin A protein. Previously, several workers re-

ported the molecular masses and varied peaks for different class of peptides based on 

Figure 4. Cont.



Gels 2022, 8, 403 9 of 15

Gels 2022, 8, 403 9 of 15 
 

 

 

Figure 4. (A) Emulsification activity of recombinant iturin A: (i) test sample, (ii) negative control. 

(B) Oil spread assay: (i) motor oil before adding recombinant lipopeptide, (ii) recombinant lipopep-

tide added on oil surface, (iii) oil dispersion by recombinant lipopeptide. 

3.5. Analytical Characterization 

3.5.1. Mass Spectrometry Analysis 

The digestion of protein was performed using the trypsin enzyme that cuts at the C-

terminal of arginine (R) and lysine (K) [34]. The digestion was performed under two dif-

ferent conditions (protein: trypsin) of 50:1 and 25:1. The fragments were analyzed by 

MALDI-TOF MS. The MALDI-TOF spectra for both reactions showed the desired di-

gested mass peaks for the protein. The predicted 16 mass fragments were computed with 

the iturin A primary protein sequence using the Expasy PeptideMass tool 

(https://web.expasy.org/peptide_mass, accessed on 15 October 2021). The mass spectra 

(Figure S2) showed 13 fragments for 50:1 reaction (Table 1), and [M + H]+ of iturin A at 

m/z 213.9814, m/z 627.2845, and m/z 594.3034 was not observed when compared with the 

predicted fragments, thus indicating 81.25% of protein sequence coverage. On the other 

hand, 14 fragments for 25:1 reaction were shown (Table 1), indicating 87.5% of the protein 

sequence coverage (a few lower molecular weight fragments were not observed). Follow-

ing lower molecular weight fragments, [M + H]+ of iturin A at m/z 627.2845 and m/z 

594.3034 was not observed; thus, the MALDI-TOF MS information for iturin A trypsin 

digestion confirms the identity of the iturin A protein. Previously, several workers re-

ported the molecular masses and varied peaks for different class of peptides based on 

Figure 4. (A) Emulsification activity of recombinant iturin A: (i) test sample, (ii) negative control.
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added on oil surface, (iii) oil dispersion by recombinant lipopeptide.

In previous studies, a lipopeptide showed 68 ± 0.5% emulsification activity (E24) [7].
A cell-free broth of B. velezensis showed 56.2% E24 with engine oil [31]. A biosurfactant
from mutant A. niger M2 showed 62.30% of E24 with 59.81 cm2 oil displacement area [32],
and a 66.4 cm2 oil displacement area was shown by a biosurfactant from R. arrhizus [33].
In the present study, recombinant iturin A was revealed to possess potential biosurfactant
activity and can be widely employed in oil recovery processes.

3.5. Analytical Characterization
3.5.1. Mass Spectrometry Analysis

The digestion of protein was performed using the trypsin enzyme that cuts at
the C-terminal of arginine (R) and lysine (K) [34]. The digestion was performed un-
der two different conditions (protein: trypsin) of 50:1 and 25:1. The fragments were ana-
lyzed by MALDI-TOF MS. The MALDI-TOF spectra for both reactions showed the de-
sired digested mass peaks for the protein. The predicted 16 mass fragments were com-
puted with the iturin A primary protein sequence using the Expasy PeptideMass tool
(https://web.expasy.org/peptide_mass, accessed on 15 October 2021). The mass spectra
(Figure S2) showed 13 fragments for 50:1 reaction (Table 1), and [M + H]+ of iturin A at
m/z 213.9814, m/z 627.2845, and m/z 594.3034 was not observed when compared with
the predicted fragments, thus indicating 81.25% of protein sequence coverage. On the
other hand, 14 fragments for 25:1 reaction were shown (Table 1), indicating 87.5% of the
protein sequence coverage (a few lower molecular weight fragments were not observed).
Following lower molecular weight fragments, [M + H]+ of iturin A at m/z 627.2845 and
m/z 594.3034 was not observed; thus, the MALDI-TOF MS information for iturin A trypsin
digestion confirms the identity of the iturin A protein. Previously, several workers reported
the molecular masses and varied peaks for different class of peptides based on MALDI-TOF MS
spectra. The potential iturin A class comprises different isomers ranging from iturin A2 to A8.

Table 1. The predicted mass fragments and the observed mass fragments for 50:1 and 25:1 recombi-
nant iturin A trypsin digestion reaction.

Predicted Masses, [M + H]+ Observed Masses in 50:1 Trypsin
Digestion, [M + H]+

Observed Masses in 25:1 Trypsin
Digestion, [M + H]+

3904.9 3904.2 3904.9
2135.9 - 2135.9
2095.9 2096.0 2095.9
1970.9 1970.9 1970.9
1886.0 1886.0 1886.0

https://web.expasy.org/peptide_mass
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Table 1. Cont.

Predicted Masses, [M + H]+ Observed Masses in 50:1 Trypsin
Digestion, [M + H]+

Observed Masses in 25:1 Trypsin
Digestion, [M + H]+

1819.8 1819.8 1819.8
1532.7 1532.7 1532.7
1290.7 1290.8 1290.7
1133.4 1133.6 1133.5
1073.6 1073.6 1073.5
1031.6 1031.6 1031.6
937.4 937.4 937.4
767.3 767.4 767.4
627.3 - -
623.3 623.3 623.3
594.3 - -

Ye et al. (2012) [35] reported the mass of purified iturin A2 to be 1042. The MALDI-
TOF MS analysis of lipopeptides by Labiadh et al. (2021) [36] revealed a varied diversity of
molecules, such as bacillomycin D, iturin C, fengycins, and kurstakin from B. subtilis strains.
Secretion of lipopeptide isomers, such as iturin (majority), bacillomycin L, and fengycin,
was confirmed by Stincone et al. (2020) [37] based on representative peaks (m/z) by mass
spectrometry analyses. MALDI-TOF revealed the presence of majority of iturin molecules
with fatty acid chain length of C14–C17 and a minor portion of fengycin A and B with a varying
fatty acid chain length in the study conducted by Rodríguez-Chávez et al. (2019) [38].

3.5.2. Raman Spectroscopy Analysis

Raman spectroscopic approaches have emerged as useful tools to analyze the com-
position and secondary structure of pure proteins. Spectral bands in a Raman spectrum
are indicative of the presence of specific amino acids, protein structure, side-chain orienta-
tions, and local environments. As this method is not sensitive to water, it can be used to
characterize materials in solution, preserving their biological activity. The average Raman
spectrum shown in Figure 5 has discrete bands representing vibrational modes of the
peptide backbone and its side chains. In addition to amide I (1668 cm−1) and III (1266
and 1324 cm−1) bands, amino-acid-specific Raman bands, such as 823 cm−1, 1613 cm−1

(ring breathing modes of tyrosine), 852 cm−1 (proline, hydroxyproline), 935 cm−1 (C–C
stretching mode of proline and valine), 1005 cm−1 (phenylalanine), and 1051 cm−1 (C–N
stretching), can be clearly seen. Spectral features in the 1050–1060 cm−1 area are suggestive
of lipid presence [39] as these bands have been assigned to C–C stretching vibrations.
This is further supported by the presence of a strong spectral band at 1466 cm−1 assigned
to alkyl CH2 bends present in lipids. Raman spectroscopy has been employed by other
researchers for several studies. Shi et al. (2021) [40] studied that a biosurfactant improved
the CH4 hydrate structural stability by employing Raman spectra.

From the MALDI MS, the exact masses of the peptide fragments were obtained after
trypsin digestion of iturin A. These masses match the predicted tryptic fragments obtained
from the Expasy peptide mass bioinformatics tool using the primary sequence of iturin
A (https://web.expasy.org/peptide_mass/, accessed on 15 October 2021). The observed
masses (from two different tryptic digestion conditions) are within the accepted error range,
which confirms the sequence/structure of iturin. On the other hand, from the Raman
spectroscopic analysis, characteristic vibration/stretching bands were obtained, which
are indicative of specific functional groups, such as amide bonds, certain amino acids
(such as Tyr, Pro, and Val), and alkyl/lipid regions that provide preliminary information
about the presence of a lipopeptide structure. Although, from the Raman analysis, the
exact sequence of the protein cannot be obtained, the functional group identification from
Raman data supports the MALDI MS analysis for deducing the structure of the protein
based on its primary sequence (obtained from NCBI; https://www.ncbi.nlm.nih.gov/,

https://web.expasy.org/peptide_mass/
https://www.ncbi.nlm.nih.gov/


Gels 2022, 8, 403 11 of 15

accessed on 15 October 2021). Overall, the techniques are complementary and informative
for understanding the structure of a protein [41,42].
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Figure 5. Mean Raman spectrum of purified recombinant iturin A.

Iturin A is a lipopeptide (biosurfactant) that is a cyclic heptapeptide in nature [43]
(Figure 6). The amino acid configuration is mainly Asx-Tyr-Asx-(Ser, Glx or Pro)-(Pro or
Glu)-(Ser or Asn)-(Thr or Asn) in an LDDLLDL configuration sequence, which is closed by
a beta-amino acid linking [44].
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Figure 6. Two-dimensional structural representation of a biosurfactant (iturin A).

3.6. Application of a Biosurfactant for Enhanced Oil Recovery

The application of recombinant iturin A for oil recovery was evaluated a through-sand
packed column (Figure S3). The column differs in structure and permeability due to its
variation in PV and other parameters. The values of PV, OOIP, and Sorwf ranged from
9.88 to 10.08 mL, 6.92 to 7.18 mL, and 4.49 to 4.59 mL respectively. The residual oil was
released by flooding recombinant iturin A into the sand-packed column. The quantity of
oil recovered using recombinant iturin A after flooding with brine was 1.55 mL and was
used to calculate AOR. Flooding sand-packed columns with recombinant iturin A yielded
61.18 ± 0.85% additional oil, as shown in Table 2. Compared with the negative control, it
yielded 29% more oil.
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Table 2. Enhanced oil recovery from the sand-packed column using recombinant iturin A.

Parameters Sample Positive Control Negative Control

Pore volume (mL) 10 ± 0.8 9.97 ± 0.09 10 ± 0.08
Porosity (%) 20 ± 0.16 19.93 ± 0.18 20 ± 00.16
OOIP (mL) 7.1± 0.08 7 ± 0.08 7.03 ± 0.08

Soi (%) 71 ± 0.73 70.23 ± 0.41 70.34 ± 1.45
Swi (%) 29 ± 0.73 29.76 ± 0.41 29.65 ± 0.46

Sorwf (mL) 4.53 ± 0.04 4.55 ± 0.04 4.52 ± 0.02
Sor (%) 35.85 ± 0.58 35 ± 0.69 35.77 ± 0.75

Sorif (mL) 1.51 ± 0.04 1.05 ± 0.05 0.80 ± 0.03
AOR (%) 61.18 ± 0.85 42.85 ± 0.84 32.06 ± 1.04

The oil that is trapped in the pores of the sand-packed column imitates the natural oil
trapped in the rock pores. Highly viscous residual oil and interfacial tension interferes with
the flow properties of oils in wells [45]. The recovery of oil encompasses primary, secondary,
and tertiary phases. The natural pressure drive method is used during the primary phase.
In the secondary phase, the water flooding process is employed, which leads to the swelling
of clay particles and causes subsequent damage to reservoirs. To combat this, brine solution
is used during flooding. The application of surfactants is commonly evidenced in the
tertiary phase of oil recovery [22]. The addition of a surfactant or biosurfactants exhibits
the reduction of interfacial tension among the water and oil layer forming emulsion. It also
varies the wettability attributes of the pore surfaces of the reservoir rocks and enhances the
mobility of oil [46].

In a similar study conducted by Sharma et al. (2022) [47], 63% recovery of residual oil
was observed using a biosurfactant from Franconibacter sp. IITDAS19. The brine solution is
employed for enhancing the interactions between the oil and the biosurfactant following
the theory of Derjaguin–Landau–Verwey–Overbeek (DLVO). Previously reported studies
show that a biosurfactant produced from Bacillus sp. and Fusarium sp. BS-8, when used
for oil recovery in a sand-packed column, resulted in 24.5% additional oil recovery [48]. A
biosurfactant from Pseudoxanthomonas sp. G3 yielded 20% more oil recovery in comparison
with the control in a sand-packed column [21]. Previous studies on oil recovery under
simulated conditions reveal the mobilization of 17.15% residual oil by a glycoprotein N-4
biosurfactant [49]. A biosurfactant from Candida tropicalis MTCC 230 has also been reported
for enhanced oil recovery [20]. A lipopeptide XT-2 biosurfactant was reported to recover
11–13% of residual oil [50]. The variability in the oil recovery could be due to the different
types and concentration of biosurfactants. Recombinant iturin A demonstrated the recovery
of a significant portion of residual oil, indicating its potential application in the petroleum
industry in the long term.

4. Conclusions

The yield of iturin A was improvised (60 g/L) through the development of a recombi-
nant lipopeptide by cloning, expression, and purification. The molecular mass of purified
iturin A was 41 KDa. The recombinant protein was found to be a promising biosurfactant
based on the oil spread assay and emulsification index (E 24). The identity of iturin A was
confirmed with MALDI-TOF MS, and the structural elucidation of iturin A was carried out
by Raman spectroscopy. Recombinant iturin A demonstrated enhanced oil recovery with a
sand-packed column. This present study revealed a 6.7-fold increase in recombinant iturin
A compared with that of our previous study, and it suggests real-time applications of a
recombinant biosurfactant in oil reservoirs and the petroleum industry.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/gels8070403/s1, Figure S1: SDS-PAGE of recombinant iturin A; Figure S2:
Maldi MS Spectra for (A) 50:1 trypsin digestion of protein and (B) 25:1 trypsin digestion of recombi-
nant iturin A; Figure S3: Setup for enhanced oil recovery using recombinant iturin A form the sand
packed column.
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